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Synopsis

The pleiotropic nature of oestradiol, the main oestrogen found in women, has been well described in the literature.
Oestradiol is positioned to play a unique role since it can respond to environmental, genetic and non-genetic cues to
affect genetic expression and cellular signalling. In breast cancer, oestradiol signalling has a dual effect, promoting
or inhibiting cancer growth. The potential impact of oestradiol on tumorigenesis depends on the molecular and
cellular characteristics of the breast cancer cell. In this review, we provide a broad survey discussing the cellular
and molecular consequences of oestrogen signalling in breast cancer. First, we review the structure of the classical
oestrogen receptors and resultant transcriptional (genomic) and non-transcriptional (non-genomic) signalling. We
then discuss the nature of oestradiol signalling in breast cancer including the specific receptors that initiate these
signalling cascades as well as potential outcomes, such as cancer growth, proliferation and angiogenesis. Finally, we
examine cellular and molecular mechanisms underlying the dimorphic effect of oestrogen signalling in breast cancer.

Key words: breast cancer, 17-8-oestradiol, oestrogen, oestrogen receptors.

Cite this article as: Bioscience Reports (2016) 36, e00352, doi:10.1042/BSR20160017

OESTRADIOL AND ITS SIGNALLING

Oestrogens are steroid hormones that play key roles in growth,
development, reproduction and maintenance of a diverse range
of mammalian tissues. The three most common oestrogens are
oestrone (E1), 17B-oestradiol (E2) and oestriol (E3). Oestrone
and oestradiol are synthesized by the aromatization of andros-
tenedione and testosterone respectively. Oestriol is synthesized
from oestrone via a 16«-hydroxyoestrone intermediate [1]. Oes-
tradiol is the predominant oestrogen during the premenopausal
period. After menopause, oestrone is the main oestrogen. In
premenopausal women, ovaries constitute the primary biosyn-
thetic source of oestrogens. Oestrogen is also synthesized in ex-
tragonadal tissues including mesenchymal cells of the adipose
tissue including that of the breast, osteoblasts and chondrocytes,

aortic smooth muscle cells and vascular endothelium, as well as
numerous parts of the brain [2].

Oestrogen receptor structure

The physiological actions of oestradiol are mediated primarily
through the classical oestrogen receptors (ER), ERe and ERS.
ERs are members of the nuclear hormone receptor (NHR) fam-
ily and are composed of several functional domains. Spanning
from NH2- to COO-terminus, the main functional domains of
ER are the N-terminal domain (NTD), DNA-binding domain
(DBD) and ligand-binding domain (LBD). The LDB consists
of 11 «-helices and contains the hormone binding pocket, co-
regulator interaction sites and homo- or heterodimerization inter-
face. The DBD domain binds to the oestrogen response elements
(EREs), which reside near the promoter or enhancer regions, and
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modulate recruitment of co-activators [3]. Two activation func-
tion (AF) domains, AF1 and AF2, located within the NTD and
LBD respectively, are responsible for regulating the transcrip-
tional activity of ER. AF1 function is hormone-independent,
whereas AF2 requires hormone presence to become activated
[4]. A ‘hinge region’, localized next to DBD, contains the
nuclear localization signal, which gets exposed upon ligand
binding [5]. The C-terminal portion of the receptor modu-
lates gene transcription in a ligand-specific manner and affects
dimerization [6,7].

ER« and ERp are encoded by two different genes located on
different chromosomes (locus 6q25.1 and locus 14q23-24.1 re-
spectively) [8,9]. The wild type receptors (ERa-66 and ERB1)
share high degree of homology in the DBD (~96 % amino acid
identity) and LBD (~58 % amino acid identity). The NTD region
of ERp is shorter than that of ER« and only shares ~15% of
sequence homology. The two receptors also differ in the compos-
ition of their hinge region and the C-terminal domain [10,11]. In
addition to the wild type ER, there are multiple variant isoforms
that originate by protein truncation or single amino acid muta-
tions. The most referred ER« isoforms are ERa-46 and ER«-36.
ERa-46 is a truncated variant that lacks the transcriptional activ-
ation domain AF1 [12]. ERx-36 lacks both AF1 and AF2 and has
partial dimerization and LBDs. With three myriostoylation sites
within its structure, this last receptor isoform is usually located
to the plasma membrane [13].

