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Abstract

We consider the problem of olfactory searches in a tur-
bulent environment. We focus on agents that respond
solely to odor stimuli, with no access to spatial per-
ception nor prior information about the odor location.
We ask whether navigation strategies to a target can
be learned robustly within a sequential decision making
framework. We develop a reinforcement learning algo-
rithm using a small set of interpretable olfactory states
and train it with realistic turbulent odor cues. By in-
troducing a temporal memory, we demonstrate that two
salient features of odor traces, discretized in few olfac-
tory states, are sufficient to learn navigation in a realistic
odor plume. Performance is dictated by the sparse na-
ture of turbulent plumes. An optimal memory exists
which ignores blanks within the plume and activates a
recovery strategy outside the plume. We obtain the best
performance by letting agents learn their recovery strat-
egy and show that it is mostly casting cross wind, similar
to behavior observed in flying insects. The optimal strat-
egy is robust to substantial changes in the odor plumes,
suggesting minor parameter tuning may be sufficient to
adapt to different environments.

Bacterial cells localize the source of an attractive
chemical even if they hold no spatial perception. They
respond solely to temporal changes in chemical concen-
tration and the result of their response is that they move
toward attractive stimuli by climbing concentration gra-
dients [1]. Larger organisms also routinely sense chem-
icals in their environment to localize or escape targets,
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but cannot follow chemical gradients since turbulence
breaks odors into sparse pockets and gradients lose in-
formation [2, 3, 4, 5, 6]. The question of which features of
turbulent odor traces are used by animals for navigation
is natural, but not well understood. Beyond olfaction,
some animals could use also prior spatial information to
navigate [7, 8, 9, 10], but if and how chemosensation
and spatial perception are coupled is still not clear.

An algorithmic perspective to olfactory navigation in
turbulence can shed light on some of these questions.
Without aiming at an exhaustive taxonomy, see e.g. [11]
for a recent review, we recall some approaches relevant
to put our contribution in context. One class of meth-
ods are biomimetic algorithms, where explicit navigation
rules are crafted taking inspiration from animal behav-
ior. An advantage of these methods is interpretability, in
the sense that they provide insights into features that ef-
fectively achieve turbulent navigation, for example: odor
presence/absence [12, 13, 14, 5]; odor slope at onset of
detection [15]; number of detections in a given interval
of time [16] and the time of odor onset [17]. On the flip
side, in biomimetic algorithms behaviors are hardwired
and typically reactive, not relying on any optimality cri-
terion.

A way to tackle this shortcoming is to cast olfactory
navigation within a sequential decision making frame-
work [18]. In this context, navigation is formalized as a
task with a reward for success; by maximizing reward,
optimal strategies can be sought to efficiently reach the
target. A byproduct is that most algorithmic choices can
often be done in a principled way. Within this frame-
work, some approaches make explicit use of spatial infor-
mation. Bayesian algorithms use a spatial map to guess
the target location and use odor to refine this guess or
“belief”. A prominent algorithm for olfactory navigation
based on the concept of belief is the information-seeking
algorithm [3] akin to exploration heuristics widely used
in robotics [19, 20] (see e.g. [21, 22]). Using Bayesian
sequential decision making and the notion of beliefs,
navigation can be formalized as a Partially Observable
Markov Decision Process (POMDP) [23, 24, 25], that
can be approximatively solved [26, 27, 28]. POMDP
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approaches are appealing since beliefs are a sufficient
statistics for the entire history of odor detections. How-
ever, they are computationally cumbersome. Further,
they leave the question open of whether navigation as
sequential decision making can be performed using solely
olfactory information.
Recently, two algorithms studied navigation as a re-

sponse to olfactory input alone [29, 30]. In [29] artifi-
cial neural networks were shown to learn near optimal
strategies, but they were trained on odor cues with lim-
ited sparsity, and training with sparse odor cues typical
of turbulence remains to be tested. In [30] an approach
based on finite state controllers was proposed. Here,
optimization was done using a model-based technique,
relying on prior knowledge of the likelihood to detect
the odor in space, hence still using spatial information.
A different model free optimization could also be con-
sidered avoiding spatial information but this latter ap-
proach also remains to be tested. More generally, all the
above approaches manipulate internally the previous his-
tory (memory) of odor detections. In this sense they are
less interpretable, since the features of odor traces that
drive navigation do not emerge explicitly.

