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ABSTRACT

We present NetCore, a novel network propagation
approach based on node coreness, for phenotype–
genotype associations and module identification.
NetCore addresses the node degree bias in PPI net-
works by using node coreness in the random walk
with restart procedure, and achieves improved re-
ranking of genes after propagation. Furthermore,
NetCore implements a semi-supervised approach
to identify phenotype-associated network modules,
which anchors the identification of novel candidate
genes at known genes associated with the pheno-
type. We evaluated NetCore on gene sets from 11
different GWAS traits and showed improved per-
formance compared to the standard degree-based
network propagation using cross-validation. Further-
more, we applied NetCore to identify disease genes
and modules for Schizophrenia GWAS data and pan-
cancer mutation data. We compared the novel ap-
proach to existing network propagation approaches
and showed the benefits of using NetCore in compar-
ison to those. We provide an easy-to-use implemen-
tation, together with a high confidence PPI network
extracted from ConsensusPathDB, which can be ap-
plied to various types of genomics data in order to
obtain a re-ranking of genes and functionally relevant
network modules.

INTRODUCTION

The analysis of genome-wide molecular data is a complex
task and protein–protein interaction (PPI) networks, i.e. the
graphical representation of the physical contacts between
proteins in a cell, have emerged as a powerful scaffold for
integrating different data types and boosting the signal-to-
noise ratio of such experiments (1). Network propagation
allows combining experimental data with molecular inter-
action information, such that the topology of the network
is used to propagate the data effects throughout the net-

work, and by that amplifying and functionally interpret-
ing the experimental data. This approach covers a wide
range of data domains and has been applied, for example,
for associating genetic variants with cancer (sub-) pheno-
types (2) as well as for deriving patient-specific networks
from phosphoproteome analysis (3). Network propagation
requires for the data to be summarized such that each gene
has a weight that can be used for initializing the propaga-
tion process. The process can then be executed, usually in
the context of a PPI network, such that after the propaga-
tion new weights are obtained for the genes (see Supple-
mentary Methods). These weights can be used to simply
re-rank the genes in order to identify novel disease genes,
or as an input for a further module identification step, to
identify sub-networks which can then be associated with
the phenotype under study. Several network propagation
approaches have already been used, for example for the
identification of novel disease genes (4–6), the discovery of
disease-associated network modules (2,7–8) and the predic-
tion of drug-targets (9).

Although network propagation is mathematically rather
straightforward, the post-processing of the results is not,
and there are still challenges in discovering disease-
associated network modules. Some methods use the weights
after propagation for re-ranking the genes (10–12). How-
ever, in order to identify novel genes that are potentially
relevant to the phenotype in question, the problem of se-
lecting the relevant genes based on the new rankings is still
present. Some methods select the top genes after the re-
ranking (5,12–13), but then a cutoff must be made to de-
cide which genes to further explore. Others implement a
module identification step, i.e. they identify sub-networks
which contain connected genes, and thus might represent
relevant pathways and mechanisms. For example, PRINCE
(14) specifically identified modules that represent protein
complexes. Other approaches, such as HotNet2 (2) and Hi-
erarchical HotNet (8) apply the same network propagation
procedure, but then extract a similarity matrix for every pair
of genes in the network. They identify ‘hot’ sub-networks
which contain genes with high weights after the propaga-
tion, however, calculating a similarity matrix, with a value
for every pair of genes, might generate false interactions, as
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not all genes are directly connected in the PPI network. Fi-
nally, there is generally a delicate interplay when trying to
identify network modules (15), as on the one hand smaller
modules will split functional information that is inherently
represented by the interactions, but larger modules might
contain false positive genes which are actually irrelevant to
the phenotype.

Another challenge for network propagation is the un-
derlying PPI network and its drawbacks. PPI networks are
characterized by a power-law degree distribution, where
many nodes have a low degree, and only a few an extremely
high one (16). The interactions have been experimentally
detected, for example with yeast two hybrid systems (17–
19). Such systems are very useful in identifying interac-
tions between proteins, however the experimental design
may result in a technical bias toward proteins that are used
as ‘bait’ when measuring new interactions (20). In addi-
tion, these ‘bait’ proteins tend to be more frequently stud-
ied, and therefore more interactions involving them are de-
tected (21–23). These experiments result in PPI networks
with proteins having an artificially high number of interac-
tions (24) and ‘star’-like substructures with a central highly
connected (‘bait’) protein and many less inter-connected
(‘prey’) proteins. This creates a problem in the mathemati-
cal formulation of network propagation, since the degree of
the nodes is used to execute the propagation steps and there-
fore the propagation will arrive more often to nodes with a
high degree. This issue can be addressed by correcting for
the degree via some significance test, as previously applied
by methods like DADA (25) and RDPN (26). However, a
correction for the degree bias has yet to be implemented
directly in the mathematical formulation of the network
propagation.

In order to address these issues, we first aimed to reduce
the bias in network propagation due to the usage of node
degree, and then attempted to identify more comprehen-
sive modules based on the propagation results. Instead of
degree, we introduce coreness for the mathematical formu-
lation of the propagation. Coreness is a property that can
be assigned to each node and reflects whether the node be-
longs to a very densely connected part of the network or
rather its periphery (27). Coreness is a global network prop-
erty, and can be estimated through a series of steps using
the H-index (28), starting from the degree, which is a lo-
cal property (29). Furthermore, coreness has been shown
to reflect how influential a node is in spreading informa-
tion throughout a network (30). Another benefit of core-
ness is that central hubs of star-like structures are assigned
a low core value (though having a high degree) if their neigh-
bors are not well-connected. Therefore we explored whether
coreness could help reducing the negative effects of the de-
gree bias on the propagation process, and thus improving
the results. Based on these results we then strived to iden-
tify network modules. For that, we proposed to combine
the propagation results with a manually curated list of seed
genes, and extract sub-networks in a semi-supervised fash-
ion. First we included only the seed genes in a sub-network,
and then it was expanded with intermediate nodes accord-
ing to the propagation results, which we assigned with a sig-
nificance level using a permutation test. Such approach, to
the best of our knowledge, is yet to be applied in combi-

nation with network propagation for the identification of
network modules.

NetCore’s workflow consists of three main steps. As a first
step, a PPI network was extracted from ConsensusPathDB
(31). This PPI network was recently reported in an inde-
pendent study as one of the top performing networks for
identifying disease genes via network propagation (32). In
the second step, summarized genomics data, in the form of
gene weights, were propagated in the PPI network, via a
mathematical formulation that is implementing node core-
ness. The propagation allows for a re-ranking of the genes
and the identification of genes with significant weights as
compared to a network randomization procedure. In the
third step, the resulting significant genes, along with a pre-
defined list of seed genes, which can be extracted either di-
rectly from the experimental data or alternatively from a
manually curated database, are further used for identify-
ing network modules. This allowed for detecting modules
that are functionally relevant, robust against varying vali-
dation gene sets and that expand prior knowledge regarding
the mechanisms that are responsible for the phenotype in
question. We demonstrated improved performance of Net-
Core compared to node-degree methods in three different
settings: (i) identification of disease genes from the GWAS
catalog involving 11 different gene sets, (ii) network module
identification for Schizophrenia data and (iii) network mod-
ule identification and candidate predictions for pan-cancer
mutation data. We highlighted important characteristics of
NetCore, compared it to three other network propagation
methods and showed that it identifies biologically plausible
sets of phenotype-associated genes.

MATERIALS AND METHODS

Coreness of interaction graphs (k-shell decomposition)

Given a connected graph G, we can define the k-core sub-
graph Gk as the maximal sub-graph of G that contains only
nodes with a degree of at least k. Clearly for k = 1, G1 refers
to the entire graph and for every k2 > k1 it holds that Gk2 is
a subgraph of Gk1 . The core of a node v is then defined by
the largest value k of the k-core sub-graph that contains v.

To compute the core of a node v we can apply a k-shell de-
composition algorithm (33). The algorithm divides the net-
work into layers (1-shell, 2-shell, 3-shell, etc.) that succes-
sively represent the entire network (Figure 1A). The outer
layers represent the periphery of the network, while the in-
ner layers with the higher k values represent the densely con-
nected core of the network. The algorithm works iteratively:
first, all nodes with degree 1 are removed, including their
edges. Any remaining nodes with degree 1 after the previous
step are then also removed, until none such remain. This re-
sults in the first layer of k = 1, and all of the removed nodes
belong to it (1-shell). Next, the same procedure is repeated
with nodes of degree 2. Those removed nodes will belong
to the layer where k = 2 (2-shell). The procedure is con-
tinued until it finally arrives at the last layer, where all the
nodes will have the highest k value in the network.

