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ABSTRACT Microbial community diversity is often correlated with physical environ-
mental stresses like acidity, salinity, and temperature. For example, species diversity
usually declines with increasing temperature above 20°C. However, few studies have
examined whether the genetic functional diversity of community metagenomes varies
in a similar way as species diversity along stress gradients. Here, we investigated bacte-
rial communities in thermal spring sediments ranging from 21 to 88°C, representing
communities of 330 to 3,800 bacterial and archaeal species based on 16S rRNA gene
amplicon analysis. Metagenomes were sequenced, and Pfam abundances were used as
a proxy for metagenomic functional diversity. Significant decreases in both species di-
versity and Pfam diversity were observed with increasing temperatures. The relationship
between Pfam diversity and species diversity followed a power function with the steep-
est slopes in the high-temperature, low-diversity region of the gradient. Species addi-
tions to simple thermophilic communities added many new Pfams, while species addi-
tions to complex mesophilic communities added relatively fewer new Pfams, indicating
that species diversity does not approach saturation as rapidly as Pfam diversity does.
Many Pfams appeared to have distinct temperature ceilings of 60 to 80°C. This study
suggests that temperature stress limits both taxonomic and functional diversity of mi-
crobial communities, but in a quantitatively different manner. Lower functional diversity
at higher temperatures is probably due to two factors, including (i) the absence of
many enzymes not adapted to thermophilic conditions, and (ii) the fact that high-tem-
perature communities are comprised of fewer species with smaller average genomes
and, therefore, contain fewer rare functions.

IMPORTANCE Only recently have microbial ecologists begun to assess quantitatively
how microbial species diversity correlates with environmental factors like pH, tempera-
ture, and salinity. However, still, very few studies have examined how the number of
distinct biochemical functions of microbial communities, termed functional diversity,
varies with the same environmental factors. Our study examined 18 microbial com-
munities sampled across a wide temperature gradient and found that increasing tem-
perature reduced both species and functional diversity, but in different ways. Initially,
functional diversity increased sharply with increasing species diversity but eventually
plateaued, following a power function. This pattern has been previously predicted in
theoretical models, but our study validates this predicted power function with field
metagenomic data. This study also presents a unique overview of the distribution of
metabolic functions along a temperature gradient, demonstrating that many functions
have temperature “ceilings” above which they are no longer found.
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Ecologists have been documenting the effects of environmental parameters on plant
and animal diversity since the mid-1800s (1). One of the strongest correlations is

the peak of plant and animal diversity at warm midlatitudes and the diversity decline
toward the poles (1). Recently, microbial ecologists have investigated whether diversity
gradients can be observed in microbial communities as well. Several abiotic environ-
mental factors have been shown to correlate with microbial species diversity, with
decreasing diversity under more extreme conditions of pH (2–5), aridity (6), salinity (7,
8), heavy metals (9), and temperature (4, 10–17).

A relationship between temperature and microbial alpha diversity has been observed
in multiple studies of sediments (4, 12), soil (13, 14), microbial mats (10, 11, 17), and ocean
water communities (15, 16). Many of these studies have focused on geothermal environ-
ments (4, 10–13, 17, 18). These can maintain relatively stable temperatures year-round,
even when seasonal or daily air temperature fluctuations are high (19), thereby simplifying
correlations with temperature. Studies examining only limited temperature ranges gener-
ally find a positive relationship between diversity and temperature at low temperatures
(14) and a negative relationship at higher temperatures (10–14, 17, 18). These two trends
are consistent with an overall bell-shaped relationship in which diversity peaks at a moder-
ate temperature. Sharp et al. (4) examined geothermal samples covering a temperature
range of over 90°C and observed a Gaussian relationship with peak diversity at 24°C (4).

Relatively fewer studies have addressed whether functional diversity (FD) of micro-
bial communities follows similar patterns as species diversity (SD) across gradients of
environmental stress. A positive correlation between the two measures is usually
assumed, but the nature of this relationship is uncertain. FD may increase linearly with
SD, or, alternatively, it may follow an exponential (or power) function, increasing rap-
idly at low SD and saturating at a relatively low species count (20). The exponential
form of the relationship is most commonly observed in studies where community di-
versity is manipulated and an emergent metabolic process is measured (20).
Metagenome-based comparisons of FD versus SD are far less common, but they
include two studies of diverse soils where strong positive linear relationships of bacte-
rial species richness and functional gene richness were observed (21, 22). In these stud-
ies, species richness was estimated via 16S rRNA gene amplicon sequencing and func-
tional richness via Metagenomics Rapid Annotations using Subsystems Technology
(MG-RAST) annotation of raw metagenome reads generated on an Illumina HiSeq. The
commonly observed increase in species richness of marine microbial communities
with depth has also been correlated with increased metagenomic gene richness in two
studies (23, 24), although the exact nature of the FD-SD curve was not clarified. In
these studies, functional diversity was estimated by BLAST assignment of raw metage-
nome reads to KEGG gene categories. Similarly, Louca et al. (25) used a taxon-assigned
function approach to show a positive relationship between the number of functional
groups of oceanic microbes and species richness. Analysis of a soil gradient in the
Tibetan Plateau demonstrated that aridity stress reduced both SD and FD (where FD
was based on MG-RAST annotation of metagenome reads), although direct correlation
of the two diversity measures was very weak (26).

While there is evidence that temperature limits certain functional properties of bac-
terial communities (27), no study has quantitatively assessed functional diversity across
a wide temperature gradient where dramatic changes in species diversity are apparent.
We therefore selected a set of samples spanning from 21.2 to 88.8°C and corroborated
the relationship of species diversity to temperature via 16S rRNA gene amplicon
sequencing. We then posed the hypothesis that functional diversity would display a
positive correlation with species diversity. Metagenomic libraries were constructed
from the sediments and translated raw metagenome reads queried against the Pfam
database (28) to generate assembly-independent estimates of Pfam diversity, which
were used as an index of the functional diversity of each community. We present this
Pfam-based approach as an alternative to the BLAST approach primarily used in previ-
ous studies. Functional prediction relying on BLAST, usually of short reads, is error
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prone due to the difficulty in accurate identification. There is also the possibility for sys-
tematic biases in BLAST searches against a database biased to mesophilic communities
and genomes.