ERp has multiple isoforms resulting from alternative splicing
of the last coding exon (exon 8) (ERB2, ERB3, ERB4 and ERBS)
[14]. These isoforms diverge in their LBD. A more recent study
showed that only the wild type variant (ERS1) is fully functional,
whereas ERB2, ERB4 and ERB5 isoforms do not have innate
activity and can only form heterodimers with ERA1 to modulate
its activity [15]. ER«, ERB and their isoforms display distinct
tissue distributions and signalling responses. The isoforms differ
in their impact on oestrogen signalling and target gene regula-
tion [16]. Although the majority of isoforms work together to
promote E2 signalling, some ERf isoforms act as inhibitors im-
peding ER« signalling [17,18]. The graphical representation of
the primary structure of the two full length ERs and their most
referred isoforms is shown in Figure 1.

Transcriptional (genomic) signalling

Oestrogen signalling can be classified into two major categories:
transcriptional and non-transcriptional signalling. The classical
transcriptional pathway results in modulation of gene transcrip-
tion, and the non-classical pathway triggers signal transduction
cascades and changes in phosphorylation. During transcriptional
signalling, ERs act as transcription factors. Upon binding to E2
they undergo a conformational change, which enables receptor
dimerization and translocation to the nucleus. Receptor dimers
bind to the ERE located in or near promoters of target genes
and trigger recruitment of co-regulators that facilitate the action
of RNA polymerase II machinery, promoting gene expression.
There are over 70000 EREs in the human genome, out of which
17000 are located within 15 kb of mRNA start sites [19]. The

sequence of the ERE affects the binding affinity of ER, and there-
fore can affect in the extent of gene activation by a particular ER
type/isoform [20].

E2 can also influence expression of genes that do not harbour
EREs in their promoter region by indirect transcriptional sig-
nalling. In this case, instead of binding to DNA directly, they form
protein—protein interactions with partner transcription factors.
Examples of this signalling include but are not limited to associ-
ation with FBJ murine osteosarcoma viral oncogene homologue
(FOS), jun proto-oncogene (JUN), nuclear factor kB (NFxB),
GATA binding protein 1 (GATA1) and signal transducer and ac-
tivator of transcription 5 (STATS) [21].

Non-transcriptional (non-genomic) signalling

The rapid effects of E2 are mediated through non-transcriptional
signalling. The receptors involved in this type of signalling are
the G-protein-coupled oestrogen receptor 1 (GPER1) and cer-
tain variants of ERa and ERf [22,23]. GPERI1 is a seven trans-
membrane domain G-protein-coupled receptor. Its function as
an ER is still under dispute with some reports showing E2-
mediated signalling, whereas others do not [23-26]. GPERI is
expressed in a number of tissues including skeletal and cardiac
muscle [27].

Some investigators suggest that a subpopulation of classical
ERs reside near the cell membrane, and upon E2 stimulation form
dimers that activate downstream protein cascades [28]. In con-
trast with GPER1, classical ERs do not contain a trans-membrane
domain in their structure. Their ability to associate with the
plasma membrane could be facilitated by palmoitoylation of the
receptor, which promotes association with calveolin-1 [29,30].
Non-transcriptional signalling usually involves direct association
of ERs with target proteins in response to E2 stimulation. This
leads to activation of kinases, phosphatases and increases in ion
fluxes across membranes. Examples of non-transcriptional ER
signalling include mobilization of intracellular calcium, stimula-
tion of adenylate cyclase activity and cyclic AMP (cAMP) pro-
duction, activation of MAP kinase, phosphoinositol (PI) 3-kinase
(PI3K) and AMP-activated protein kinase (AMPK) signalling
pathways [21,31]. A schematic representation of transcriptional
and non-transcriptional signalling pathways is presented in
Figure 2.