Coreness can be described as the property of the node to
belong to the densely connected part of the graph (higher
node cores) or its periphery (lower node cores). Nodes with
higher cores are typically referred to as influential nodes
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Figure 1. Node core normalization: (A) K-shell decomposition: an example network with 25 nodes and 29 edges. In this example, the network is decomposed
into three layers, each one representing a different k-core sub-graph. The first layer (k-core = 1) and the nodes in it are colored in yellow, the second in blue
(k-core = 2) and the third in green (k-core = 3). (B) Adjacency matrix normalization: an example network with 9 nodes and 12 edges with the corresponding
adjacency matrix. Node a has five neighbors. The normalization methods for the neighbors of a are exemplified. When normalizing based on degree only,
the probability for walking to any of the neighbors is 0.2, since the degree of a is 5. When normalizing based on core only, the probability is according
to the core of the neighbor, and normalized by the sum of cores, such that the sum of probabilities is 1. The other two normalizations are based on the
difference between the degree and core, or the ratio between them. The vectors show the probability values after normalizing by the sum of differences (or
ratios), such that the values sum up to 1.

since they are able to spread information faster across the
network than nodes with lower core values.

Protein-protein interaction (PPI) network and disease genes
data

ConsensusPathDB PPI network. In this work we made
use of a high confidence PPI network (31) that can be ex-

tracted from ConsensusPathDB (release 34). Consensus-
PathDB (34) is a meta-database that includes molecular in-
teractions and pathway concepts from 32 different public
resources (35). The web interface of the database allows,
among others, to search for interactions based on differ-
ent molecular types, such as genes, proteins, drugs, etc., as
well as to conduct gene enrichment and over-representation
analysis (36). PPI interactions can be extracted in the form
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Table 1. Gene sets

Source Disease (Trait)
Gene set

size
Coverage in
PPI network

GWAS
catalog

Body mass index 177 97

Breast cancer 113 73
Crohn’s disease 436 227
Height 387 234
Prostate cancer 324 168
Rheumatoid arthritis 124 88
Schizophrenia 395 226
Systemic lupus
erythematosus

137 90

Type 2 diabetes 124 78
Ulcerative colitis 345 203
Vitiligo 111 76

DisGeNet Schizophrenia 1436 1072
NCG Cancer consensus 711 626

Cancer candidate 1661 1050

of a network. This network holds more than 300 000 bi-
nary interactions and serves as a comprehensive model of
the human interactome. Each interaction in the network is
scored with a confidence score computed from six differ-
ent topological and annotation-based indices (37). We have
previously shown (31) how to construct a high confidence
PPI network by taking only the connected interactions that
have a confidence score above 0.95. In this paper we make
use of this high confidence PPI network, which holds 10 586
proteins and 114 341 unique interactions. Topological char-
acteristics of this network are described in further details in
the Supplementary Methods.

GWAS catalog gene sets. We made use of the GWAS
(Genome Wide Association Studies) gene sets provided by
Huang et al. (32) for testing performance of NetCore. These
include nine gene sets associated with a disease, and two
gene sets associated with a quantitative trait (Table 1). Each
set includes between 100 and 500 genes. The gene sets were
extracted from the GWAS catalog (38), which is a large
database that provides significant SNP-trait associations. In
this catalog, each SNP is mapped to a gene, such that each
trait can be associated with a list of genes.

Schizophrenia GWAS data. We applied NetCore to a
Schizophrenia genetic variations dataset (39) that was pro-
vided by Carlin et al. (5). This data-set includes P-values
for SNP associations to Schizophrenia according to GWAS
based on the analysis of 9394 cases and 12 462 controls.
Based on the SNPs, genes were assigned P-values accord-
ing to a predefined genomic region of 10 kilobases (kb) up-
and downstream of the gene. A gene is assigned the low-
est P-value from the SNPs that are within this region. This
P-value is then −log10 transformed such that each gene is
associated with one weight. A total of 14 966 genes had a
weight above 0, but only 10 586 of them were covered in the
PPI network and were used as input for NetCore.

For validating the computed Schizophrenia modules we
extracted the genes that are associated with the disease ac-
cording to the DisGeNet database (40). We downloaded
the BeFree gene-disease associations from the database and

extracted all genes relevant for Schizophrenia. This list in-
cluded 1436 genes, 1072 of them were covered in the PPI
network and used for assessing the plausibility of the mod-
ules computed with NetCore.

In addition, we evaluated NetCore’s performance for
identifying Schizophrenia-associated genes using another
much larger GWAS dataset by Pardiñas et al. (41) (with 40
675 cases and 64 643 controls), which was produced later
than the one by the Schizophrenia Psychiatric GWAS Con-
sortium (39). We downloaded the meta-analysis summary
statistics and extracted all the available SNPs to P-value as-
sociations. The SNPs were then associated with genes, ac-
cording to a predefined genomic region of 10 kb, up- and
downstream of it. Each gene was assigned the lowest P-
value from the SNPs that were identified for its region. We
applied a significance level of P < 5 × 10–8, which was also
used by Pardiñas et al. (41), to identify significant SNPs, and
remained with 945 significant genes. Out of them, 426 were
covered in the PPI network and were used for the evaluation
of NetCore.

Cancer mutation data. We applied NetCore to a pan-
cancer somatic mutation data set (42). The dataset includes
a total of 4742 samples from 21 tumor types, 12 of them
from The Cancer Genome Atlas (TCGA) and 14 from non-
TCGA projects at the Broad Institute. The mutations from
all samples were combined together, such that duplicated
patients and duplicated mutations were removed. For each
tumor type a total of 18 388 genes were analyzed, and
three significance metrics were calculated using the follow-
ing methods: MutSigCV (43), MutSigCL and MutSigFN
(44). MutSigCV calculates for a gene the number of non-
silent mutations, and the P-values are determined on a
background model that is based on the number of silent
mutations in the surroundings of the gene. MutSigCL mea-
sures the significance of the positional clustering of the ob-
served mutations, while MutSigFN measures the evolution-
ary conservation in the positions of the mutations. Both
measures are assigned a P-value based on a permutation
test for the non-silent coding mutations. Finally, the three
metrics were combined into a single P-value, which was
then corrected for multiple testing into a single FDR Q-
value using the Benjamini and Hochberg method. This re-
sulted in 1489 genes with a Q-value < 1, which we then
−log10 transformed and scored with in order to initialize
the node weights prior to network propagation. For evaluat-
ing NetCore’s results, we made use of The Network of Can-
cer Genes (NCG) catalog (45). The catalog contains manu-
ally curated information from publications about more than
2000 cancer-associated genes, which are known or predicted
to have driver roles in cancer based on somatic mutations.
These genes are divided into two categories: (i) 711 ‘cancer
consensus’ genes, which include both tumor suppressors and
oncogenes and (ii) 1661 ‘cancer candidate’ genes, genes that
were identified by mutational screenings and have strong
support to be involved in cancer development. We used both
lists to evaluate network propagation predictions for the so-
matic mutation data.

All data resources are listed in Table 2.
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Table 2. Resources and softwares

Resource/Software Link Citation

NetCore https://github.molgen.mpg.de/barel/NetCore This paper
ConsensusPathDB PPI Network
(version 32)

http://cpdb.molgen.mpg.de/download/ConsensusPathDB human PPI.gz (34)

GWAS gene sets https://github.com/idekerlab/Network Evaluation Tools/ (32)
Schizophrenia GWAS Consortium http://nbgwas.ucsd.edu/nagadata/ (5)
Schizophrenia GWAS Pardiñas et al. https://walters.psycm.cf.ac.uk/ (41)
Cancer MutSig Q-values http://www.lagelab.org/wp-content/uploads/2017/06/NetSig Code.zip (42)
NAGA https://github.com/shfong/naga (5)
HotNet2 https://github.com/raphael-group/hotnet2 (2)
Hierarchical HotNet https://github.com/raphael-group/hierarchical-hotnet (8)
Network of Cancer Genes (NCG)
(version 6.0)

http://ncg.kcl.ac.uk/index.php (45)

Network propagation with NetCore

Network propagation is a general name for several mathe-
matically equivalent formulations which allow executing a
diffusion process over a network. Three main formulations
have previously been described (1): the first is a diffusion
kernel, which is also referred to as heat kernel; the second
is a random walk, which is commonly used for electric net-
works with a specific source and target; the third is a mod-
ified version of a random walk called random walk with
restart (RWR) which is also known as insulated heat dif-
fusion or personalized PageRank (46). This version allows
for controlling the trade-off between prior information and
network smoothing.