RESULTS
Species diversity versus temperature. For clarity, species diversity indices calcu-

lated from 16S rRNA gene-based operational taxonomic units (OTUs) are designated
observed OTUs, Chao1OTU, and ShannonOTU, whereas functional diversity indices calcu-
lated on Pfam data sets are designated observed Pfams, Chao1Pfam, and ShannonPfam.
The relationship between OTU diversity and temperature was assessed using two data
sets, (i) 20 samples collected along the outflow channels of the Dewar Creek hot spring
(British Columbia, Canada) (24.2 to 79.8°C), and (ii) 18 samples collected from a set of 9
different pH-neutral geothermal springs (21.2 to 88.8°C) (Table 1) selected from a previ-
ous 454 pyrosequencing study (4) and reanalyzed here using Illumina sequencing. For
the first data set, sampling was restricted to a single spring to minimize other variables
such as pH and water chemistry, and in the second sample set, the pH variability was
restricted to 1.25 units (pH 6.85 to 8.10). Observed OTUs, Chao1OTU, and ShannonOTU

indices calculated from 16S rRNA gene amplicons all showed statistically significant
and very strong relationships to temperature for the Dewar Creek data set (r2 = 0.71 to
0.87; P , 0.00001) and for the 9-spring data set (r2 = 0.84 to 0.90; P , 0.00001) (Fig. 1a
to c). Nonlinear Gaussian regressions gave the best unbiased fits, although linear
regressions were similarly strong (Table 2). Both data sets closely match the relation-
ship reported by Sharp et al. (4), despite the utilization of different PCR primers and a
different sequencing platform (Fig. S1).

The temperature-diversity relationship was consistent across multiple levels of OTU
clustering (Fig. 1a to f), and OTU analyses were consistent with analyses using individ-
ual amplicon sequence variants (ASVs) (Fig. 1g to i). Fewer total ASVs were estimated
in the sample set than OTUs because of more stringent filtering. However, the funda-
mental shape of the temperature-diversity relationship was not greatly changed by
using ASVs instead of OTUs.

Pfam diversity versus temperature. The 18 metagenomic libraries totaled 61.48 Gb
of data and 182,225,430 total reads, with 5 to 26 million reads per sample (Table 3). The
percentage of raw reads that could be assigned to a Pfam ranged from 14.9 to 31.7 and
showed no relationship to temperature (r2 = 0.0586; P = 0.3333; data not shown).
Rarefaction curves of total Pfams began to level off after about 600,000 Pfam-assigned
reads, suggesting that sampling additional reads above 600,000 introduced a relatively
small number of new Pfams into the data set (data not shown). Similar results were
obtained from rarefaction curves for Chao1Pfam and ShannonPfam (data not shown).
Therefore, each sample was rarefied to 600,000 Pfam-assigned reads. Regressions were
performed on different alpha diversity indices calculated from the Pfam data versus

TABLE 1 Description of the geothermal springs examined in this studya

Hot spring name Hot spring location Latitude, longitude Spring pH range Sample(s) Collection yr
Cedar Spring Canada 54.3565500°N, 128.5422833°W 8.1 HS1 2012
Deer River Canada 59.5041333°N, 125.9566333°W 7.81 D1 2012
Dewar Creek Canada 49.9543667°N, 116.5155000°W 7.08–7.93 DC5, DC6, DC8 2010

DC2 2012
D37, D47, D54 2015

Fording Mountain Canada 49.9694500°N, 114.8982833°W 7.20–7.48 FS5 2010
FS1 2012

Goat Harbour Canada 53.3569167°N, 128.8881000°W 6.86 GH3 2011
Kiddie Pool Springs Canada 54.3535500°N, 128.5384500°W 7.79 KP3 2012
Larsen Creek (North) Canada 60.1987500°N, 125.5127833°W 6.85–7.16 LN4, LN5 2012
Ngatamariki New Zealand 38.5416667°S, 176.1908333°E 7.31–7.90 N4 2010

N89 2012
Ram Creek Canada 50.0327333°N, 115.5929167°W 7.47 RC4 2012
aSee Table 3 for individual sample temperatures.
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sample temperature. Nonlinear Gaussian regressions gave the best unbiased fits (Fig. 2),
although linear regressions were also significant (Table 2). Observed Pfams, Chao1Pfam,
and the ShannonPfam index all showed statistically significant relationships to temperature
(r2 = 0.63 to 0.70; P , 0.0001). The strong relationships held after an extra validation step
of the Pfam data set using BLAST (Fig. S2a to c in the supplemental material) (r2 = 0.71 to
0.78; P, 0.0001).

Signature Pfams. Each metagenome was also screened for the presence or absence
of 56 “signature Pfams” generated from RDP’s FunGene repository (Table S1). A total of
51 were detected. Linear regressions of observed signature Pfams, Chao1signature_Pfam, and
Shannonsignature_Pfam versus temperature (Fig. S2d to f) were all statistically significant
(r2 = 0.44 to 0.62; P , 0.01). This reduced signature Pfam data set, therefore, followed a
similar pattern as the overall Pfam data set.