From a broader perspective, both transcriptional and non-
transcriptional activity of ER may affect gene expression.
Whereas genomic cascades directly target gene expression, non-
genomic pathways initiate signalling cascades ultimately leading
to regulation of gene transcription. In other words, transcriptional
and non-transcriptional signalling converge resulting in finely
tuned regulation of target gene activity. One example of that is
the interaction between E2/ER« and IGF-IR (insulin-like growth
factor 1 receptor)/MAPK pathways. In addition to directly medi-
ating IGF-I transcription by binding to ERE, ER« associates with
IGF-I membrane receptor (IGF-IR) and activates MAP kinase
cascades that influence ERa mediated gene transcription [32].
Another example of dual transcriptional and non-transcriptional
action is the transcription of low-density lipoprotein receptor
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Figure 1

Primary structure of the classical oestrogen receptors

Schematic representation of the functional domains composing full length ERx (ER-66) and ERB (ERB1) and their most
commonly referred isoforms. ERs are composed of NTD, DBD, hinge region, LBD and C-terminal domain (CTD).

(LDL-R). Although the LDL-R promoter does not contain ERE,
ERe interacts with the Spl (trans-acting transcription factor 1)
transcription factor activating LDL-R gene expression [33]. In
addition, tyrosine kinase activity, induced by non-transcriptional
activity of E2, is required for the induction of LDL-R
expression [34].

THE DUAL ROLE OF OESTROGEN
SIGNALLING IN BREAST CANCER

Breast cancer can be classified based on expression levels of ER.
Breast cancer patients positive for the ER exhibit a high response
rate to endocrine therapy and significantly improved prognosis
over time due to advances in adjuvant therapies. Oestrogen sig-
nalling in breast cancer is complex and involves modulation of
expression and activity for many different targets, ultimately fa-
vouring or counteracting cancer progression. A genome study in
MCF-7 cells revealed that oestrogen activation of target genes is

time dependent; 628 differentially expressed genes show a robust
pattern of regulation at 12 h, 852 at 24 h and 880 differentially
regulated genes at 48 h after E2 stimulation. Interestingly the ma-
jority of genes are activated at one time point, but not the other
[35]. This highlights the diversity of genes and metabolic path-
ways that E2 affects in breast cancer, and the potential complexity
and combinatorial interplay.

Oestrogen promotes cancer growth

Some of the signalling pathways regulated by oestrogen worsen
the progression of ER positive tumours. At the level of E2
transcriptional signalling in breast cancer, the transcription
factor Etsl (v-ets avian erythroblastosis virus E26 oncogene
homologue 1) plays a critical role. It forms a complex with
ERo and the p160 nuclear receptor coactivator family leading
to the expression of ER« target genes in MCF-7 cells, promoting
E2-induced tumour growth [36]. Another transcriptional target
of E2/ERa signalling is the adenosine Al receptor (Adoral).
Adoral is required for full transcriptional activity of ER« and
supports breast cancer growth [37]. Among E2 targets is the
pro-apoptotic protein prostate apoptosis response 4 (PAR-4). E2
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Transcriptional and non-transcriptional pathways of E2

(A) The direct transcriptional pathway involves interaction of ER dimers with EREs within the DNA sequence to modulate
gene regulation. (B) The indirect transcriptional pathway involves protein—protein interaction of the ER dimers with tran-
scription factors (TF) to regulate gene transcription. (C) The non-transcriptional pathway involves a subclass of classical
ERs and GPER1 to trigger signal transduction cascades in response to E2 stimulation.

decreases PAR-4 expression in breast cancer cells, providing se-
lective advantage for breast cancer cell survival [38].

Some other transcriptionally regulated targets of E2 that induce
breast cancer cell proliferation are hes family bHLH transcrip-
tion factor 6 (Hes-6), prostaglandin E synthase (PTGES), alkaline
phosphatases (ALP) and the LRP16 gene, just to mention a few
[39-42]. Among E2 non-transcriptional signalling pathways are
ERw-dependent activation of the PI3K/protein kinase B (Akt)
axis [43] and ER-independent activation of maxi-K channels,
both of which promote breast cancer cell growth [44]. The regu-
lation of some oestrogen targets is more complex and, results from
interplay of several transcriptional and non-transcriptional mech-
anisms. Examples of those targets include ERo dependent regu-
lation of extracellular matrix molecules, repression of VEGFR2
(vascular endothelial growth factor receptor 2) mRNA levels
and modulation of RIZ1 (retinoblastoma protein-interacting zinc-
finger gene) and Cap43 gene expression [45—48].