Random walk with restart––mathematical formulation.
For NetCore we chose to use the RWR formulation. This
formulation includes three main components: (i) the inter-
action network, (ii) a scoring scheme for each node in the
network and (iii) a restart parameter �. Given an interac-
tion network G, we can extract the adjacency (adj.) matrix
A, which can then be normalized into another matrix W
(further details in the following section). The input weights
for the network nodes are represented with a vector p0, and
at every step k the weight vector pk is calculated according
to (Equation 1).

pk = α p0 + (1 − α)Wpk−1 (1)

This process has been shown to converge to a steady-state
with final propagation weight vector p (Equation 2) when
two conditions are matched: (i) the interaction network is
connected, (ii) the normalized adj. matrix W is stochastic
(i.e. the eigenvalues are at most 1 in absolute value). The
high-confidence PPI network from ConsensusPathDB con-
sists of a big connected component with 10 586 nodes and
114 341 edges. This network is used for applying RWR (see
further details in the Supplementary Methods).

p =α(I − (1 − α)W)−1 p0 (2)

Adjacency matrix normalization. The most common nor-
malization of the adj. matrix A is by using the node degree
(Equation 3), where D is a diagonal matrix with the node
degrees.

W = AD−1 (3)

In addition to the common degree normalization, we ap-
plied three other normalizations that involve the core of the
nodes (Figure 1B). The first is based only on core. Given
the adj. matrix A and the core values of all the nodes in the
network K = (k1. . .kn) we normalize each column using the
core values of the neighbors of the node associated with that
column. Thus, for each neighbor we divide its core value
by the sum of core values of all neighbors (for an example,
see Figure 1B). Therefore, densely connected neighbors of
a node will gain more weight than nodes that are in the pe-
riphery of the graph. This results in a normalized version of
the adj. matrix Acore, which is a stochastic matrix, as the sum
of every column is always 1. The definition of the matrix is
given by (Equation 4).

Acore
i, j = ki∑

l|Al j �=0 kl
(4)

The second normalization is based on the difference be-
tween the node degree and node core. Since there is a bias
in the degree of some nodes in the network, we wanted to
correct for it using the core. A node with a high degree, that
is due to study bias, will be connected to many other nodes,
which are themselves not well studied and therefore do not
have many connections in the network. Consequently, due
to the nature of the k-shell decomposition, these nodes will
belong to a lower k-core layer, and therefore the node with
the high degree will then have a low core value. Thus, a
large difference between the degree and the core suggests
to a study bias, which we then aim to correct by penaliz-
ing for this difference. In order to do that, we defined the
normalization such that each neighbor’s value is normal-
ized according to this difference. After each column is nor-
malized as such, we applied a further normalization and di-
vided each column by its own sum, so that the normalized
adj. matrix Adiff is stochastic. The definition of the matrix is
given by (Equation 5).

Adi f f
i, j = 1

(di − ki ) + 1
(5)

The last normalization is similar to the previous one, ex-
cept it is using the ratio between the degree and core, rather
than the difference. The reasoning is similar, we wanted to
penalize for nodes with a very high degree yet a rather low
core. Here, for each node, we normalized directly using the
ratio between its core value k and its degree d. Due to the

https://github.molgen.mpg.de/barel/NetCore
http://cpdb.molgen.mpg.de/download/ConsensusPathDB_human_PPI.gz
https://github.com/idekerlab/Network_Evaluation_Tools/
http://nbgwas.ucsd.edu/nagadata/
https://walters.psycm.cf.ac.uk/
http://www.lagelab.org/wp-content/uploads/2017/06/NetSig_Code.zip
https://github.com/shfong/naga
https://github.com/raphael-group/hotnet2
https://github.com/raphael-group/hierarchical-hotnet
http://ncg.kcl.ac.uk/index.php
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nature of the k-shell decomposition algorithm, the core can
never be larger than the degree, and therefore the ratio will
always be equal or smaller than one. The smaller the ratio,
the bigger the degree and the lower the core. We then fur-
ther normalized the adj. matrix and divided each column
by its own sum, such that the normalized adj. matrix Aratio

is stochastic. The definition of the matrix is given by (Equa-
tion 6).

Aratio
i, j = ki

di
(6)

Restart probability parameter. The restart parameter � de-
fines the probability of the random walk to restart again.
This allows to control how much of the input weights will
be diffused throughout the network. The lower the value,
the less the walk restarts and therefore more of the weight
is spread in the entire network. Thus, given a PPI network,
the parameter can be set once, regardless of the initializa-
tion of the weights. To calibrate the value for the Consen-
susPathDB PPI network, we compared between three cases:
low value (α = 0.3), intermediate value (α = 0.5) and high
value (α = 0.8). We tested the performance of NetCore for
these three values for identifying GWAS gene sets, and ex-
amined how many of the reported genes in NetCore are
present in the GWAS gene sets (see Supplementary Figure
S1). In five of the 11 GWAS gene sets the number of re-
ported genes that are in the input gene set is the highest for
α = 0.8, in four of the gene sets the number is highest with
α = 0.5 and in two with α = 0.3. We note that the value
of � allows to control the trade-off between finding novel
disease-associated genes and including potential false pre-
dictions. We therefore decided to set α = 0.8 as default in
order to be able to still predict novel disease genes, while
reducing the number of potentially false predictions. How-
ever, for other PPI networks this parameter can be modified
by the user.

NetCore evaluation

Statistical significance of node re-ranking with NetCore.
NetCore identifies significantly re-ranked nodes using two
parameters: the final propagation weights and P-values de-
rived from network randomizations. In order to assign a
significance level to NetCore’s re-ranking results we ap-
plied normalization with random degree-preserving net-
works (RDPN) (26). This method is based on randomiza-
tions of the input network, such that the propagation weight
of each node is compared to the propagation weights ob-
tained using randomized degree-preserving networks. To
generate such networks we used the double-edge swap al-
gorithm, as implemented in the Python software Networkx
(47). The algorithm allows to execute at most n random
swaps by randomly choosing at each step 2 edges (u, v) and
(x, y), removing them and creating the new edges (u, y) and
(x, v), unless they already exist. The swaps are kept only if
the network after the swap stays connected. Once n such
random networks are generated, the significance level is cal-
culated using the propagation weights achieved with these
random networks. Thus, the P-value pv for node v, with its
propagation weight w(v), for n random networks and corre-
sponding propagation weights w

(v)
1 , . . . , w

(v)
n , is defined in

(Equation 7). In our analyses we generated n = 100 random
networks so that the minimal P-value that can be achieved is
P = 0.0099. This threshold is chosen as default in our anal-
ysis but for other set ups this can be changed by the user.

pv =

∣∣∣
{

i |w(v)
i ≥ w(v) ∀i ∈ (1, . . . , n)

}∣∣∣ + 1

n + 1
(7)

Evaluation of normalization methods. We evaluated the
performance of the four different normalization methods in
a 5-fold cross validation scheme using the 11 GWAS gene
sets from the GWAS catalog (Table 1) and the Consen-
susPathDB PPI network as scaffold. Our goal was to test,
given a set of input disease genes, which method can pre-
dict best novel disease genes. Thus, given a pre-defined list
of genes that are known to be associated with a disease, we
sub-sampled it five times into a validation and a training
set, such that the size proportion was 1:4 respectively. Each
training set was then used to execute the network propaga-
tion four times, one for each normalization method. All the
genes in the training sets were given an initial weight of 1,
to reflect their disease association and the rest (in the en-
tire network) of 0. The weights after the propagation were
assigned P-values, as described in the previous section. If a
gene achieved a significant enough P-value, then it is pre-
dicted to be a novel disease association. To assess the sensi-
tivity of the predictions, given a range of significance levels
(P-values range from 0.01 to 1), all the genes in the network
were sorted according to their P-values and the receiver op-
erating characteristic (ROC) curve was calculated, accord-
ing to the validation and training sets. Hence, if a gene was
associated with a P-value below the significant one, and it
was present in the validation set, then this gene is referred
to as a true positive prediction. However, if it is not present
in the validation set, then it is a false positive prediction.
For the ROC curve calculations, a negative set was defined
by randomly choosing nodes from the network that match
the degree of the nodes in the training set, since the number
of nodes in the training set is much lower than the number
of nodes in the rest of the network. The five ROC curves
were than averaged into one ROC curve to get a consensus
curve, from which the area under the ROC (AUROC) was
calculated.

Module identification in NetCore

We established a novel semi-supervised approach for iden-
tifying modules based on network propagation results in
combination with prior knowledge. We aimed to iden-
tify sub-networks that are biologically relevant for a given
condition, and therefore combined prior knowledge about
genes (seed genes) together with the propagation results.
Given a set of seed genes, our implementation allows for
propagation from these, using a binary scoring scheme as
input and identifies modules based on the results. Addition-
ally, we also provide the option to apply the propagation
step using experimental data, as long as they can be sum-
marized into one weight for all or some nodes in the net-
work. The propagation is then applied to the input weights,
and the identification of modules can be based on the prop-
agation results together with the prior knowledge about the
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genes that are relevant for the data. If such prior knowledge
is not available, the modules can also be identified based on
the input weights and the propagation weights only. In such
cases, we generate the seed list gene according to the input
weights and use the top 100 genes for the module identifi-
cation step.