Pfam diversity versus species diversity. Comparing the plots of species (OTU) di-
versity versus temperature (Fig. 1) to plots of Pfam diversity versus temperature (Fig. 2)
reveals some distinct features. First, the absolute range of Pfam variability is smaller,
suggesting that the reduction of Pfams with increasing temperature was slower than
the reduction in OTUs. Second, while the OTU curves are steepest at moderate temper-
atures (,60°C), the Pfam curves are steepest at high temperatures (.60°C). Diversity
metrics for OTUs versus Pfams were therefore compared more closely. Regressions of
Pfam diversity versus OTU or ASV diversity fit well to a power model (Fig. 3) (OTU,
r2 = 0.56 to 0.67, P , 0.001; ASV, r2 = 0.63 to 0.74, P , 0.0001), indicating that Pfam di-
versity increased only hypometrically with OTU diversity. That is, Pfam diversity
changed rapidly with changing OTU diversity across the low-diversity thermophilic

FIG 1 Alpha diversity of Bacteria based on 16S rRNA gene amplicon OTUs (a to f) or amplicon sequence variants (ASVs) (g to i) versus temperature in
sediments collected from the Dewar Creek hot spring (open triangles) and all 9 springs sampled in this study (black circles). Panels show observed OTUs (a,
d, and g), Chao1OTU (b, e, and h), and ShannonOTU (c, f, and i) versus sample temperature. Diversity indices were calculated using 13,460 (a to f) or 8,000 (g
to i) 16S rRNA gene sequence reads per sample, amplified with a Bacteria-specific primer set, and clustered at 97% (a to c) or 99% (d to i) identity. The
best-fit Gaussian least-squares regressions to the Dewar Creek data set (dashed lines, light text) and the 9 spring data set (solid lines, bold text) are shown
along with regression fit parameters.
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communities (60 to 90°C), but Pfam diversity changed much more slowly across meso-
philic communities (below 60°C). Above a ChaoOTU of about 800, Pfams stayed nearly
constant as more OTUs were added (Fig. 3).

Metagenome diversity as a power function of species diversity has been reported
based on in silico study. Miki et al. (29) constructed orthologue accumulation curves by

TABLE 2 r2 and P values for linear least-squares regressions of data sets presented in this
study

Figure panel Data set y vs x r2 P value
1a Dewar Creek OTUs 97% vs T 0.6847 0.000041
1a All springs OTUs 97% vs T 0.7479 ,0.00001
1b Dewar Creek Chao1OTU 97% vs T 0.6780 0.000049
1b All springs Chao1OTU 97% vs T 0.7240 ,0.00001
1c Dewar Creek ShannonOTU 97% vs T 0.8626 ,0.00001
1c All springs ShannonOTU 97% vs T 0.8915 ,0.00001
1d All springs OTUs 99% vs T 0.7491 ,0.00001
1e All springs Chao1OTU 99% vs T 0.7324 ,0.00001
1f All springs ShannonOTU 99% vs T 0.8981 ,0.00001
1g All springs ASVs vs T 0.6962 0.000017
1h All springs Chao1ASV vs T 0.6783 0.000027
1i All springs ShannonASV vs T 0.8484 ,0.00001
2a All springs Pfams vs T 0.6255 0.000093
2b All springs Chao1Pfam vs T 0.5316 0.000597
2c All springs ShannonPfam vs T 0.6089 0.000133
3a All springs Pfams vs OTUs 0.4576 0.00205
3b All springs Chao1Pfams vs Chao1OTUs 0.3811 0.006346
3c All springs ShannonPfams vs ShannonOTUs 0.6083 0.000135
3d All springs Pfams vs ASVs 0.4224 0.003506
3e All springs Chao1Pfams vs Chao1ASVs 0.3492 0.009814
3f All springs ShannonPfams vs ShannonASVs 0.6480 0.000056
SF2a All springs Pfams vs OTUs 0.7216 0.000016
SF2b All springs Chao1Pfams vs Chao1OTUs 0.6547 0.000084
SF2c All springs ShannonPfams vs ShannonOTUs 0.6414 0.000112
SF2d All springs Signature_Pfams vs OTUs 0.4531 0.002202
SF2e All springs Chao1Signature_Pfams vs Chao1OTUs 0.3920 0.005441
SF2f All springs ShannonSignature_Pfams vs ShannonOTUs 0.5862 0.000213
SF5a Power et al OTUs vs T 0.2179 ,0.00001

TABLE 3Measurement of each sample’s in situ temperature and properties of the metagenomes constructed from each sample analyzed in
this study

Sample
Temp
(°C)

Avg. library
size (bp)