In this paper, we propose a reinforcement learning
(RL) approach to navigation in turbulence based on a
set of interpretable olfactory features, with no spatial
information, and highlight the role played by memory
within this context. More precisely, we learn optimal
strategies from data by training tabular Q learning [18]
with realistic odor cues obtained from state-of-the-art
Direct Numerical Simulations of turbulence. From the
odor cues, we define features as moving averages of odor
intensity and sparsity: the moving window is the tem-
poral memory and naturally connects to the physics of
turbulent odors. States are then obtained discretizing
such features. Due to sparsity, agents may detect no odor
within the moving window. We show there is an optimal
memory minimizing the occurrence of this “void state”.
The optimal memory scales with the blank time dictated
by turbulence as it emerges from a trade off requiring
that: (i) short blanks– typical of turbulent plumes– are
ignored by responding to detections further in the past,
and (ii) long blanks promptly trigger a recovery strategy
to make contact with the plume again. We leverage these
observations to tune the memory adaptively, by setting it
equal to the previous blank experienced along an agent’s
path. With this choice, the algorithm tests successfully
in distinct environments, suggesting that tuning can be
made robustly to enable generalization. The agent learns
to surge upwind in most non-void states and to recover
by casting crosswind in the absence of detections. Opti-
mal agents limit encounters with the void state to a nar-
row band right at the edge of the plume. This suggests

that the temporal odor features we considered effectively
predict when the agent is exiting the plume and point
to an intimate connection between temporal predictions
and spatial navigation.

Significance

Finding mates or food in the presence of turbulence is
challenging because odors constantly switch on and off
unpredictably. As a result, it is unclear whether ani-
mals couple odor to other sources of information, what
are the relevant features of odor stimuli and how they
change according to the environment. A long history
of bioinspired algorithms address this problem by craft-
ing rules for navigation that mimic animal behavior: but
can effective navigation be learned from the environment
rather than set a priori? To address this question we
train a reinforcement learning algorithm with realistic
turbulent stimuli. Searchers learn to navigate by trial
and error and respond solely to odor, with no further
input. All computations are defined explicitly, enhanc-
ing interpretability. The upshot is that the algorithm
identifies odor features as averages over a temporal scale
(memory) dictated by the time between odor detections
and thus by physics. There is no need to know physics
beforehand, as memory can be adjusted based on expe-
rience. This approach naturally complements previous
algorithms that use prior information and a map of space
to plan navigation, rather than learn it from the envi-
ronment. To what extent different animals plan vs learn
to navigate remains to be understood.

Results

Background Given a source of odor placed in an un-
known position of a two-dimensional space, we consider
the problem of learning to reach the source, Figure 1A.
We formulate the problem as a discrete Markov Decision
Process by discretizing space in tiles, also called “grid-
world” in the reinforcement learning literature [18]. In
this problem, an agent is in a given state s which is one
of a discrete set of n tiles: s P S :“ ts1, ..., snu. At
each time step it chooses an action a which is a step in
any of the coordinate directions a P tup,down,left,rightu.
The goal is to find sequences of actions that lead to the
source as fast as possible and is formalized with the no-
tion of policy and reward which we will introduce later.
If agents have perfect knowledge of their own location
and of the location of the source in space, the problem
reduces to finding the shortest path.
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Figure 1: Learning a stimulus-response strategy for turbulent navigation. (A) Representation of the search problem
with turbulent odor cues obtained from Direct Numerical Simulations of fluid turbulence (grey scale, odor snapshot
from the simulations). The discrete position s is hidden; the odor concentration zT “ zpspt1q, t1q|t ´ T ď t1 ď t
is observed along the trajectory spt1q, where T is the sensing memory. (B) Odor traces from direct numerical
simulations at different (fixed) points within the plume. Odor is noisy and sparse, information about the source is
hidden in the temporal dynamics. (C) Contour maps of olfactory states with nearly infinite memory (T “ 2598):
on average olfactory states map to different locations within the plume and the void state is outside the plume.
(D) Performance of stimulus-response strategies obtained during training, averaged over 500 episodes. We train
using realistic turbulent data with memory T “ 20 and backtracking recovery.

Using time vs space to address partial observ-
ability. In our problem however, the agent does not
know where the source is, hence its position s relative
to the source, is unknown or “partially observed”. In-
stead, it can sense odor released by the target. In the
language of RL, odor is an “observation” – but does it
hold information about the position s? The answer is
yes: several properties of odor stimuli depend on the
distance from the source. However in the presence of
turbulence, information lies in the statistics of the odor
stimulus. Indeed, when odor is carried by a turbulent
flow, it develops into a dramatically stochastic plume,
i.e. a complex and convoluted region of space where the
fluid is rich in odor molecules. Turbulent plumes break
into structures that distort and expand while they travel
away from their source and become more and more di-
luted [31, 4, 32, 6], see Figure 1A. As a consequence, an
agent within the plume experiences intermittent odor
traces that endlessly switch on (whiff) and off (blank)
Figure 1B. The intensity of odor whiffs and how they
are interleaved with blanks depends on distance from
release, as dictated by physics [32]. Thus the upshot
of turbulent transport is that the statistical properties
of odor traces depend intricately on the position of the
agent relative to the source. In other words, information
about the state s is hidden within the observed odor
traces.