Oestrogen plays an important role not only in the initiation
and proliferation of breast cancers, but also cancer metastasis. A
recent study suggested that up-regulation of myocardin-related
transcription factor A (MRTF-A) by E2 might be a switch
between proliferation-promoting and metastasis-promoting func-
tions of E2 in ER positive breast cancer cells [49]. One of the key
components in tumour metastasis is the actin-binding protein
ezrin. It is frequently overexpressed in human metastatic breast
cancers [50]. A recent study showed that E2 promotes breast
cancer motility by phosphorylation of ezrin [51]. Another pro-
posed mechanism leading to E2 induced metastasis is linked to
E2 capacity to promote tight junction disruption during tumour
progression, increasing cell motility [52]. E2 is also been linked
to the functionality of p53. Loss of p53 function in breast cancer
contributes to that metastatic potential of E2-responsive tumours
through uncontrolled expression of the focal adhesion kinase
(FAK) following E2 stimulation [53].

(© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

Licence 4.0 (CC BY).


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Oestrogen signalling in breast cancer

Extracellular Matrix proteins

Adora1/ Ets
Hes-6 PAR-4 w VEGFR2
o R ERat
R \ )\Cap43
LRPlﬁ‘r\‘_ ERa FAK
ER&"E //

ALp ——— E2 —GPERI—> ERK

/
ERa "
plBK‘;Akté" \\ Ezrin
GPER1
Y
PTGES CXCR1
GPER1

Survival/Proliferation
uoneidiw/siseiselsiy

manxi-K channels FER MRTF-A

E
RIZ1 Eg‘r!il Tight Junctions

Figure 3 Mediators of oestrogen oncogenic effects

A diagram of oestrogen targeted effectors, discussed in this review,
that mediate its oncogenic effects leading to proliferation, metastasis
or both. Wherever known, the involvement of ERe or GPER1 is indicated.

Not all E2 effects on cancer cells are mediated through the
classical ERs. The membrane bound GPERI1 also mediates some
of oestrogen signalling in ER positive and ER negative cells.
This explains why E2 can induce metastasis in ER negative cells
in vitro as well as in mice [54]. E2 promotes migration and in-
vasion in ER negative cancer by cross-talk between GPER1 and
CXC receptor-1 (CXCR1), an active regulator in cancer meta-
stasis upon binding interleukin 8 (IL-8) [55]. Non-transcriptional
E2 stimulation of GPER1 in ER negative cancer cells also ac-
tivates the extracellular-signal-regulated kinase (ERK) pathway,
which promotes cell viability and motility [56], and increases
expression of early growth response protein 1 (Egr-1) leading to
transcription of genes involved in cell proliferation [57]. A dia-
gram illustrating the oncogenic mediators of oestrogen signalling
discussed above is presented in Figure 3.

Oestrogen signalling within cancer cells induces the synthesis
of more E2 to fulfil the needs of the tumour by regulating
key enzymes involved in oestrogen biosynthesis. Rapid non-
transcriptional actions of E2 stimulate aromatase phosphoryla-
tion in breast cancer cells enhancing its enzymatic activity [58].
E2 also increases hydroxysteroid (17-beta) dehydrogenase 7
(HSD17B7) transcriptional activity, an enzyme that converts
El to E2. This ERa dependent local synthesis of E2 instigates
growth of oestrogen-dependent breast cancers [59]. Another reg-
ulator of oestrogen metabolism within cancer cells is the pro-
inflammatory cytokine tumour necrosis factor alpha (TNFa).
Stimulation of breast cancer cells with TNFa can lead to de-
creased E1/E2 ratio, by altering the expression of genes and en-
zymes involved in E2 activation [60]. In addition to infiltrated im-
mune cells, ER positive breast cancer cells also secrete TNFa, in

Review Article

response to E2 regulation, creating a positive feedback loop for E2
synthesis [61].