Library size
calculation method

MiSeq reagent
kit Gb

Total no. of
reads (F+ R)a

No. of reads with
assigned Pfam

% reads with
assigned Pfam

FS1 21.2 890 Bioanalyzer v3, 600 cycles 0.85 2,660,450 632,763 23.8
FS5 24.0 1,065 Bioanalyzer v3, 600 cycles 1.65 6,999,658 1,043,427 14.9
D1 30.0 1,120 Bioanalyzer v3, 600 cycles 3.3 10,330,470 2,405,195 23.3
LN4 33.1 1,423 Bioanalyzer v3, 600 cycles 5.13 16,457,856 3,412,953 20.7
D37 36.9 753 TapeStation v3, 600 cycles 2.66 5,173,070 947,243 18.3
RC4 37.9 1,017 Bioanalyzer v3, 600 cycles 1.22 3,840,888 886,841 23.1
N4 45.0 1,128 Bioanalyzer v3, 600 cycles 6.08 19,154,944 5,093,693 26.6
D47 46.5 642 TapeStation v3, 600 cycles 2.9 5,824,428 1,014,183 17.4
LN5 50.4 1,040 Bioanalyzer v3, 600 cycles 8.25 26,554,712 6,802,478 25.6
KP3 54.0 1,122 Bioanalyzer v3, 600 cycles 3.91 5,260,764 936,895 17.8
D54 54.0 617 TapeStation v3, 600 cycles 2.57 12,313,914 3,260,884 26.5
GH3 57.2 1,689 Bioanalyzer v3, 600 cycles 1.97 6,182,300 1,473,623 23.8
DC8 62.8 1,409 Bioanalyzer v3 600 cycles 5.22 16,110,352 3,478,277 21.6
DC2 66.4 1,259 Bioanalyzer v2, 500 cycles 4.12 15,015,840 3,326,274 22.2
HS1 67.0 700 TapeStation v3, 600 cycles 3.42 7,037,502 1,289,748 18.3
DC6 77.4 1,365 Bioanalyzer v3, 600 cycles 2.48 7,842,250 2,486,868 31.7
DC5 85.9 1,414 Bioanalyzer v3, 600 cycles 3.13 9,873,004 2,613,435 26.5
N89 88.8 649 TapeStation v3, 600 cycles 2.62 5,593,028 982,600 17.6
aF = forward reads; R = reverse reads.
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sampling from a pool of microbial genomes and concluded that orthologue richness
(multifunctionality [MF]) was a power function of species richness (SR). They proposed
that in the power model MF = cSRa, component a is a measure of community “multi-
functional redundancy.” However, their estimates of a of 0.55 to 0.75 were based on
orthologues and hence are not directly comparable to Pfams. We therefore reproduced
a similar experiment to Miki et al. (29), using a reference data set containing Pfam pro-
files of 2,363 bacterial genomes as described in Sheremet et al. (30). Randomized col-
lectors curves of Pfam accumulation with sequential random genome sampling fit rea-
sonably well to the power function MF = cSRa, with c equal to 5,351 and a equal to
0.0770 (95% confidence interval [CI], 0.0769 to 0.0771) (Fig. S3a). For our experimental
field data (Fig. 3), the same power function fit to Chao1Pfam (MR) versus Chao1OTU (SR)
produced c of 1,190 and a of 0.164 (95% CI, 0.0775 to 0.242).

Beta diversity of Pfams versus temperature. The 18 metagenome samples were
combined into 3 groups of low, moderate, and high temperature, with 6 samples per
group. The average temperature (and range) of each pool was low, 30.5°C (21.2 to
37.9°C); moderate, 51.2°C (45.0 to 57.2°C); and high, 74.7°C (62.8 to 88.8°C). Of the 5469
Pfams detected across all samples, fewer were detected in the high-temperature group
(4,288) than the moderate- or low-temperature groups (4,898 and 4,952, respectively).
Most Pfams (3,951, or 72%) were present in all three temperature groups (Fig. 4a), but
of the remaining temperature-dependent Pfams, many were found only in the low or
the low- plus moderate-temperature groups (891), while fewer belonged to only the

FIG 2 Alpha diversity indices calculated on Pfams detected in metagenomes of geothermal springs.
Panels show observed Pfams (a), Chao1Pfam (b), and ShannonPfam (c) versus sample temperature.
Diversity indices were calculated using 600,000 Pfam-assigned reads per sample. The solid lines
represent the best-fit nonlinear Gaussian least-squares regressions to the data.
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high- or the high- plus moderate-temperature groups (237). The low-temperature
group contained the highest number of unique identified Pfams (346), followed by
the moderate-temperature group (280) and then the high-temperature group (115).
These trends all indicate that there was a greater pool of total Pfams at lower temper-
atures. Fewer total Pfams were found in the high-temperature group, and fewer
Pfams were unique to this group than the others (Fig. 4a). Pfam beta diversity was
also assessed with a principal-coordinate analysis (PCoA) plot. The PCoA showed
samples broadly separating by temperature along principal coordinate 1 (PC1)
(Fig. 4b), indicating that temperature has an effect on Pfam composition in these
samples.

Temperature dependence of individual Pfams. The Pfam diversity indices in Fig. 3
reflect the combined trend of 5,469 Pfams detected across all samples. However, Pfams
were also examined qualitatively to identify individual Pfams that showed clear upper
temperature limits, i.e., that were abundant at lower temperatures but absent or very rare

FIG 3 Functional diversity of Bacteria based on Pfam analysis versus taxonomic diversity based on 16S rRNA gene amplicon OTU (a to c) or
ASV (d to f) analysis in geothermal spring sediments. Panels show observed occurrences (a and d), Chao1 (b and e), and Shannon (c and f).
The solid lines represent the best-fit power (FD = cSDa) regressions to the data where FD is functional diversity (y axis) and SD is species
diversity (x axis).; c and a indicate the best-fit values to the model. Colors of data points correspond to temperature in degrees Celsius.
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at higher temperatures (defined as 2 or fewer occurrences per 600,000 Pfam-assigned
reads). Some of these are listed in Table S2. As expected from the overall Pfam diversity,
which decreased most rapidly above 60°C (Fig. 2), many individual Pfams disappeared
between 62 and 85°C. Notable trends included the disappearance of many phototrophy-
associated Pfams at 62 to 67°C, but similar thresholds were also observed for Pfams repre-
senting other catabolic enzymes (e.g., multicopper oxidase, iron-only hydrogenase, and
some glycosyl hydrolases), biosynthesis systems (e.g., gas vesicles, poly-b-hydroxybuty-
rate [PHB], and cobalamin), transporter elements, Cas elements, plasmid systems, and
restriction enzymes (Table S2). Most of these Pfams are found in Bacteria and Archaea, or
all three domains, but a few are Pfams exclusive to Eukarya. Eukarya-only Pfams generally
disappeared abruptly at 62 to 66°C, in line with the presumed upper-temperature limit of
eukaryotes at 62°C (31) (Table S2).

Pfams predictive of sample temperature were also identified via random forest anal-
ysis, using either individual sample temperatures or samples grouped into three tem-
perature ranges (Table S3). The Pfams identified as the strongest predictors generally
declined at higher temperatures, although very few increased (e.g., PF00117, gluta-
mine amidotransferase, and PF02554, carbon starvation protein CstA). Most Pfams
declined continuously across the temperature gradient, while others showed tempera-
ture thresholds, reaching near 0 reads at some temperature above 55°C, similar to the
Pfams identified in Table S2. Only a decline to 0 (as in Table S2) will cause a decrease in
Pfam richness (observedPfam or Chao1Pfam) with temperature. However, the gradual
decline in the abundance of many other Pfams with increasing temperature (Table S3)
will also contribute to lower diversity and evenness indices at high temperatures
(ShannonPfam).