This positional information can be leveraged with a
Bayesian approach that relies on guessing s, i.e. defining
the probability distribution of the position, also called
belief. This is the approach that has been more com-
monly adopted in the literature until now [26, 27, 28].
Note that because of the complexity of these algorithms,
only relatively simple measures of the odor are compu-
tationally feasible, e.g. instantaneous presence/absence.
Here we take a different model-free and map-free ap-
proach. Instead of guessing the current state s, we ignore
the spatial position and respond directly to the temporal
traces of the odor cues. Two other algorithms have been
proposed to solve partial observability by responding
solely to odor traces with recurrent neural networks [29]
and finite state controllers [30] that manipulate implic-
itly the odor traces. Here instead we manipulate odor
traces explicitly, by defining memory as a moving win-
dow and by crafting a small number of features of odor
traces.

Features of odor cues: definition of discrete ol-
factory states and sensing memory. To learn a re-
sponse to odor traces, we first define a finite set of olfac-
tory states, o P O, so that they bear information about
the location s. Defining the olfactory states is a challenge
due to the dramatic fluctuations and irregularity of tur-
bulent odor traces. To construct a fully interpretable
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Figure 2: The optimal memory T˚. (A) Four measures of performance as a function of memory with backtracking
recovery (solid line) show that the optimal memory T˚ “ 20 maximizes average performance and minimizes
standard deviation, except for the normalized time. Top: Averages computed over 10 realizations of test trajectories
starting from 43000 initial positions (dash: results with adaptive memory). Bottom: standard deviation of the
mean performance metrics for each initial condition (see Materials and Methods). (B) Average number of times
agents encounter the void state along their path, xNHy, as a function of memory (top); cumulative average reward
xGy is inversely correlated to xNHy (bottom), hence the optimal memory minimizes encounters with the void. (C)
Colormaps: Probability that agents at different spatial locations are in the void state at any point in time, starting
the search form anywhere in the plume and representative trajectory of a successful searcher (green solid line) with
memory T “ 1, T “ 20, T “ 50 (left to right). At the optimal memory agents in the void state are concentrated
near the edge of the plume. Agents with shorter memories encounter voids throughout the plume; agents with
longer memories encounter more voids outside of the plume as they delay recovery. In all panels, shades are ˘

standard deviation.

low dimensional state space, we aim at a small number
of olfactory states that bear robust information about s,
i.e. for all values of s. We previously found that pairing
features of sparsity as well as intensity of turbulent odor
traces predicts robustly the location of the source for all
s [33]. Guided by these results, we use these two features
extracted from the temporal history of odor detections
to define a small set of olfactory states.
We proceed to define a function that takes as input
the history of odor detections along an agent’s path
and returns its current olfactory state. We indicate
with sptq the (unknown) path of an agent, and with
zpsptq, tq the observations i.e. odor detections along its
path. First, we define a sensing memory T and we con-
sider a short excerpt of the history of odor detections
zT of duration T prior to the current time t. Formally,

zT ptq :“ tzpspt1q, t1q | t ´ T ď t1 ď tu. Second, we mea-
sure the average intensity c (moving average of odor in-
tensity over the time window T , conditioned to times
when odor is above threshold), and intermittency i (the
fraction of time the odor is above threshold during the
sensing window T ). Both features c and i are described
by continuous, positive real numbers. Third, we define
15 olfactory states by discretizing i and c in 3 and 5 bins
respectively. Intermittency i is bounded between 0 and
1 and we discretize it in 3 bins by defining two thresh-
olds (33% and 66%). The average concentration, c, is
bounded between 0 and the odor concentration at the
source, hence prior information on the source is needed
to discretize c using set thresholds. To avoid relying on
prior information, we define thresholds of intensity as
percentiles, based on a histogram that is populated on-
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line, along each agent’s path (see Materials and Meth-
ods). The special case where no odor is detected over T
deserves attention, hence we include it as an additional
state named “void state” and indicate it with o ” H.
When T is sufficiently long, the resulting olfactory states
map to different spatial locations (Figure 1C, with T
equal to the simulation time). Hence this definition of
olfactory states can potentially mitigate the problem of
partial observability using temporal traces, rather than
spatial maps. But will these olfactory states with finite
memory T guide agents to the source?