The following steps are applied in order to identify mod-
ules in NetCore (further details are given in the next sec-
tion):

i. Extract seed-induced sub-network (i.e. the seed genes
and their interconnecting edges)

ii. Extend seed-induced sub-network with nodes for which
the following three conditions hold:
a. Significant weight after propagation (P < 0.01)
b. Direct neighbor of at least one seed node
c. High enough weight after propagation (w > wmin)

iii. Separate extended seed sub-network into modules by
identifying connected components.

Extension of seed modules using P-values and propagation
weights. Given a set of seed genes, we first extracted the
sub-network that includes only these genes (nodes) and
their connections (edges) (Step i.). We term this a seed-
induced sub-network. In case no seed genes are available,
we extracted the sub-network based on the original input
weights. We ranked the genes by their input weights, and
used the top 100 genes for extracting the seed sub-network.
Then, after applying network propagation, we used the re-
sults to add more genes into the seed-induced sub-network.
We set a threshold for a significant P-value P < 0.01 of the
propagation weights, and considered only the genes with a
P-value below this threshold (Step ii. a). We used 0.01 as we
apply a permutation test with 100 random networks, and
therefore this accounts for the minimum level of significance
we could achieve. These genes are ranked according to their
weights after the propagation. Finally, from this ranked list,
we added genes that have at least one connection to one of
the genes in the seed sub-network (Step ii. b), such that their
weight is above a minimum threshold. The weights after the
propagation depend mostly on the input weights, and the
restart parameter, which controls how much of the input
weight is spread in the network. Therefore, we decided to
set the minimum weight threshold based on the distribution
of the weights after the propagation. This minimum weight
threshold is set to be the 75th percentile of the propagation
weights of the significant nodes that are not already in the
sub-network (Step ii. c). Finally, we search for the connected
components in the extended seed-subnetwork and output
each one as a network module (Step iii.).

Evaluation of NetCore’s modules connectedness via entropy.
In order to evaluate the connectivity of the identified mod-
ules, we measured the entropy of the seed nodes distribution
with respect to the modules and compared it to the maxi-
mum possible entropy. Since the modules are the connected
components of the extended seed sub-network, we could
calculate the entropy of the seed nodes contained in these
M modules by: E = −∑

Mi

pMi log pMi such that pMi = kMi
n

where, kMi is the number of seed nodes in module Mi and

n is the total number of seed nodes. Each seed node that
is not covered by one of the computed modules is assigned
a ‘module’ of size 1. The maximum entropy, calculated by
Emax = log n, reflects the case where all seed nodes are in
different modules. Therefore, we measured the connected-
ness as the difference between Emax and E, which reflects
the distance from the maximum entropy. The larger the dis-
tance, the more seed nodes are inter-connected in the same
modules and the nodes are less distributed over a large num-
ber of smaller modules. The same calculation can also be ap-
plied to the modules within the seed sub-network, where the
modules are the connected components in the sub-network.
Thus, the connectedness of the seed sub-networks and ex-
tended seed sub-networks can be directly compared.

Evaluation of NetCore’s modules via over-representation
analysis. Over-representation analysis allows to identify
if a computed set of genes (i.e. a network module) is sta-
tistically significantly enriched in another pre-defined gene
set (for example, a pathway), given a background list of all
genes. The statistical significance is obtained via a hyper-
geometric test, where a P-value is calculated based on the
number of identifiers that are present in the computed mod-
ule and in the pre-defined pathway gene set. This type of
analysis is available via the ConsensusPathDB web server.
ConsensusPathDB includes a total of 5436 pathway gene
sets from 12 different resources: Pharmgkb, Ehmn, Human-
cyc, Wikipathways, Inoh, Netpath, Reactome, Signalink,
Kegg, Biocarta, Smpdb, Pid. In this work, we applied over-
representation analysis via ConsensusPathDB to the genes
from the different modules that were identified by NetCore.
We used a minimum module size of 10 genes. Furthermore,
we used all the genes from the high confidence PPI network
in ConsensusPathDB as background, and extracted only
the significantly enriched pathways. A minimum overlap of
two genes between the input list and the pathway gene list
was required. Only pathways with a P-value of 0.01 were ex-
tracted, and we used the Q-values, which are corrected for
multiple testing, as a measure for the level of enrichment.

Other network propagation methods. We compared Net-
Core with other existing methods that also apply network
propagation for module identification (Table 2). We focused
on three such methods: NAGA (5), HotNet2 (2) and Hier-
archical HotNet (8). In NAGA the authors recommend to
re-rank the genes after the propagation and take the top 100
genes along with the induced subnetwork. Then they use
ModuLand (48), a network clustering method implemented
in Cytoscape, to compute clusters, which serve as the final
identified modules. HotNet2 and Hierarchical HotNet are
both based on the same network propagation formulation,
but apply a different approach for extracting the modules.
Both methods define a similarity matrix S based on the ran-
dom walk with restart calculation. HotNet2 then builds a
fully connected graph from S, removes edges below a mini-
mum threshold �, and extracts the strongly connected com-
ponents (SCC) from the graph, which then serve as the fi-
nal modules. The output consists of four values for �, which
is estimated from the data and the results, and so we com-
pared only to the results extracted from the minimal � value
because this value yielded the largest final modules. Hier-
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archical HotNet constructs a hierarchy of clusters from S
consisting of SCCs, estimates the optimal cut for the hier-
archy, and the generated clusters are reported back as mod-
ules. Of these modules, we only compared to those that con-
sisted of at least two genes. All network propagation meth-
ods were applied to the ConsensusPathDB PPI network,
with a restart parameter of 0.8, in order to allow fair com-
parisons.

NetCore implementation

NetCore is implemented in Python3 (releases 3.6 and 3.7)
and is available via github: https://github.molgen.mpg.de/
barel/NetCore. NetCore is built on the Networkx (47) pack-
age for manipulation of complex networks. The computa-
tion of the RWR formula, and the calculation of the steady
state distribution (Equation 2), is implemented using the
linear algebra module of the SciPy software for Python (49).
The running time for one such computation (on a Linux ma-
chine with 64 cores) takes 30 s. Since NetCore implements
a permutation test that is based on random networks, the
total running time depends on the number of permutations.
Given 100 permutations, each one requires a computation
of 30 s, and therefore a total of 50 min. The overall run-
ning time, including the module identification, requires no
more than 60 min. In addition, to execute NetCore’s permu-
tation test, we provided an implementation for generating
random degree-preserving networks. The running time for
creating such networks depends both on the size of the net-
work (number of edges) and a constant factor, which con-
trols the number of attempts to swap edges. For the Con-
sensusPathDB network (114 341 edges) and a swap factor
of 100, generating one random network takes up to 45 min.
Since multiple networks can be generated at the same time,
we provided a fast implementation that runs in a parallel
fashion using Python’s multiprocessing module. To gener-
ate 100 random networks, using 64 cores, a total running
time of 90 min is required. The computation of the random
networks needs to be executed only once for every input net-
work, and can later be used repeatedly for running NetCore.

RESULTS

NetCore - a network propagation workflow for identifying
disease modules using coreness

The NetCore workflow consists of three main steps (Fig-
ure 2): (1) data initialization, (2) node re-ranking and (3)
module identification. (1) The first step includes the extrac-
tion of a PPI network, which we obtained from the Con-
sensusPathDB database (see ‘Materials and Methods’ sec-
tion and Supplementary Methods). In addition, experimen-
tal data need to be summarized into weights, such that for
each gene, i, an input weight, Si, is computed that reflects
its experimental outcome. Alternatively, a list of seed genes,
extracted from a manually curated database, may also be
used as input, allowing for example to apply a binary scor-
ing scheme. These genes can also later be used as seed genes
for module identification. (2) In the next step network prop-
agation based on a random walk with restart (see ‘Materials
and Methods’ section) is applied, such that a normalization

step based on node coreness is implemented (see ‘Materials
and Methods’ section), and a final re-ranking of the nodes
is obtained, along with a significance assignment based on
degree-preserving randomized networks. For the propaga-
tion, the restart parameter � needs to be set (default α = 0.8;
see ‘Materials and Methods’ section). (3) In the last step,
gene modules are identified in a semi-supervised way based
on the propagation results together with the seed gene list.
The module generation starts with the nodes correspond-
ing to the seed genes and their connecting edges (seed sub-
network). Next, intermediate nodes are added according to
their P-values and weights after the propagation (extended
seed sub-network). Here a significance level is set accord-
ing to the number of permutations, and a minimal weight
is computed directly from the underlying data. We used a
P-value of P < 0.01 and set the minimum weight wmin ac-
cording to the distribution of the weights after re-ranking
(see ‘Materials and Methods’ section). Our approach is im-
plemented in Python3 and is available via https://github.
molgen.mpg.de/barel/NetCore.