We note that the stresses in our sample set may not be limited to temperature.
Multiple factors covary along with temperature in hot springs, notably oxidation state.
However, aerobic capability across the entire temperature range was supported by the
presence of multiple Pfams detected at all temperatures tested, including Bac_globin
(PF01152), peroxidase (PF00141), protoglobin (PF11563), Bac_luciferase (PF00296), cat-
alase (PF00199), homogentisate 1,2-dioxygenase HgmA (PF04209), and multiple com-
ponents of cytochrome c oxidase (PF00115, PF00116, PF00510, PF03626, PF09125, and
PF06481) (Table S2).

DISCUSSION

In this study, we demonstrated that metagenomic functional diversity (FD) of

FIG 4 (a) Venn diagram comparing the number of Pfams detected in three pools of samples, grouped by temperature. Each pool included 6 samples each
rarefied to 600,000 Pfam-assigned reads. Exact sample temperatures are listed in Table 3. (b) Principal-coordinate analysis (PCoA) plot showing samples
separating by temperature, in degrees Celsius, along PC1.
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microbial communities covaried with species diversity (SD) along a temperature gradi-
ent. As predicted, both measures declined as temperature increased. However, unlike
linear FD versus SD trends observed previously in metagenomic data sets (21, 22, 24),
we observed a concave-down power relationship. Pfam diversity increased rapidly
when moving down the temperature gradient from hyperthermophilic to slightly
cooler conditions (from 90 down to 60°C). This rapid increase in Pfam diversity
appeared to be related to the appearance of many functions such as photosynthesis.
However, below around 50°C, the relationship plateaued, and increasing species rich-
ness added very few new Pfams.

Emergent functional properties of communities are thought to depend on the di-
versity of organisms contributing to that function. A plot like Fig. 3, showing some
index of functionality or functional diversity versus species diversity, is commonly
called a biodiversity-ecosystem function (BEF) curve (32). A concave-downward power
function like the one we observed is consistent with many experimental and theoreti-
cal models of BEF relationships in plant, animal, and microbial communities (20, 32–
34). Often, such curves saturate quickly at low species richness (35). The logic of the
concave-down relationship is that additions of taxa to simple communities add many
new ecotypes or functions, but, as more species are added, functional saturation is
approached, and further species additions primarily increase functional redundancy
rather than functional capacity, a trend often termed the rivet hypothesis (33, 36). In
our data set, this is consistent with most Pfams representing central metabolic and
housekeeping functions that are common across species and therefore highly redun-
dant (37–39). Only a few more specialized Pfam functions are introduced with increas-
ing species richness.

This concave-down FD-SD power relationship in microbial communities has also
been predicted in theoretical metagenome studies (29, 32, 33). Miki et al. (29) con-
structed orthologue accumulation curves from a set of microbial genomes and con-
cluded that functional (orthologue) richness (MF) is a power function of species rich-
ness (SR), exactly as we observed in our data. From their model (MF = cSRa), c is the
average number of functions in a single genome (1,190) (Fig. 3a), while the exponent a
is a measure of community multifunctional redundancy, the degree to which functions
are shared across genomes. A value of 0 would mean all genomes and communities
are identical functionally, while a value of 1 would mean that each genome is totally
unique and community functional diversity increases linearly with species diversity.
The multifunctional redundancy in the field data (a = 0.164) was significantly less than
in our artificial genome set (a = 0.077) (Fig. S3a in the supplemental material).
However, this could be explained in part by the fact that thermophile genomes are
smaller and contain fewer Pfams than mesophile genomes (see Fig. S4 for supporting
data). In a power function, thermophiles will, therefore, display a lower factor c (aver-
age number of Pfams) than mesophiles. Combining a curve for high-diversity commun-
ities that are all mesophilic with a curve for low-diversity communities that are all ther-
mophilic (as is the case in our field data) will flatten the apparent relationship and
make it appear to have a higher exponent a than either curve alone. When we simu-
lated this effect (Fig. S3b), the power fit coefficients for the simulated genome data set
matched quite well to our experimental data. There are many sources of uncertainty in
these calculations, primarily the incomplete sampling of rare Pfams via metagenomics.
However, if Chao1 extrapolates reasonable estimates of community Pfams and species,
these analyses suggest that the variability in Pfam diversity along the temperature gra-
dient is directly related to species richness and genome size. Each new species added
to a community introduces new Pfams in a predictable manner, so more species-rich
communities are also predictably more function rich. The smaller size of thermophile
genomes exaggerates the mathematical effect of the low species diversity in thermo-
phile communities. A thermophile genome should contribute fewer new Pfams to a
community than a mesophile genome simply because it has fewer Pfams, and the
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combination of fewer species with smaller genomes at high temperatures results in
very low functional diversity.

While these considerations suggest that the lower FD is directly related to the lower
community diversity and smaller genome sizes of thermophiles, they do not suggest cau-
sality, i.e., why are thermophiles less diverse and possess smaller genomes? There are
many possible explanations for the low diversity of extremophile communities (see Sharp
et al. [4] and Ruhl et al. [8] for reviews). One possibility is that extreme temperature
imposes physical or evolutionary constraints on the presence of certain enzymes, which
function only in limited temperature ranges. Therefore, the “pool” of functions available
to thermophiles is smaller. This is consistent with our Venn analysis showing the fewest
total Pfams in the high-temperature communities (Fig. 4). It is also evident in the analysis
of individual Pfams across our temperature gradient, which revealed that many Pfams
declined in abundance with increasing temperature (Tables S2 and S3). Several Pfams
became rare or undetectable above temperatures between 62 and 85°C (Table S2).
Previous research has noted that physical environmental factors can control the distribu-
tion of key functional clades within communities (25), and the existence of temperature
ceilings for certain functions has been documented. For example, it has long been known
that photosynthetic microbial mats disappear sharply above some temperatures between
60 and 73°C, depending on the geographic location of the spring (40). Indeed, the
observed disappearance of many Pfams related to photosystems at high temperature
(Table S2) was a conspicuous contributor to the overall FD trend in our data set, although
this trend was not limited to photosynthesis-related Pfams (Table S2). Clearly, certain
Pfams in our communities simply disappear at high temperatures, contributing to a low
multifunctional redundancy across the entire data set.