Q learning: a map-less and model-free navigation
to odor sources. To answer this question, we trained
tabular episodic Q learning [18]. In a nutshell, we use
a simulator to place an agent at a random location in
space at the beginning of each episode. The agent is
not aware of its location in space, but it senses odor
provided by the fluid dynamics simulator and thus can
compute its olfactory state o, based on odor detected
along its path in the previous T sensing window. It
then makes a move according to a set policy of actions
a „ π0pa|oq. After the move, the simulator displaces the
agent to its new location and relays the agent a negative
reward R “ ´η if it is not at the source and a positive
reward R “ 1 if it reaches the source. The goal of RL is
to find a policy of actions that maximizes the expected
cumulative future reward G “ Eπp

ř8

t“0 γ
tRt`1q where

the expectation is over the ensemble of trajectories
and rewards generated by the policy from any initial
condition. Because reward is only positive at the source,
the optimal policy is the one that reaches the source
as fast as possible. To further encourage the agent to
reach the source quickly, we introduce a discount factor
γ ă 1.
Episodes where the agent does not reach the source
are ended after Hmax “ 5000 with no positive reward.
As it tries actions and receives rewards, the agent
learns how good the actions are. This is accomplished
by estimating the quality matrix Qpo, aq, i.e. the
maximum expected cumulative reward conditioned to
being in o and choosing action a at the present time:
Qpo, aq “ maxπ Eπp

ř8

t“0 γ
tRt`1|ot “ o, at “ aq. At

each step, the agent improves its policy by choosing
more frequently putatively good actions. Once the
agent has a good approximation of the quality matrix,
the optimal policy corresponds to the simple readout:
π˚pa|oq “ δpa ´ a˚poqq where a˚poq “ argmaxa Qpo, aq,
for non-void states o ‰ H.

Recovery strategy. To fully describe the behavior of
our Q-learning agents, we have to prescribe their
policy from the void state o ” H. This is problematic

because turbulent plumes are full of holes thus the void
state can occur anywhere both within and outside the
plume, Figure 1A. As a consequence, the optimal action
a˚pHq from the void state is ill defined. We address
this issue by using a separate policy called “recovery
strategy”. Inspired by path integration as defined
in biology [34, 35, 36], we propose the backtracking
strategy consisting in retracing the last Ta steps after
the agent lost track of the odor. If at the end of
backtracking the agent is still in the void state, it
activates Brownian motion. Backtracking requires that
we introduce memory of the past Ta actions. This
timescale Ta for activating recovery is conceptually
distinct from the duration of the sensing memory –
however here we set Ta “ T for simplicity.

We find that Q-learning agents successfully learn to nav-
igate to the odor source by responding solely to their
olfactory state, with no sense of space nor models of the
odor cues. Learning can be quantified by monitoring
the cumulative reward which continuously improves with
further training episodes (Figure 1D, left). Improved re-
ward corresponds to agents learning how to reach the
source more quickly and reliably with training. Indeed,
it is easy to show that the expected cumulative reward
G “ xe´λτ ´ ηp1 ´ e´λτ q{p1 ´ γqy, where τ is a ran-
dom variable corresponding to time to reach the source
and γ “ e´λ∆t is the discount factor, with the time step
∆t “ 1 (see Materials and Methods). Large rewards
arise when (i) a large fraction f` of agents successfully
reaches the source and (ii) the agents reach the source
quickly, which maximizes g` “ xe´λτ |successy. Indeed
G “ f`G` ` p1 ´ f`qG´, where G` “ g` ´ ηp1 ´

g`q{p1 ´ γq and G´ “ ´ηp1 ´ e´λHmaxq{p1 ´ γq. Hmax

is the horizon of the agent i.e. the maximum time the
agent is allowed to search, and after which the search
is considered failed. Note that agents starting closer to
the target receive larger rewards purely because of their
initial position. To monitor performance independently
on the starting location, we introduce the inverse time to
reach the source relative to the shortest-path time from
the same initial location, which goes from 0 for failing
agents to 1 for ideal agents xτmin{τy, independently on
their starting location. Note that this is not the quantity
that is optimized for. One may specifically target this
perfomance metrics, which is agnostic on the duration of
an agent’s path, by discounting proportionally to t{τmin.
All four measures of performance plateau to a maximum,
suggesting learning has achieved a nearly optimal policy
(Figure 1D). Once training is completed, we simulate
the trajectory of test-agents starting from any of the
about 43 000 admissible locations within the plume and
moving according to the optimal policy. We will reca-
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pitulate performance with the cumulative reward G av-
eraged over the test-agents and dissect it into speed g`,
convergence f` and relative time xτmin{τy.