Coreness normalization reduces PPI network bias and im-
proves over degree normalization in network propagation us-
ing random walk with restart (RWR)

In contrast to degree which is a local property of the nodes,
we introduced coreness as a global property in the random
walk with restart formulation (see ‘Materials and Methods’
section). Figure 3A shows the relation between degree and
core for all the nodes in the PPI network. By definition the
core of a node cannot be higher than its degree and typically
is much smaller. The plot has a typical ‘boomerang’ shape,
and while there is a positive correlation, nodes with the same
core can still vary an order of magnitude in their degree.
This indicates again toward a degree bias, with nodes which
have a very high degree but a lower core value (see Sup-
plementary Methods). These ‘hub’ nodes are also very of-
ten associated with diseases, as already shown previously for
cancer (24). In particular, the core is an indicator whether
the node is located in a less densely connected region of the
network, even when the degree is considerably high. For ex-
ample, LPAR1 (Lysophosphatidic Acid Receptor 1), which
is associated with Height according to GWAS studies, has
a degree of 21 but a core of 8 only. Figure 3B shows the
neighborhood of LPAR1 in the PPI network. Out of its 21
neighbors, 16 have a degree that is lower or equal to 21. The
rest have a degree of between 27 and 83. In contrast, Figure
3C shows the neighborhood of RSRC1 (Arginine And Ser-
ine Rich Coiled-Coil 1), which is also associated with Height,
and has the same degree of 21, but a core of 18. RSRC1 is
connected to nodes with a much higher degree, all but one
have a degree of at least 21, and up to 382. Thus, the core
reflects that this gene is located in a much denser region of
the network than the previous node. We further explored the
degree and core distributions of the 11 GWAS sets (Table 1)
and observed that for all gene sets the variation of core val-
ues is much smaller than that of the degree (Figure 3D). The
coefficient of variation (CV) for all the genes in the GWAS
sets is twice higher for the degree than the core (CVdegree =
1.9, CVcore = 0.9). Additionally, we note that the degree dis-

https://github.molgen.mpg.de/barel/NetCore
https://github.molgen.mpg.de/barel/NetCore
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Figure 2. NetCore workflow: (1) Data initialization, which includes the extraction of a scaffold PPI network, experimental data and extraction of a seed
gene list representing a priori knowledge. (2) Network propagation using node coreness which involves initialization of node weights with experimental data
or alternatively with a weighted list of seed genes, random walk with restart propagation specifying the restart parameter � (default α = 0.8), and assigning
a propagated final weight and a P-value (through permutation analysis) to each node. (3) Module identification in a semi-supervised fashion combining
both network propagation results and the seed gene list. The seed genes are connected by PPIs and neighbor nodes are added that have a significant P-value
and a sufficient weight after re-ranking.
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Figure 3. Node degree and coreness in the high confidence ConsensusPathDB PPI network: (A) Interdependency of degree (X-axis) and core (Y-axis) of
nodes in the PPI network. (B) The neighborhood of LPAR1 (degree = 21, core = 8) and (C) of RSRC1 (degree = 21, core = 18) in the PPI network. The
two genes have the same degree but different core values, indicating that RSRC1 is located in a more densely connected part of the graph than LPAR1.
This can be seen from the neighbor nodes since RSRC1 is connected to more nodes which have a lot of interactions, whereas neighbors of LPAR1 have
rather low numbers of interacting partners. Node sizes of neighbors are displayed proportional to their degree. (D) Box plots of degree (green) and core
values (orange) for the genes in 11 GWAS gene sets. X-axis denotes the phenotypic traits and diseases.
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tributions include many extreme outliers, which is not the
case for the core distributions. Indeed, there are some genes
with a high degree that are present in many of the GWAS
sets. For example, HLA-B (Major Histocompatibility Com-
plex, Class I, B), which has a degree of 135 and core of 35,
is present in six of the 11 sets.

In order to demonstrate the impact of core normaliza-
tion on the RWR network propagation we have applied the
method to the problem of inferring disease genes. We made
use of the node coreness definition to normalize the ad-
jacency matrix in different ways and compared the stan-
dard degree normalization with three other normalization
schemes using: core only, the difference between core and
degree, and the ratio between core and degree (see ‘Mate-
rials and Methods’ section). We applied the different nor-
malizations to the 11 GWAS gene sets (Table 1) in a 5-fold
cross validation scheme (see ‘Materials and Methods’ sec-
tion) where we used 80% of the genes as training set and
20% of the genes as validation set for each trait. We used a
binary node initialization scoring scheme, where the genes
in the training set are scored with 1, and the rest of the
genes in the PPI network with 0 and then computed the per-
formance on the validation set after propagation. For each
gene set, we calculated the average ROC curve (Supplemen-
tary Figure S2) and then the AUROC. Figure 4A shows box
plots of the AUROC values for all 11 GWAS gene sets using
the different normalization schemes. It can be seen that for
most of the gene sets, the core normalization achieves the
highest AUROC. On average, there is a significant improve-
ment when using core- instead of degree-normalization in
the RWR network propagation (Wilcoxon signed-rank test,
P = 0.004).

NetCore’s seed-based approach generates highly connected
modules with GWAS disease genes

After applying RWR network propagation with core nor-
malization, we sought to identify network modules based
on the propagation results. To enforce biological guid-
ing of the network propagation through incorporation of
prior knowledge, we applied a semi-supervised approach
for module identification. Thus, we used the genes from the
GWAS sets as seed nodes, and extended the sub-networks
that are induced by them with significant genes after net-
work propagation. First, we extracted the sub-network that
connects the seed genes only (seed sub-network) (Supple-
mentary Figure S3). We note that for most GWAS sets, the
majority of the genes are not directly connected to each
other in the PPI, and the biggest connected component
in most cases consists of a few genes only. Then, we ex-
tended the seed sub-networks by adding neighbors of seed
nodes, based on the propagation results. Namely, we only
added neighbors if their weight after the propagation was
larger than wmin, and their P-value was significant (P <
0.01). wmin is computed from the data and defined for each
GWAS set separately according to the distribution of the
weights after the propagation (see ‘Materials and Methods’
section). The effect of wmin on the size of the resulting ex-
tended seed sub-network is shown in Supplementary Fig-
ure S4. We added the new nodes such that we also added

all of their respective connections to seed nodes in the sub-
network (see Supplementary Figure S5). This resulted in
larger connected components which included more of the
original seed nodes, and therefore represent a more com-
prehensive network module (see Supplementary Figure S6).
For all 11 GWAS sets, the number of nodes (Figure 4B), as
well as the number of edges (Figure 4C), increased in the fi-
nal modules in comparison to the largest components in the
original seed sub-networks, by factors of 2.2–10.6 (nodes)
and 2.4–17.4 (edges). More seed nodes were included in the
final module, and additionally newly predicted genes were
added as well. As a numerical indicator for the connected-
ness among the seed nodes, we computed an entropy cri-
terion (see ‘Materials and Methods’ section) derived based
on the seed gene content of the different connected compo-
nents of the sub-networks and subtracted it from the max-
imum entropy, where each seed node is in its own compo-
nent. Thus, the higher the difference is, the less sparse the
network is, and the seed genes are better connected. Using
this entropy difference as a measure of connectedness, Fig-
ure 4D shows that the connectedness of the seed nodes is
always much higher for the extended seed sub-network (fac-
tors ranging from 2.0 to 17.86).