While many experimental studies show concave-down BEF curves, field studies can
occasionally show linear or concave-up curves instead (41), especially when measuring
simple communities or specialized functions carried out by a few community members
(29, 42, 43). The apparently linear FD versus SD curves observed in previous metagenome
studies (21, 22, 24) could, therefore, be real. However, they are possibly also artifacts of a
limited diversity range observed. Our sample set included SD values ranging over an
order of magnitude from 400 to 4,000 OTUs, making the concave nature of the relation-
ship evident. We also caution that there is a difference between measuring functional
metagenome diversity and measuring emergent functional properties such as respiration.
While collector's curves of gene orthologs or Pfams should be monotonic, emergent func-
tional properties can be unpredictable. For example, more diverse communities may pro-
vide increased species connectivities, thereby altering BEF properties (41). Studies such as
ours that quantify Pfams, KEGG pathways, or orthologues are reducing multidimensional
niches (a combination of factors) to single dimensions (29, 39).

Generating our FD-SD temperature curves required a sample set covering a range
of community diversities. For this, we chose samples varying in temperature since
many studies have observed a relationship of microbial species diversity to tempera-
ture (4, 10–18). The Earth Microbiome Project has incorporated data from many envi-
ronment types and inferred a general Gaussian relationship between temperature and
alpha diversity (44). Several independent studies have observed a temperature-diver-
sity trend in geothermal springs, either by comparing different springs (4) or compar-
ing samples across temperature gradients within a single spring (10–12, 18). In con-
trast, a recent study of almost 1,000 geothermal springs in New Zealand reported that
diversity was primarily correlated with pH and that temperature only had an effect
above 70°C (5). However, when the effect of pH in this data set is removed (r2 = 0.19)
(Fig. S5b), temperature does explain a significant portion of the residual variability
across the entire temperature range of 20 to 100°C (r2 = 0.11) (Fig. S5d), and the tem-
perature relationship is stronger when only neutral springs are considered (r2 = 0.29)
(Fig. S5a). The weaker relationship between diversity and temperature observed by
Power et al. (5) compared to other studies may result from inherently high geochemi-
cal diversity across sites in New Zealand, leading to a high residual variability
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unaccounted for by either pH or temperature (Fig. S5). In order to eliminate these com-
plicating factors and ensure that diversity in our sample set was controlled by a single
overriding factor, we selected samples from geochemically similar, pH-neutral springs.
As a result, we observed extremely strong relationships (r2 between 0.71 and 0.90)
between bacterial alpha diversity and temperature in both temperature transects from
a single spring and across the entire subset of 9 different springs (Fig. 1). The relation-
ships closely matched those reported by Sharp et al. (4) (Fig. S1), but with even higher
r2 values of up to 0.90.

Whether our observed relationship between SD and FD holds along diversity gra-
dients related to other factors (e.g., pH, productivity, salinity, etc.) may depend on the
underlying causes of these diversity gradients, which are not completely understood.
Possible explanations include (i) a metabolic stress effect (as physical stress increases,
more energy is needed for stress tolerance and repair, and, therefore, only increasingly
high-energy metabolic lifestyles are possible), (ii) a physical stress effect (certain
enzymes and metabolites become unstable and/or nonfunctional at high stresses), (iii)
a niche availability effect (the number of species that have evolved to survive under
certain conditions is dependent on the extent of that habitat geographically and his-
torically), and (iv) a productivity effect (highly productive communities generally sup-
port more species) (45). Most of the above explanations would equally apply to species
diversity gradients observed along environmental stresses other than temperature,
such as pH (2–5), aridity (6), and salinity (7, 8). Indeed, recent studies suggest that func-
tional diversity may also be reduced by salinity (46) and aridity (26).

While taxonomic diversity can be reliably estimated in microbial communities, there
is no accepted universal measure of functional diversity, which requires a proxy index.
Tools have been developed to predict community functionality based on correlating
16S rRNA genes to the known metabolic properties of cultured microbes (44, 47).
However, these are dependent on the completeness of genome databases and give
only indirect, and often probably incorrect, data. Given the high number of uncultured
taxa in geothermal environments (48), there could also be systematic biases in apply-
ing these tools along a thermal gradient such as that in our study. Other studies have
quantified gene orthologues from raw metagenome reads via BLAST. However, a
BLAST approach, especially when using short sequence reads, is error prone and also
likely prone to biases in database coverage of mesophilic versus thermophilic microbial
communities. We therefore chose a Pfam-based approach, in part because these repre-
sent conserved functional or structural protein domain families (49), not specific pro-
teins, and thus, a single Pfam may be present in psychrophilic, mesophilic, and thermo-
philic proteins (50). This suggests that the evolutionary adaptations involved in
thermostability are not, on their own, sufficient to result in diversification of a new
Pfam family. Therefore, quantitative surveys of Pfams are theoretically not sensitive to
limitations imposed by fewer available reference sequences from extreme environ-
ments. In line with these predictions, we did not observe a decreasing relationship
between the percentage of metagenome reads that were assigned a Pfam and sample
temperature (Table 3). However, we cannot rule out that novel domains that are
evolved only in thermal environments, with no mesophilic homologues, have been
missed due to historical biases. Additionally, since individual Pfams represent protein
domains, not complete metabolic pathways, a reduction in Pfam diversity with increas-
ing temperature does not necessarily correlate with a reduction in the number of met-
abolic lifestyles in a community. Although Pfam diversity is only an index, we neverthe-
less feel the trends are illustrative.