Optimal memory. By repeating training using dif-
ferent values of T we find that performance depends on
memory and an optimal memory T˚ exists (Figure 2A).
Why is there an optimal memory? The shortest memory
T “ 1 corresponds to instantaneous olfactory states: the
instantaneous contour maps of the olfactory states are
convoluted and the void state is pervasive (Figure 2C,
top). As a consequence, agents often activate recovery
even when they are within the plume, the policy almost
always leads to the source (f` “ 79% ˘ 13%) but fol-
lows lengthy convoluted paths (τmin{τ “ 0.14 ˘ 0.05,
Figure 2A, bottom). As memory increases, the olfac-
tory states become smoother and agents encounter less
voids (Figure 2C, center), perform straighter trajecto-
ries (τmin{τ “ 0.5 ˘ 0.3) and reach the source reliably
(f` “ 95% ˘ 8%), Figure 2C, bottom. Further increas-
ing memory leads to even less voids within the plume
and even smoother olfactory states. However – perhaps
surprisingly – performance does not further improve but
slightly decreases (at T “ 50, f` “ 94% ˘ 8% and
τmin{τ “ 0.38 ˘ 0.36). A long memory is deleterious
because it delays recovery from accidentally exiting the
plume, thus increases the number of voids outside of the
plume (Figure 2C, bottom). Indeed, agents often leave
the plume accidentally as they measure their olfactory
state while they move. They receive no warning, but re-
alize their mistake after T steps, when they enter the
void state and activate recovery to re-enter the plume.
The delay is linear with memory when agents recover by
backtracking, but it depends on the recovery strategy
(see discussion below and Supplementary Figure 1).

Thus short memories increase time in void within the
plume, whereas long memories increase time in void
outside the plume: the optimal memory minimizes the
overall chances to experience the void (Figure 2B).
Intuitively, T˚ should match the typical duration
τb of blanks encountered within the plume, so that
voids within the plume are effectively ignored without
delaying recovery unnecessarily. Consistently, xτby

averaged across all locations and times within the plume
is xτby “ 9.97 ˘ 41.16, comparable with the optimal
memory T˚ (Figure 2A).

Adaptive memory. There is no way to select the
optimal memory T˚ without comparing several agents
or relying on prior information on the blank durations.
In order to avoid prior information, we venture to de-

fine memory adaptively along each agent’s path, using
the intuition outlined above. We define a buffer mem-
ory Tb, and let the agent respond to a sensing window
T ă Tb. Ideally we would like to set T „ xτby. With
this choice, blanks shorter than the average blank are
ignored, as they are expected within the plume, whereas
blanks longer than average initiate recovery, as they sig-
nal that the agent exited the plume. However, agents
do not have access to xτby hence we set T “ τ´

b , where
τ´
b is the most recent blank experienced by the agent.
With this choice, the sensing memory T fluctuates con-
siderably along an agent’s path, due to turbulence ([32]
and Figure 3A-B). Note that blanks are estimated along
paths, thus the statistics of T only qualitatively matches
the Eulerian statistics of τb. Despite the fluctuations,
performance using the adaptive memory nears perfor-
mance with the optimal memory (Figure 3C). This re-
sult confirms our intuition that memory should match
the blank time. The advantage of the adaptive memory
is that it relies solely on experience, with no prior infor-
mation whatsoever. This is unlike T˚ which can only
be selected using prior information, with no guarantee
of generalization to other plumes.

Learning to recover. So far, our agents combine a
learned policy from non-void states to a heuristics from
the void state, which we called the recovery strategy. We
have considered a biologically-inspired heuristics where
searchers make it back to locations within the plume
by retracing their path backward. Similar results are
obtained for Brownian recovery with a different optimal
memory (see Materials and Methods and Supplementary
Figure 1). To further strip the algorithm of heuristics,
we ask whether the recovery strategy may be learned,
rather than fixed a priori. To this end, we split the
void state in many states, labeled with the time elapsed
since first entering the void. The counter is reset to 0
whenever the searcher detects the odor. The definition
of the 15 non-void states o1, ..., o15 remains unaltered.
Interestingly, with this added degree of freedom, the
agent learns an even better recovery strategy as reflected
by all our measures of performance Figure 3D. Note that
the learned recovery strategy resembles the casting be-
havior observed in flying insects [37], as discussed below.

Characterization of the optimal policies. To understand
how different recoveries affect the agent’s behavior, we
characterize the optimal policies obtained using the three
recovery strategies. We visualize the probability to en-
counter each of the 16 olfactory states, or occupancy
(circles in Figure 4), and the spatial distribution of the
olfactory states. In the void state, the agent activates the
recovery strategy. Recovery from the void state affects
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Figure 4: Optimal policies with adaptive memory for different recovery strategies: backtracking (green), Brownian
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non-void olfactory states as well: their occupancy, their
spatial distribution, and the action they elicit (Figure 4
and Supplementary Figure 3). This is because the agent
computes its olfactory state online, according to its prior
history which is affected by encounters with the void
state. However, for all recoveries, non-void states are
mostly encountered within the plume and largely elicit
upwind motion (Figure 4, top, center). Thus macroscop-
ically, all agents learn to surge upwind when they detect
any odor within their memory, and to recover when their
memory is empty. This suggests a considerable level of
redundancy which may be leveraged to reduce the num-
ber of olfactory states, thus the computational cost.
The void state shows the most relevant differences: for
both heuristic recoveries, 40% or more of the agents
are in the void state and they are spatially spread out.
In contrast, in the case of learned recovery, the opti-
mal policy limits occurrence of the void state to 26%
of the agents, confined to a narrow band near the edge
of the plume. From these locations, the agents quickly
recover the plume, explaining the boost in performance
discussed above. Note that, exclusively for the learned
recovery, the optimal policy is enriched in actions down-