We exemplify the results for Type-2 diabetes genes from
the GWAS catalog in Figures 4E-H. The seed sub-network
(Figure 4E), includes 78 seed nodes but only 14 edges. Most
nodes are not connected to each other, and the connected
components are rather small, in sizes that range between
two and five (connectedness of 0.3). Clearly, it is difficult
to extract a functional module that is relevant to the dis-
ease based on this sub-network alone. Therefore after prop-
agation we added to the sub-network intermediate nodes
which are connected to seed nodes in the PPI network, de-
pending on their propagation results (P < 0.01, w > 0.015).
This resulted in an addition of 39 nodes and 78 edges to the
sub-network (Figure 4F), which then consisted of 15 con-
nected components, in sizes between two and 53 (connect-
edness of 2.2). The largest connected component, shown
in Figure 4G, consisted of 53 nodes, out of which 32 were
from the original GWAS set and 21 were not, with a total
of 64 edges. Far more seed genes are now interconnected,
which corresponds to a 6.9 higher level of connectedness;
in addition the seed genes are interconnected to other genes
that serve as novel predictions for the disease. We evalu-
ated the functional relevance of this module via an over-
representation analysis (see ‘Materials and Methods’ sec-
tion). Figure 4H shows the top 20 most enriched pathways
(Q-value < 0.012) for the module, and for each pathway
the number of nodes from the module that are part of this
pathway, and whether they were included in the original
seed list or not. In many relevant pathways the amount of
novel candidates is even higher than the amount of origi-
nal seed genes. Some of the identified novel predicted genes
participate in more than one of the most enriched pathways.
For example: IGF1, IGF2 and LEPR, which have previously
been associated with diabetes (50–53), while STAT5B and
ROCK1 have shown weaker associations to the disease (54–
58). STAT5B and ROCK1 are members of the JAk/STAT
pathway, which has recently been shown to influence pro-
cesses relevant for obesity and diabetes (59).
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Figure 4. GWAS gene sets results: (A) AUROC for 11 GWAS gene sets using different normalization schemes for the random walk with restart matrix
normalization. Degree = standard normalization based on node degree; core = normalization based on coreness; diff = normalization based on difference
between degree and coreness; ratio = normalization based on ratio between coreness and degree. P-value was computed with a paired Wilcoxon test using
the AUROC values of degree and core. (B) Number of nodes in semi-supervised module identification for each GWAS data set: (i) the largest connected
component for the sub-network containing the seed nodes (in blue), (ii) the largest module using the re-ranking results after network propagation with
core normalization (in purple), (iii) the number of seed nodes in the largest module (orange), (iv) the number of non-seed nodes in the largest module (in
gray). (C) The number of edges in the seed sub-network and in the extended seed sub-network. (D) Connectedness of modules in seed sub-network and of
modules in extended sub-network after network propagation, measured with an entropy criterion. Bars show the connectedness, which is measured by the
difference in entropy from the maximum entropy and the respective modules. (E–G) Modules for Type-2 diabetes. Orange nodes show genes in the original
seed list, and gray nodes show significant genes that were added after network propagation. Graphs show: seed subnetwork (E), extended seed subnetwork
(F) and the largest module of the extended seed subnetwork (G). In (F) the size of the nodes is proportional to the weight after propagation. (H) The most
enriched pathways for the genes in the largest predicted module (G). In blue is the size of the entire pathway, and in purple is the overlap of the genes with
the largest module. Orange indicates genes are from the seed list, and gray not.
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NetCore improves consistency among different GWAS stud-
ies and identifies novel disease gene candidates––application
to Schizophrenia

In order to compute disease relevant network modules we
applied NetCore to a genetic variation Schizophrenia study
(39) and converted the GWAS-derived P-values of the genes
to input weights (see ‘Materials and Methods’ section). We
compared NetCore with a network propagation method
specifically designed for GWAS data analysis called NAGA
(Network Assisted Genomic Association) (5). We applied
NAGA, which is based on the degree-normalized RWR
model, to the same input weights and performed network
propagation on the ConsensusPathDB PPI network. Then,
as suggested by Carlin et al., we extracted the top 100 genes
according to the re-ranking after propagation. To allow di-
rect comparison of the methods we extracted also the top
100 genes according to NetCore propagation results.

In order to highlight the advantages of including prior
knowledge for the module identification step, we also ap-
plied NetCore using 226 genes from the GWAS catalog (Ta-
ble 1) as seed nodes and computed an extended seed sub-
network from these genes along with the propagation re-
sults. We evaluated the results by calculating the overlap to
Schizophrenia-associated genes derived from the DisGeNet
database (40). Although the DisGeNet gene list is not inde-
pendent of the list from the GWAS catalog, this compar-
ison demonstrates the power of incorporating prior infor-
mation in NetCore. The performance (measured by over-
lap with DisGeNet) was improved when the genes from the
GWAS catalogs were used as seed nodes. Figure 5A shows
the overlap between the different gene lists and the 1,072
Schizophrenia-associated genes in DisGeNet. NAGA’s top
100 genes have an overlap of 30, while NetCore’s top 100
genes overlap with 33, an increase of 10% in comparison to
NAGA. The list generated using the 226 GWAS seed nodes
increases the overlap further to 59 genes. Interestingly, the
GWAS seed set itself includes only 48 genes from DisGeNet,
i.e. when using NetCore propagation with the seed genes
from GWAS, we gained 11 more disease-associated genes
from DisGeNet and, thus, improved the consistency of the
two datasets.

In order to further test consistency of network propaga-
tion among disease gene sets we evaluated the different net-
work propagation outcomes with a second set of genes that
were found to be significant (GWAS P-value < 5e−8) in a
larger and more recent Schizophrenia GWAS study (41) (see
‘Materials and Methods’ section). Whereas NAGA’s top
100 genes overlap with only nine of those significant genes,
NetCore’s top 100 genes overlap with 35 of them. Hence,
NetCore appears robust with respect to different validation
sets with respect to the same disease (Figure 5B).

In order to predict novel Schizophrenia candidate genes
we applied NetCore’s propagation and module identifica-
tion again, this time using the genes from DisGeNet as seed
genes, since this is the most comprehensive a priori gene list
(1072 genes). With these seed genes NetCore identifies 1136
genes in the extended seed sub-network where the largest
module consists of 951 genes. Of these 888 genes are shared
with DisGeNet, which is to be expected, as they were used
as seed genes. 63 genes are potential ‘novel’ disease genes,

22 of them are also predicted by NAGA’s top 100 approach.
Figure 5C lists the 63 novel candidates grouped according
to whether they were also predicted by NAGA, and ranked
according to their weight after propagation with NetCore.
We notice that the genes with the highest weights after the
propagation, for example TRAF6 and SRC, are also pre-
dicted by NAGA. This is to be expected, as NAGA takes the
top 100 ranked genes after propagation. But, there are also
some genes with intermediate weights, which are only pre-
dicted by NetCore, such as BTN2A1 and AP2M1. BTN2A1
was also found significant in the more recent Schizophrenia
GWAS study (‘Materials and Methods’ section), in addition
to seven more genes that were predicted by NetCore.

We further explored two of the predicted novel asso-
ciations: SRC and PSEN1. We show their neighborhood
within the computed module in NetCore in Figure 5D and
E. SRC, has 97 neighbors, 87 of them from DisGeNet (a pri-
ori seed; orange) and 10 are novel predictions (gray), includ-
ing SRC itself. The sub-network is fairly dense, with 548 in-
teractions, 97 alone belong to SRC. Other highly connected
genes in the sub-network are: EGFR, GRB2 and ESR1, all
of which are already associated with Schizophrenia accord-
ing to DisGeNet. Among the newly predicted genes are
TRAF6 and PRKACA, which are ranked first and third re-
spectively after propagation, and also appear in the NAGA
predictions (Figure 5C). Both of these genes had a rather
small initial weight based on the data, and a substantial
increase in their weight after the propagation. PSEN1 has
24 neighbors and is connected to other well-known disease
genes, such as APP and GRB2. PSEN1 encodes a prese-
nilin protein, which is associated with other neurodegener-
ative diseases, in particular Alzheimer’s disease. Mutations
in PSEN1 have been identified as one of the first genes re-
lated to early onset Alzheimer (60).

NetCore identifies novel cancer candidate genes with implica-
tions to patient survival