In summary, this study documented three emergent patterns of alpha diversity.
First, it verified previous studies showing that species diversity (SD) declines with
increasing temperature in microbial communities. This temperature effect is very
strong when complicating factors like pH are removed. Second, it demonstrated that
community functional diversity (FD), measured as metagenomic Pfam diversity, also
declines in response to increasing temperature stress. Third, it showed that the FD-SD
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relationship follows a concave-down power function, as has been predicted in metage-
nome models. The low FD in thermophilic communities is likely imposed by (i) a simple
mathematical consequence of lower species diversity and smaller average genome
sizes at high temperatures, which reduces the total metagenome size and therefore
the number of (rare) Pfams; and (ii) physical, energetic, or evolutionary constraints that
place upper-temperature limits on particular metabolic functions like photosynthesis.
The first conclusion is supported because sampling of random genomes produces a
similar power function in Pfam accumulation as seen in our field data. The second con-
clusion is supported by close examination of Pfam sets across temperatures, indicating
that many Pfams do not occur in any high-temperature communities. These two fac-
tors may, in fact, be connected, i.e., compared to mesophiles, thermophile genomes
may be smaller and thermophilic communities simpler because their pool of potential
functions is smaller. However, other explanations for the trend are possible. Future
studies quantifying metabolic capacity and redundancy along gradients of tempera-
ture and other stresses will be useful in elucidating these relationships.

MATERIALS ANDMETHODS
Sample collection. Multiple samples were collected on 24 August 2015, from the Dewar Creek hot

spring, located at 49°559N, 116°289W. At this site, pH-neutral meteoric water rises up to 5 km through sil-
icate crustal rock and discharges at 83°C (51). The water cools gradually as it flows along outflow chan-
nels over a tufa mound (52). Twenty sediment samples were collected along the outflow channels, rang-
ing in temperature from 24.2 to 79.8°C. Sediments were usually composed of sand-textured particles
1 mm or less in diameter, with occasional 5-mm or larger pebbles. Temperature was measured in situ
and sediments removed to no more than 8 cm depth with a trowel, which was rinsed in stream water
and ethanol between samples. Samples were stored at ambient temperature in 50-mL centrifuge tubes
for less than 24 h during transport to the laboratory and then frozen at 220°C.

Additionally, 18 samples from 9 pH-neutral hot springs in Canada and New Zealand were selected
from a previous study (4) (Table 1). The subset of springs was chosen to represent a wide temperature
range of 21.2 to 88.8°C, but a narrow pH range (6.85 to 8.10). These samples had been collected between
2010 and 2012 and preserved at 280°C (with 5% dimethyl sulfoxide [DMSO] added). Temperature and
pH measurements taken in situ are reported in Sharp et al. (4).

16S rRNA gene library preparation, sequencing, and analysis. Samples were thawed at room
temperature and homogenized in a Precellys 24 bead mill homogenizer (Bertin Instruments, Montigny-
le-Bretonneux, France), and DNA extraction was performed using the FastDNA extraction kit for Soil (MP
Biomedicals, Santa Ana, CA, USA) with the following modifications: an additional 5.5 M guanidine thio-
cyanate wash was performed (53), and elution was in Qiagen Elution Buffer (Qiagen, Toronto, Ontario,
Canada). Extracted DNA was quantified using the Qubit HS kit (Invitrogen, Carlsbad, CA, USA) and
diluted to 5 ng mL21 prior to amplification using the universal Bacteria-specific 16S rRNA gene primers
341fw (59-CCTACGGGNGGCWGCAG-39) and 785rv (59-GACTACHVGGGTATCTAATCC-39) (54). Amplicons
were prepared for sequencing on an Illumina MiSeq platform as described in Ruhl et al. (8).

Raw sequence data were demultiplexed, and the barcode sequences were removed and then ana-
lyzed using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline versions 1.9.1 and 2020.11
(55). For QIIME 1.9.1 analyses, forward and reverse reads were paired using a minimum overlap of 20 bp.
All paired reads with a Phred quality score below 20 were removed. Reads were clustered into OTUs at
97% similarity, and taxonomy of the OTUs was determined using the SILVA database, release 128 (56).
The clustering of OTUs was preferred over single sequence variants because OTUs more closely approxi-
mate the bacterial species concept, where monophyletic groups with similar genomes are clustered into
species. An OTU threshold of 97% was selected for consistency with a previous study (4), but the tem-
perature-diversity relationship was consistent across multiple levels of OTU clustering and amplicon
sequence variants (ASV) clustering (Fig. 1). The OTU tables were rarefied to 13,460 reads per sample,
excluding three samples from the analysis, and core diversity metrics were calculated using QIIME (55).
For QIIME 2020.11 analyses, sequences were imported into QIIME2, trimmed to excise adaptor sequen-
ces, quality assessed, and, subsequently, processed using an R package, DADA2, to denoise, join the
paired reads, and remove the chimera (57). Taxonomic assignment of amplicon sequence variants
(ASVs) or a feature table for all data sets was performed with the feature-classifier plugin (58) employing
a naive Bayes classifier approach. The taxonomy classifier for the analysis was trained on the SILVA data-
base, release 138 (56).

Metagenomic library preparation and sequencing. DNA samples were quantified in triplicate
using the Qubit HS kit (Invitrogen, Carlsbad, CA, USA) and diluted to 0.2 ng mL21 each. Metagenomic
libraries were prepared as described in Illumina’s (Illumina Inc., San Diego, CA, USA) library preparation
protocol (59), except samples were eluted in half the recommended volume of resuspension buffer to
concentrate the libraries. Libraries were validated and average library size calculated using a Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) or 4200 TapeStation system (Agilent Technologies, Santa
Clara, CA, USA) (Table 3). Library dilution and preparation for sequencing were performed as described
previously (8). Libraries were sequenced using a MiSeq reagent kit v3, 600 cycles (Illumina; catalog

Ruhl et al.