wind to avoid overshooting the source. Indeed, from po-
sitions beyond the source, the learned strategy is unable
to recover the plume as it mostly casts sideways, with
little to no downwind action. Intuitively, the precise lo-
cations where agents move downwind may be crucial to
efficiently avoid overshooting. Thus the policy may de-
pend on specific details of the odor plume, consistent
with poorer generalization of the learned recovery (dis-
cussed next).

Tuning for adaptation to different environments.
Finally, we test performance of the trained agents on six
environments, characterized by distinct fluid flows and
odor plumes (Figure 5 and Materials and Methods). En-
vironment 1 is the native environment, where the agents
were originally trained; Environment 2 is obtained by
increasing the threshold of detection, which makes the
signals considerably more sparse with longer blanks. En-
vironments 3 and 4 are closer to the lower surface of the
simulated domain, where the plume is smaller and fluc-
tuates less. Environment 5 is a similar geometry, but
obtained for a smaller Reynolds number and a different
way to generate turbulence. Finally Environment 6 has
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Figure 5: Generalization to statistically different envi-
ronments. (A) Snapshots of odor concentration normal-
izes with concentration at the source, colorcoded from
blue (0) to yellow (1) for environment 1 to 6 from top
to bottom. Environment 1˚ is the native environment
where all agents are trained. (B) Performance for the
three recovery strategies backtracking (green) Brownian
(red) and learned (blue), with adaptive memory, trained
on the native environment and tested across all envi-
ronments. Four measures of performance defined in the
main text are shown. Dark squares mark the mean, and
empty rectangles ˘ standard deviation. No standard
deviation is shown for the f` measure in the learned
case as this strategy is deterministic (see Materials and
Methods).

an even larger Reynolds number, a longer domain and
a smaller source, which creates an even more dramat-
ically sparse signal. We consider agents with adaptive
memory and compare the three recovery strategies dis-
cussed above – Brownian, backtracking and learned, see
Figure 5B. Comparing performance across environments
we find that: (i) although performance is degraded when
testing in non native environments, all agents with adap-
tive memory are still extremely likely to find the source;
(ii) Brownian recovery has lowest performance and gen-
eralization across all environments; (iii) backtracking
provides good performance and generalization; (iii) the
learned recovery strategy performs best in all environ-
ments by all performance metrics. In the most intermit-
tent Environment 6 a striking 91% of agents succeeds
in finding the source, with trajectories less the twice as
long as the shortest path to the source. The upshot of
generalization is that agents may navigate distinct tur-
bulent plumes using a baseline strategy learned in a spe-
cific plume. Importantly, even if performance (mildly)
degrades, most agents still do reach the source, suggest-
ing that fine-tuning this strategy may enable efficient
adaptation to different environments. Further work is
needed to establish how much fine-tuning is needed to
fully adapt the baseline strategy to different environ-
ments.

Discussion

In this work, we showed that agents exposed to a
turbulent plume learn to associate salient features of
the odor time trace – the olfactory state – to an optimal
move that guides them to the odor source. The upshot
of responding solely to odor is that the agent does not
navigate based on where it believes the target is and
thus needs no map of space nor prior information about
the odor plume, which avoids considerable computa-
tional burden. On the flip side, in our stimulus-response
algorithm, agents need to start from within the plume,
however sparse and fragmented. Indeed, far enough
from the source, Q-learning agents are mostly in the
void state and they can only recover the plume if they
have previously detected the odor or are right outside
the plume. In contrast, agents using a map of space
can navigate from larger distances than are reachable
by responding directly to odor cues. Indeed, in the
map-based POMDP setting, absence of odor detection
is still informative and it enables agents to first find the
plume, and then refine the search to localize the target
within the plume [26, 38].