We applied NetCore to pan-cancer mutation data from 21
tumor types (‘Materials and Methods’ section). As input
weights, we used MutSig Q-values (42), which summarize
the significance of the mutational frequency, clustering and
functional impact of the mutations in all genes. As seed
nodes for the module identification, we used the consen-
sus cancer gene list (‘Materials and Methods’ section) from
the Network of Cancer Genes (NCG) repository (45). This
repository holds genes identified from cancer sequencing
screens with strong (‘consensus cancer genes’), as well as
less strong (‘candidate cancer genes’), driver evidence. For
comparison with NetCore, we also applied on the same data
two other network propagation approaches that were de-
veloped for the analysis of cancer mutation data: HotNet2
(2) and Hierarchical HotNet (h-HotNet) (8). Both meth-
ods make use of degree-based RWR network propagation,
but apply a different module identification approach, and
have been previously used to identify significantly mutated
sub-networks in pan-cancer mutation data. We extracted
the modules from the three methods and compared them
based on their genes. Figure 6A shows the number of genes
in the modules, and their overlap with the genes from the
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Figure 5. Schizophrenia GWAS-based network propagation: (A) The number of genes, and if they are contained in the DisGeNet Schizophrenia disease
gene list (blue) or not (orange), for the following (left to right): NAGA network propagation top 100 genes; top 100 genes computed with NetCore; NetCore
predicted genes with the 221 GWAS-derived genes (Table 1) as seed list. The last bar shows the overlap of the 221 GWAS-derived genes with the DisGeNet
genes. (B) The same analysis results as in (A) but with the overlap computed with the genes that were significant (P < 5 × 10–8) in a recent Schizophrenia
GWAS study by Pardiñas et al. (C) Sixty-three novel candidates predicted from NetCore, using the Schizophrenia-associated genes from DisGeNet as seed
nodes either overlapping with NAGA (22 genes) or not (41 genes). The color of the heatmap indicates the weight after the NetCore propagation. Genes
that are marked in blue were significant (P < 5 × 10–8) in the GWAS study by Pardiñas et al. The neighborhoods of (D) SRC and (E) PSEN1 in NetCore’s
largest module. Orange genes are in the DisGeNet list, gray are novel predictions. The sizes of the nodes are proportional to the weights after propagation.
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Figure 6. Network propagation analysis with pan-cancer mutations: (A) The number of genes in the predicted modules reported by NetCore, HotNet2
and Hierarchical HotNet (h-hotnet). Colors indicate the different categories of the NCG lists (blue = cancer consensus genes, orange = cancer candidate
genes, green = genes in neither lists). (B) Venn diagrams showing the overlap between the three methods for all the genes in the computed modules, and
according to the different NCG categories. (C) Box plots of the node degrees of the computed module genes. For NetCore this is also broken down to the
different NCG categories. (D) Pathways with at least three predicted genes from the candidate list in the biggest module (633 genes) from NetCore. Color
indicates the different NCG categories. (E) The genes from the biggest module that are part of the MAPK signaling pathway according to KEGG. (F) The
genes from the biggest module that are part of the RAS signaling pathways according to KEGG. Blue genes are in the consensus cancer list, orange in the
candidate and green are new predictions. (G) Cox regression plots for three of the novel predicted genes from the modules in (E) and (F) generated using
OncoLnc (62). LGG refers to Brain Lower Grade Glioma. KIRC refers to Kidney renal clear cell carcinoma.
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NCG cancer consensus and candidate lists. Both HotNet2
and h-HotNet have a relatively small number of genes in
their modules. In all methods, the majority of the genes be-
long to the consensus list. This is of course to be expected
from NetCore, as we used the consensus genes as seed for re-
trieving the final modules. However, NetCore also retrieves
more candidate genes due to its semi-supervised approach.
This is further shown in Figure 6B, where NetCore’s genes
almost completely overlap with the other two methods, but
include 15 more genes from the candidate list. HotNet2 re-
ported seven genes from the candidate list, but those are not
overlapping with the 15 genes reported by NetCore. We ex-
plored the degree of the nodes in all the modules (Figure
6C), and observed a higher degree in both the HotNet2 and
h-HotNet modules. This is due to HotNet2 and h-HotNet
mainly reporting genes from the consensus list, and hardly
reporting any genes with a lower degree. We divided the
genes from NetCore’s module according to the NCG lists,
and noticed a lower degree both for the genes from the can-
didate list, as well as the genes that are in neither lists. This
shows NetCore is less biased by node degree and is able to
predict also genes that have a lower degree than those in the
consensus list.

We further evaluated the cancer-association potential of
the novel predicted cancer genes that are neither consen-
sus nor candidate genes via an over-representation analy-
sis (see ‘Materials and Methods’ section). We applied the
analysis to the genes in the NetCore modules and extracted
the most enriched pathways (Q-value < 0.01). We then in-
vestigated those enriched pathways that contained at least
three genes from the candidate list (Figure 6D; Q-value
< 2.7e-6). All pathways also included genes that are non-
candidate genes, where some pathways include more genes
from the candidate list, and others don’t. We focused on
two KEGG (61) pathways: ‘MAPK signaling pathway’ (Q-
value = 1.11e-19) and ‘Ras signaling pathway’ (Q-value =
2.05e-20), and show the sub-networks from NetCore’s mod-
ule that include the genes that are enriched for these path-
ways (Figures 6E and F). The majority of genes are in the
consensus list (blue), while a smaller number of genes are
in the candidate list (orange) or in neither of the two lists
(green). In total, both pathways include nine genes that are
in neither of the NCG lists: RASGRP3, FGF10 and RAS-
GRF1 are present in both pathways; RASAL2, KSR1 and
RIN1 in ‘Ras signaling pathway’ only; and IL1RAP, MAP-
KAPK3 and TGFB1 in ‘MAPK signaling pathway’ only.

We argued that these novel genes might still be cancer-
relevant biomarkers since they are connected with many
consensus and candidate genes. We thus examined the as-
sociations of these genes to cancer survival data by gen-
erating Cox regression plots using OncoLnc (62) and dis-
played the results for those cancer types with the lowest
FDR-corrected P-values. In Figure 6G we show the re-
sults for three of the novel predicted genes from the mod-
ules, which were part of the MAPK and Ras signaling
pathways: RASGRF1, MAPKAPK3 and RIN1. All three
genes are significantly associated with survival of cancer pa-
tients, and therefore could potentially be used as biomark-
ers. These genes have a rather low degree, exemplifying the
power of NetCore’s semi-supervised approach in identify-
ing novel biomarkers. In addition, we repeated the same

analysis for genes in the overview ‘Pathways in Cancer’ list
from KEGG that were predicted in NetCore’s module but
are in neither of the NCG lists. This is the most enriched
pathway in the module (Q-value = 1.34e-65). It consists
of 475 genes, 147 of them are in NetCore’s module. From
those, 137 are from the consensus list, three from the can-
didates list, and seven are in neither lists. Again, we iden-
tified six of the seven novel genes as potential biomarkers
due to their significant correlation to patient survival data:
CTBP1, FGF10, LPAR1, LRP5, RASGRF3 and TGFB1
(Supplementary Figure S7).

DISCUSSION

We developed NetCore, a network propagation method that
uses node coreness instead of degree in the mathematical
implementation of a random walk with restart. The novel
method accounts for the fact that experimental bias and
study bias of PPI networks result in a high node degree bias
in PPIs (24). Contrary to degree, node core is a global prop-
erty (29) that suggests to the level of influence a node has
in spreading information in a network (30). We showed the
relation between node degree and core in the Consensus-
PathDB PPI network, and how it can reduce the high degree
bias for the identification of GWAS gene sets. Degree bias in
PPI networks have been previously addressed in the context
of network propagation, but was only applied to adjust for
the statistical significance of the results (25,26). We there-
fore decided to address the bias by directly adjusting the
adjacency matrix, before applying the propagation. There
exists other modifications to the random walk with restart,
such as random walk with extended restart (63), where each
node has its own restart probability, however such an ad-
justment of the adjacency matrix has yet to be introduced
when applying network propagation. We established three
different normalization schemes for the adjacency matrix
that are based on core, and compared their performance in
the context of network propagation for identifying GWAS
gene sets. We concluded that core normalization is perform-
ing significantly better than degree and therefore recom-
mend using it when executing random walk with restart-
based network propagation.

The methods proposed for identifying network modules
after applying network propagation still suffer from vari-
ous drawbacks. They either simply extracted the genes with
the highest weight after the propagation (5), or those with
a significant P-value after applying a permutation test (26),
but those are not necessarily connected such that a compre-
hensive module can be extracted. Other methods focused
on identifying modules that represent protein complexes
(64), but of course modules can include many more proteins
and represent various processes, like signaling pathways. Fi-
nally, both HotNet2 (2) and Hierarchical HotNet (8), which
apply different module identification schemes to network
propagation results, can potentially include false interac-
tions between proteins, that don’t exist in the PPI network.
We therefore addressed the module identification problem
in a semi-supervised way. We proposed to first extract a list
of knowledge based seed genes, and then extend it accord-
ing to the network propagation results. Our approach intro-
duces several improvements in comparison to others. First,
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we exploited prior knowledge to determine an initial set of
genes that should certainly be present in the desired mod-
ules. Second, we applied a permutation test in order to cal-
culate a significance level for the weights after the propaga-
tion, such that we utilized both the weight and the signifi-
cance when identifying novel genes. And finally, we identi-
fied modules by first extracting a seed sub-network, which
was then extended with non-seed genes, such that all rele-
vant interactions from the PPI network were also included.
By that, we were able to identify modules that were func-
tionally relevant to the phenotype, were enriched in vari-
ous pathways and included novel predictions for genes that
could be involved in the underlying mechanisms of action.

We first applied NetCore to 11 GWAS gene sets and iden-
tified network modules that included both the input genes
and novel candidate genes that are potentially relevant to
the phenotype. By adding intermediate nodes, we were able
to both connect between seed genes, that didn’t have a di-
rect connection in the PPI network, and predict novel genes
that are involved in the same pathways as the seed genes.
We showed that all of NetCore’s modules were larger and
contained more seed nodes, when comparing to the compo-
nents of the sub-network that is induced by the seed nodes
only. We also quantified the connectedness of the result-
ing modules using an entropy measurement, which showed
that NetCore’s modules are less dispersed and more inter-
connected. We exemplified this with Type 2 diabetes, which
had a very low number of connections between the genes
associated with the disease in the PPI network. We could
substantially extend the seed sub-network with more genes,
which (i) connected between many seed genes and (ii) had
a significant weight after the propagation. The largest mod-
ule was enriched with pathways related to leptin, which has
been linked to diabetes before (65–67), as well as some IGF
(Insulin Like Growth Factor) related pathways. These path-
ways included both genes that were already associated with
the disease, as well as some novel candidates. Among those
were IGF1 and IGF2, which already have stronger associ-
ations to diabetes (51,52). Additional genes include mem-
bers of the JAK/STAT signaling pathway, e.g. STAT5B or
ROCK1, where it has been argued that this pathway is dys-
regulated in metabolic diseases including obesity and dia-
betes (59).