January/February 2022 Volume 7 Issue 1 e00991-21 msystems.asm.org 12

https://msystems.asm.org


number MS-102-3003) or a MiSeq reagent kit v2, 500 cycles (Illumina; catalog number MS-102-2003)
(Table 3).

Analysis of metagenomes for Pfam-based functional diversity. One obstacle to quantifying genes
across metagenomes is assembly bias. Full-length genes are easier to annotate than gene fragments,
but assembling the metagenomes would lead to a systematic bias against identification of genes that
do not assemble well for reasons such as low coverage or high strain microvariability (60). Full-length
genes would be more prevalent in the simple communities, creating systematic biases in the percentage
of identified genes per sample. Therefore, a raw-read approach was adopted here, using the longest-
read Illumina platform available (MiSeq, 300 bp) in order to optimize Pfam assignments. Additionally,
300-bp MiSeq reads are likely to contain just a single open reading frame and to be associated with a
single Pfam (61).

To make the metagenomic libraries searchable for Pfams, raw metagenomic reads were translated
into amino acid sequences in all 6 reading frames using Transeq (62). Stop codon positions were trans-
lated as an “X” instead of the default “*” to facilitate downstream analyses. The translated sequences
were then used as a query against version 31.0 of the Pfam database (28), using the hmmsearch pro-
gram in the HMMER package (63), version 3.2.1. The Pfam hit with the lowest E value of the 6 frames
was selected from the HMMER output data using R (64). Diversity analyses were run on data sets rarefied
to 600,000 reads with assigned Pfams (referred to as “Pfam-assigned reads”).

In order to verify the Pfam assignments, a validation procedure was performed as described in
Fig. S6 in the supplemental material. In brief, Pfam assignments were made to all sequences in the
GenomeDatabase (https://sourceforge.net/projects/genomedatabase/), which contains amino acid
sequences of one reference species from each cultured bacterial genus. Then, all Pfam-assigned reads
from the metagenomes were searched via BLAST against the GenomeDatabase. When the top BLAST hit
for a metagenome read was associated with the same Pfam as identified by HMMER directly on the raw
metagenome read, that read was considered to be validated. The rationale for this validation was that
the full-length reading frames of the GenomeDatabase are more reliably associated with Pfams by
HMMsearch than are the 300-bp MiSeq reads. The validation procedure should also remove Pfams that
are found only in Eukarya or Archaea. Although our species diversity estimates are based on Bacteria-
specific 16S rRNA gene sequencing, the metagenomes may contain DNA from all three domains. Data
were rarefied to 700,000 Pfam-assigned reads per sample, resulting in loss of one sample (Table S4).

Analysis of metagenomic libraries for Pfams associated with signature genes. RDP’s FunGene re-
pository contains many enzymes important in major biogeochemical cycles (65). The associated protein
products for each gene were searched against the Pfam database. Of the 93 signature genes provided
by FunGene, 1 gene could not be associated with any Pfam, 2 genes had multiple associated Pfams, and
90 genes could be associated with a single Pfam. Only 56 of these 90 Pfams were unique, as some Pfams
were associated with more than 1 signature gene. The data set of 600,000 Pfam-assigned reads per sam-
ple was screened for the 56 signature Pfams (Table S1) using R; core diversity metrics were calculated on
the screened data sets with QIIME.

Statistical analyses. Regression analysis and curve fitting were performed using GraphPad Prism
version 8.1.1 (GraphPad Software, La Jolla California USA). Residual plots of linear regressions usually
showed a bias; therefore, a nonlinear Gaussian least-squares model (Y = a*exp(-(X-b)2/2c2)) was chosen
for most plots, consistent with a previous study (4). Plots of Pfam diversity versus OTU diversity were fit
using a power model (Y = aXb). PCoA of the Pfam data was performed using the vegan software package
for R (version 2.5-7) (66) using the Bray-Curtis metric as the basis for calculation.

To perform the random forest analyses (Table S3), mathematical models were fit to the data using sci-
kit-learn library in python (67). The Pfam data set was filtered for potential low-level sample contamination
by subtracting 2 from the counts and setting Pfams with counts of 2 or less to 0. Continuous and discrete
random forest models were fitted using RandomForestRegressor and RandomForestClassifier constructors,
respectively. For the regressor model, the training/test samples were stratified into 5 equally spaced bins
over 21 to 89°C. For the classifier model, sample stratification was performed according to the following
temperature ranges: 21.2 to 37.9°C, 45.0 to 57.2°C, and 62.8 to 88.8°C. The optimal (nondefault) parameters
were the following: n_estimators 200, random_state 42, min_samples_split 3, min_samples_leaf 1, max_fea-
tures='sqrt', max_depth 12, bootstrap False. The variation (r2) explained by the random forest regressor on
the test data was 0.76. For the classifier model, the three temperature categories’ r2 was 0.72. These r2 val-
ues were averages of 10 independent training/test data splits for each model. The average feature impor-
tances were then obtained from the optimal random forest models using the feature_importances com-
mand, and the highest values are reported in Table S3.

Pfams most responsive to temperature were also predicted in a Songbird analysis via differential
ranking (DR) as described by Morton et al. (68) (Table S2). For this model, samples were grouped into 2
categories (,63°C, .66°C) to best determine Pfams that declined across the ca. 65°C temperature
threshold that was suggested by the alpha diversity analysis. The min-feature-count was set to 10,
decreasing the total number of Pfams in the analysis from 5,469 to 3,343.

Data availability. The raw reads and metadata for the 16S rRNA gene and metagenomic data sets
generated for this study can be found in the SRA repository under accession number PRJNA779083.
Pfam counts and the data analysis workflow for the random forest analysis are available at https://
github.com/nyirock/random_forests_pfam.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
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