We show that because turbulent odor plumes constantly
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switch on and off, navigation must handle both ab-
sence and presence of odor stimuli. We address this
fundamental issue by alternating between two distinct
strategies: (i) Prolonged absence of odor prompts entry
in the void state and triggers a recovery strategy to
make contact with the plume again. We explored two
heuristic recoveries and found that back-tracking to
where the agent last detected odor is much more efficient
than Brownian recovery. An even more efficient recovery
can be learned that resembles cross-wind casting and
limits the void state to a narrow region right outside
of the plume. Casting is a well-studied computational
strategy [12, 5] also observed in animal behavior, most
famously in flying insects [37]. Intriguingly, cast and
surge also emerges in algorithms making use of a model
of the odor, whether for Bayesian updates or for policy
optimization [3, 26, 30]. Whether natural casting be-
havior is learned, as in Q-learning, or is hard-wired in a
model of the odor plume remains a fascinating question
for further research. (ii) Odor detections prompt entry
in non-void olfactory states, which predominantly elicit
upwind surge. Blanks shorter than the sensing memory
are ignored, i.e. agents do not enact recovery but
respond to stimuli experienced prior to the short blank.
Further work may optimize these non-void olfactory
states by feature engineering, e.g. testing different dis-
cretizations to reduce redundancy or screening a large
library of features using supervised learning as in [33] to
potentially improve performance. Alternatively, feature
engineering may be bypassed altogether by the use of
recurrent neural networks (RNNs) as recently proposed
in [29], possibly at the expense of interpretability.
A systematic comparison using a common dataset is
needed to elucidate how other heuristic and normative
model-free algorithms handle odor presence vs odor
absence.

To switch between the odor-driven strategy and the
recovery strategy, we introduce a timescale T , which
is an explicit form of temporal memory. T delimits a
sensing window extending in the recent past, prior to
the present time. All odor stimuli experienced within
the sensing window affect the current response. By
using fixed memories of different duration, we demon-
strate that an optimal memory exists and that the
optimal memory minimizes the occurrence of the void
state. On the one hand, long memories are detrimental
because they delay recovery from accidentally exiting
the plume. On the other hand, short memories are
detrimental because they trigger recovery unnecessarily,
i.e. even for blanks typically experienced within the
turbulent plume. The optimal memory thus matches
the typical duration of the blanks. To avoid using prior

information on the statistics of the odor, we propose a
simple heuristics setting memory adaptively equal to
the most recent blank experienced along the path. The
adaptive memory nears optimal performance despite
dramatic fluctuations dictated by turbulence. Success
of the heuristics suggests that a more accurate estimate
of the future blank time may enable an even better
adaptive memory; further work is needed to corroborate
this idea.
Thus in Q-learning, memory is a temporal window
matching odor blanks and distinguishing whether
agents are in or out of the plume. The role of memory
for olfactory search has been recently discussed in
ref. [30]. In POMDPs, memory is stored in a detailed
belief of agent position relative to the source. In finite
state controllers, memory denotes an internal state of
the agent and was linked to a coarse grained belief
of the searcher being within or outside of the plume,
similar to our findings. In recurrent neural networks
memory is stored in the learned weights. A quantitative
relationship between these different forms of memory
and their connection to spatial perception remains to
be understood.

We conclude by listing a series of experiments to
test these ideas in living systems. First, olfactory
search in living systems displays memory ([30, 10]
and refs. therein). In insects, temporal scales can be
measured associated to memory. Indeed, for flying
insects loss of contact with a pheromone plume triggers
crosswind casting and sometimes even downwind dis-
placement [7, 39]. Interestingly, the onset of casting is
delayed with respect to loss of contact with the plume,
but this delay is not understood [39, 40]. In walking
flies, the timing of previous odor encounters biases
navigation [41]. (How) do these temporal timescales de-
pend on the waiting times between previous detections?
Using optogenetics [42, 43, 44, 45] or olfactory virtual
reality with controlled odor delivery [46] experiments
may measure memory as a function of the full history
of odor traces. For insects, one may monitor memory
by tracking the onset of cross wind casting with respect
to the loss of the plume. More in general, a temporal
memory may be defined by monitoring how far back in
the past should two odor traces be identical in order to
elicit the same repertoire of motor controls.
Second, our algorithm learns a stimulus-response
strategy that relies solely on odor cues. The price to
pay is that the agent must follow the ups and downs
of the odor trace in order to compute averages and
recognize blanks. A systematic study may use our
algorithm to test the requirements of fidelity of this
temporal representation, and how it depends on turbu-
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lence. How does turbulence affect the fidelity of odor
temporal representation in living systems? Crustaceans
provide excellent model system to ask this question,
as they are known to use bursting olfactory receptor
neurons to encode temporal information from olfactory
scenes [47, 48]. Temporal information is also encoded
in the olfactory bulb of mammals [49, 50]. Organ-
isms with chemo-tactile systems like the octopus [51]
may serve as a comparative model, to ask whether
touch-chemosensation displays a sloppier temporal
response, reflecting that surface-bound stimuli are not
intermittent.
Third, our Q-learning algorithm requires the agent to
receive olfactory information, thus start near or within
the odor plume. In contrast, algorithms making use of
a spatial map and prior information on the odor plume
may first search for the plume (in conditions of near
zero information) and then search the target within
the plume [26, 38, 3]. Animals are known to use prior
information to home into regions of space where the
target is more likely to be found; but they can switch
to navigation in response to odor (see e.g. [7, 8, 9, 10]).
What triggers the switch from navigation driven by
spatial perception to navigation driven by odor? For
mice, the need for spatial perception may be tested indi-
rectly by comparing paths in light vs dark, noting that
neuronal place fields, that mediate spatial perception,
are better stabilized by vision than olfaction [52, 53].
Thus in the light, animals have the ability to implement
both map-less and map-based algorithms, whereas
in the dark they are expected to more heavily rely
on map-less algorithms. To make sure animals start
searching for the odor target even before sensing odor,
operant conditioning can be deployed so that animals
associate an external cue (e.g. a sound) to the beginning
of the task.