Beneficial effects of oestrogen signalling
The cellular response to E2 stimulation not always leads to cancer
progression and in some cases may be beneficial. E2 signalling
can impart low invasive behaviour in ERa positive breast cancer.
For example, overexpression of GD3 synthase (GD3S) enhances
proliferation and migration of ER« negative breast cancer cells
[62]. In ER« positive tumours, E2 blocks its expression by pre-
venting NF«kB from binding to the GD3S gene ST8SIA1 (ST8
alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1) core
promoter [63]. E2 can also activate PAX?2 (paired box 2), a tran-
scription factor that inhibits the expression of ERBB2 (erythro-
blastic leukaemia viral oncogene homologue 2), a pro-invasive
and pro-metastatic gene [64]. Another way to alter invasiveness
is through modification of extracellular matrix composition. ER«
protects MCF-7 cells from changes in expression of extracellular
matrix effectors (specifically matrix-degrading enzymes), which
would otherwise lead to cell migration and invasion [65]. In ad-
dition, transcriptional signalling of E2 through ERe« increases
the expression of integrin @581, conferring a stationary status to
cancer cells [66]. Breast cancer prognosis can also be improved
through E2 transcriptional regulation of the PHLDA1 (pleckstrin
homologue-like domain, family A, member 1) and STEAP1 (six
transmembrane epithelial antigen of the prostate 1) genes [67,68].

E?2 signalling is also linked to apoptosis in breast cancer cells.
AMPK mediates E2-induced apoptosis in long-term oestrogen-
deprived breast cancer cells [69]. c-Jun N-terminal kinase (JNK)
signalling mediates the apoptotic effects of E2 at high concen-
trations in ER« positive but not ER« negative breast cancer cells
[70]. One of the critical steps in cancer progression is the cre-
ation of new blood vessels that supply the tumour with nutrients,
known as angiogenesis. A recent study showed that the expression
of a known promoter of angiogenesis, angiopoietin-1 (Ang-1), is
reduced by E2 in an ER« dependent manner [71].

As mentioned before, not all E2 signalling is ER-dependent.
A study in MCF-7 cells showed that E2 can disrupt transforming
growth factor beta (TGF- ) signalling by non-transcriptional ac-
tivation of the GPER1 receptor, potentially involving stimulation
of mitogen activated protein kinases (MAPKs) [72]. The role of
TGF-g in cancer is controversial, but high levels of TGF-g8 cor-
relate with poor cancer outcome [73]. A diagram illustrating the
mediators of beneficial oestrogen signalling in breast cancer is
presented in Figure 4.

Determinants of oestrogen signalling outcome

The wide range of effects of oestrogen signalling during breast
cancer progression may be key to the large diversity of cancer out-
comes and opens up the question of what determines the nature of
E2 signalling in each particular case. There are many factors that
can influence the way cells react to E2 stimulation. One of these
determinants is the nature of the intracellular pool of accessory
molecules involved in targeted gene expression. A recent study
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Figure 4 Molecular mediators of anti-tumorigenic oestrogen
signalling

A diagram of oestrogen targeted effectors, discussed in this review,
that mediate its apoptotic, anti-metastatic, anti-angiogenic effects, or
improve bad prognosis. Processes shown in green are potentiated,
whereas processes shown in red are inhibited. Wherever known, the
involvement of ERa or GPER1 is indicated.

in breast cancer T47D cells showed that the differential effects
of E2/ERw signalling are dictated by recruitment of co-activators
and co-repressors at target gene promoters, which is influenced
by their expression levels [74].

Phosphorylation status of ER« also plays a role in determin-
ing the nature of E2 response. ER« is phosphorylated on multiple
amino acid residues by several kinases in response to E2 binding.
In general, phosphorylation of serine residues appears to influ-
ence the recruitment of co-activators, enhancing ER-mediated
transcription [75]. Inhibition of ERa phosphorylation at Ser!!®
and Ser!'®” promotes increased growth, migration, invasion and
disruption of E2 signalling in MCF-7 cells [76]. In contrast,
tyrosine phosphorylation of ERa by Src regulates cytoplasmic
localization of this receptor. Inhibition of Tyr**” phosphorylation
traps ERa in the nuclei of E2 treated MCF-7 cells, and induces
cell cycle arrest [77].