We further demonstrated the advantages of NetCore for
identifying novel disease genes and modules for Schizophre-
nia. By combining experimental evidence from a large ge-
netic variation study, and a list of well-known disease genes
extracted from a curated database, we were able to pre-
dict novel candidate genes that might be associated with
the disease. While some of these results are shared by an-
other method, others are only reported by NetCore. Fur-
thermore, we demonstrated NetCore’s relevance by showing
that it can predict novel genes that are significant in future
GWAS studies. For example, BTN2A1, which is the highest
scoring gene reported only by NetCore, would be a promis-
ing candidate for further studies. It has already been asso-
ciated with other disorders such as dyslipidemia (68–70).
We identified SRC, a tyrosine-protein kinase, which is con-
nected to many genes that are known to be associated with
Schizophrenia, such as APP, MAPK1 and NTRK1. Dys-
regulated SRC has been previously linked to Schizophrenia

together with the activity of NMDA (71–74). GRIN2A and
GRIN2B, which are some of the subunits of NMDA, are
also connected to SRC in NetCore’s module. In addition,
we identified another candidate gene, PSEN1, which is also
connected to APP and other well-known disease genes, but
is not a neighbor of SRC, and thus might be involved in
a different mechanism that affects the disease. PSEN1 has
already been implicated in Alzheimer’s disease (75–78) as
well as other neurodegenerative and neuropsychiatric disor-
ders (79). TRAF6, PRKACA and ACTN1 are all connected
to both SRC and PSEN1 and therefore it might be use-
ful to further investigate their interactions in order to bet-
ter understand the mechanisms that could be involved in
Schizophrenia.

We also tested NetCore’s ability to predict novel can-
cer genes based on cancer mutation data and compared
the results to the state-of-the-art methods in the field, Hot-
Net2 and Hierarchical HotNet. Both methods apply a sim-
ilar network propagation approach, but implement a differ-
ent module identification procedure. They have previously
been shown to predict the highest numbers of candidate
cancer genes (8), in comparison to other network based
methods for cancer gene predictions (6,80–81). However, we
have shown that both methods, while being very specific,
reported a rather low number of novel cancer genes, and
mainly those with a high node degree. We showed that Net-
Core, being a semi-supervised approach, can detect more
candidate cancer genes, which have a lower degree, and are
also connected to well-known consensus cancer genes. This
indicates yet again the power of (i) using core instead of de-
gree for network propagation and (ii) using a pre-defined
list of seed nodes in order to predict novel genes that can
be associated with the disease. This is especially relevant for
cancer, as it is extensively studied, and therefore there are
multiple sources from which a comprehensive seed list can
be extracted. Finally, we showed that we were also able to
provide novel predictions that have yet to be implicated in
cancer. We focused on genes from the MAPK and Ras sig-
naling pathways, which are well known to be involved in
cancer development, and estimated their potential relevance
as biomarkers via their ability to predict patient survival,
based on gene expression data, with respect to available pa-
tient cohorts. RIN1 expression has already been implicated
in tumor development and invasion (82–84). Hypermethy-
lation of RASGRF1, has been suggested as a biomarker for
colorectal cancer (85). However, while MAPKAPK3 has al-
ready been suggested as a potential biomarker for colorectal
cancer (86) further investigations are still in order.

NetCore runs with three essential parameters, the restart
probability α, as well as the P-value and minimal weight
thresholds, that determine the significant genes after the
network propagation process and those that will be added
to construct the final network modules. It should be em-
phasized that while α has been adjusted for the Consensus-
PathDB PPI network from GWAS data (default α = 0.8),
the other parameters are computed from the data itself after
the propagation process and, thus were not previously opti-
mized. Furthermore, α has to be adjusted only once, as it de-
pends only on the PPI network and not on the input data. It
is in principle possible though to tune the final modules with
an additional post-processing step that includes, for exam-
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ple, the core value of the genes. If one wishes, for example, to
further exclude genes from the periphery, and focus on the
densely connected genes, one could remove genes with a low
core value. For instance, if we were to apply a threshold of
core > 5 for NetCore’s results on pan-cancer mutation data,
this would only exclude one of the genes that are already in
NCG’s candidate list, and reduce the detected novel can-
didates from 63 to 57 (and by that also the potential false
positives), while preserving the potential survival biomark-
ers shown in Figure 6G.

We have demonstrated how NetCore can improve net-
work propagation results for the identification of novel dis-
ease genes and modules. However, in addition to the modi-
fications that we have proposed, there are still several chal-
lenges to address and room for advancement. First, the
node degree bias in PPI networks can be further reduced
by designing more accurate experiments for studying PPIs,
without focusing on well-characterized nodes only. In ad-
dition, while ConsensusPathDB is already integrating over
multiple resources (34,35), it has been shown that summa-
rizing information from multiple PPI networks can even
further improve the results (32). Second, for an ideal perfor-
mance, NetCore requires a set of seed genes in order to iden-
tify comprehensive modules. Great efforts have been made
in the field of cancer for comprising lists of genes that are
associated with the disease (45,87–88), and it would be very
beneficial to produce similar curated lists for other diseases
too, in order to improve the module identification process
and identify novel candidates via NetCore. Third, network
propagation can further be used as a method for integrating
multiple OMICs data (1). For example, it has been applied
for the identification of cancer genes based on both muta-
tion data and gene expression levels (89,90). A similar ap-
proach could be implemented using NetCore, while includ-
ing even more types of data, such as methylation, in order to
identify novel cancer genes and modules. Finally, NetCore
could be further used for other phenotype–genotype asso-
ciations, based on various types of data, and it could also
serve as an initial step for re-ranking of genes and extract-
ing relevant features in the context of machine learning.

DATA AVAILABILITY

All of the resources and software that have been used for
the analysis are detailed in Table 2. NetCore is implemented
in Python3 and is available for download via https://github.
molgen.mpg.de/barel/NetCore.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

Authors are grateful to Matthias Lienhard, Roman Schulte-
Sasse, Annalisa Marsico, Atanas Kamburov and Martin
Vingron for their support and feedback. Furthermore, dis-
cussions and feedback within the framework of the Interna-
tional Max Planck Research School for Biology and Com-
putation were very much appreciated.

FUNDING

Bundesministerium für Bildung und Forschung
[01IS18044A (ML-Med) to G.B.]; Max-Planck-Society
(to R.H.). Funding for open access charge: Institutional
funding.
Conflict of interest statement. None declared.

REFERENCES
1. Cowen,L., Ideker,T., Raphael,B.J. and Sharan,R. (2017) Network

propagation: a universal amplifier of genetic associations. Nat. Rev.
Genet., 18, 551–562.

2. Leiserson,M.D., Vandin,F., Wu,H.T., Dobson,J.R., Eldridge,J.V.,
Thomas,J.L., Papoutsaki,A., Kim,Y., Niu,B., McLellan,M. et al.
(2015) Pan-cancer network analysis identifies combinations of rare
somatic mutations across pathways and protein complexes. Nat.
Genet., 47, 106–114.

3. Drake,J.M., Paull,E.O., Graham,N.A., Lee,J.K., Smith,B.A., Titz,B.,
Stoyanova,T., Faltermeier,C.M., Uzunangelov,V., Carlin,D.E. et al.
(2016) Phosphoproteome integration reveals patient-specific networks
in prostate cancer. Cell, 166, 1041–1054.

4. Qian,Y., Besenbacher,S., Mailund,T. and Schierup,M.H. (2014)
Identifying disease associated genes by network propagation. BMC
Syst. Biol., 8, S6.

5. Carlin,D.E., Fong,S.H., Qin,Y., Jia,T., Huang,J.K., Bao,B., Zhang,C.
and Ideker,T. (2019) A fast and flexible framework for
network-assisted genomic association. iScience, 16, 155–161.

6. Cho,A., Shim,J.E., Kim,E., Supek,F., Lehner,B. and Lee,I. (2016)
MUFFINN: cancer gene discovery via network analysis of somatic
mutation data. Genome Biol., 17, 129.

7. Bersanelli,M., Mosca,E., Remondini,D., Castellani,G. and
Milanesi,L. (2016) Network diffusion-based analysis of
high-throughput data for the detection of differentially enriched
modules. Sci. Rep., 6, 34841.

8. Reyna,M.A., Leiserson,M.D.M. and Raphael,B.J. (2018)
Hierarchical HotNet: identifying hierarchies of altered subnetworks.
Bioinformatics, 34, i972–i980.
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