ER« isoform expression is a critical determinant in the as-
sessment of breast cancer prognosis in both ER positive and ER
negative tumours. ERa-36, the truncated variant of ER«x-66, is
expressed in both ER positive and ER negative breast cancer
tumours [78,79]. It mediates non-transcriptional oestrogen sig-
nalling, resulting in prevention of apoptosis and increased growth
of ER negative breast cancer cells [80,81]. It also inhibits gen-
omic signalling by ERxe-66 and ERf [82]. Similarly, ERx-46
over-expression in endocrine treatment-resistant breast cancer
cells selectively inhibits the ERx-66 response to oestrogen [83].
Therefore, a careful assessment of receptor isoform expression is
important in predicting oestrogen signalling outcome.

Although more is known about signalling through ER« than
ERB, the role of the latter cannot be dismissed. Overall ERS

levels in breast cancer cell lines are lower compared with normal
breast epithelium [84]. Isoform expression varies largely, ER 84
showing higher expression in breast tumours, and ERS3 gener-
ally absent [85]. The exact contribution of ERS to breast cancer
biology remains largely unexplored. Up to this point, ERS has
been shown to reduce cell proliferation [86,87], invasion [88,89]
and angiogenesis [90]. More importantly, the ER«/p ratio within
the cells influences the nature of oestrogen signalling. ER sub-
type ratio has been shown to regulate the effect of E2 on mito-
chondria proliferation, functionality and oxidative stress in breast
cancer cells, in such a way that by altering the ER«/f relative ex-
pression, completely opposite outcomes of E2 signalling can be
achieved [91-93]. In addition, these two receptors can influence
each other activities in some cases showing antagonism [94,95].
This modulation of ER« activity could be achieved by formation
of heterodimers with ER [96].

Lastly, E2 metabolism by cytochrome P450 enzymes can in-
fluence the fate of oestrogen signalling [97]. Within the cell E2
can be metabolized giving rise to different molecules. Among
these are some metabolites like 2-hydroxyoestradiol (2-OHE2)
and 4-hydroxyoestradiol (4-OHE2) that promote tumorigenesis
by increasing cell proliferation and formation of reactive oxygen
species known to instigate DNA mutations [98,99]. Other meta-
bolites, like 2-metoxyoestradiol (2-ME) have the opposite effect
on cancer promoting apoptosis of tumour cells [100].

FINAL REMARKS

Taken together, all the information presented above suggests that
E2 signalling in breast cancer is very complex and cannot be
categorized as detrimental or beneficial without prior knowledge
of function. It is the particular combination of molecular assets
within the cancer cell that helps fine-tune the course of molecular
events triggered by oestrogen. The overall response to oestrogen
stimulation can be modulated at different levels within the cells.
These regulatory levels can be classified as receptor-dependent
or receptor-independent. The first one refers to ER expression
status, presence of post-translational modifications and forma-
tion of functional dimers. The latter includes alternative meta-
bolic processing of oestrogen and the unique pool of intracellular
effectors that can be found in each cell type.

The next question is how can we translate the current state of
the literature into specialized treatment options. A large portion
of treatments available for breast cancer act by blocking oestro-
gen synthesis and/or signalling, therefore, preventing oestrogen-
induced tumour proliferation. Unfortunately, besides not taking
into account the protective oestrogen effects, they are highly
non-specific, possess adverse side effects and can result in endo-
crine resistance [101,102]. On the other end, ER agonists have
also demonstrated clinical efficacy in breast cancer treatment
[103]. Their use is not as common, since they are only employed
as alternative to advanced cancers showing resistance to anti-
oestrogen treatment [104,105].
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It is likely that the contradictory findings on the cellular and
molecular impact of oestrogen in the literature are rooted in the
dual effects of oestrogen signalling. Consequently, a reassess-
ment of the literature may reveal that oestrogen treatment can
be considered as an alternative cancer therapy. Because many of
the conclusions regarding the therapeutic use of oestrogen are
drawn from clinical trials, more mechanistic studies will better
exploit or predict therapeutic strategies to selectively potentiate
the anti-cancer effects of oestrogen signalling and create special-
ized treatment regimens for breast cancer patients.
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