The reinforcement learning view of olfactory naviga-
tion offers an exciting opportunity to probe how liv-
ing systems interact with the environment to accom-
plish complex real-world tasks affected by uncertainty.
Coupling time varying odor stimuli with spatial percep-
tion is an instance of the broader question asking how
animals combine prior knowledge regarding the environ-
ment with reaction to sensory stimuli. We hope that our
work will spark further progress into connecting these
broader questions to the physics of fluids.
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Materials and Methods

Data description. The data we used to train the
agents is a set of 2598 matrices tDtu

2598
t“1 . Every ma-

trix Dt P R1225ˆ280 contains the odor intensity in every
position pi, jq i.e. pDtqi,j represents the odor intensity in
position pi, jq at time t. The source of odor is in posi-
tion p20, 142q and, in order to simplify the training, we
considered as terminal states every position in a circle
centered in the source position and with radius 10 called
source region. Data are obtained from a direct numer-
ical simulation of the Navier-Stokes equations and the
equations of transport of the odor. Environments 1 to 4
are derived from simulations of a channel flow described
in ref [33]; Environment 5 corresponds to an additional
simulation described below. We preprocess the data to
eliminate simulation noise by setting to zero every en-
try of these matrices when they are smaller than a noise
level nlvl :“ 3ˆ 10´6. Data information are summarized
in Table 1.
In environment 5, the odor is advected by a turbulent
open channel flow, with three hemispherical obstacles
placed on the ground close to the inlet to generate tur-
bulence. The Navier-Stokes equations (1) and advection-
diffusion equation for odor transport (2) are solved using
a central second order finite difference scheme. The con-
vective terms are discretized in time using an explicit
Adams – Bashforth method; and the viscous and diffu-
sion terms using an implicit Crank-Nicolson method [54].
The code is written in Fortran and is GPU parallelized.
The channel is divided into 1024ˆ 256ˆ 128 grid points
along streamwise, spanwise and wall-normal directions
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respectively. The corresponding average spatial resolu-
tions are ∆x “ 5η,∆y “ 5η,∆z “ 4η, where η is the
Kolmogorov length scale. Three hemispheres of radius
100η are placed at a distance of 250η from the inlet on
the ground, equally spaced along the spanwise direction.
The channel is forced using a constant pressure gradient.
For the velocity field, we impose a no-slip boundary con-
dition at the ground and on the obstacles (u “ 0) and
a free-slip boundary on top (uz “ 0, Bzux “ Bzuy “ 0).
The velocity field is periodic along the streamwise and
spanwise directions. The bulk Reynolds number is 7800.
For the odor field, we impose Dirichlet condition (c “ 0)
at the ground, on the obstacles and inlet, no-flux (Bzc “

0) on top, and outflow along other directions. Similar
to the native environment, we choose the Schmidt num-
ber to be 1. The odor source is located downstream of
the obstacle and centered at [640η, 640η, 256η] along
streamwise, spanwise and wall-normal directions respec-
tively. The odor source has a Gaussian profile with a
standard deviation of 8η.
Environment 6 is similar to environment 5 albeit with

a higher bulk Reynolds number of 17500. Here, the chan-
nel is divided into 2000 ˆ 500 ˆ 200 grid points and has
an average spatial resolution of ∆x “ ∆y “ ∆z “ 5.5η.
The odor source has a Gaussian profile centered at [825η,
1375η, 550η] with a standard deviation of 3η.

ρp
Bu

Bt
` u ¨ ∇uq “ ´∇P ` µ∇2u ` f ; (1)

∇ ¨ u “ 0.

Bc

Bt
` u ¨ ∇c “ D∇2c ` s. (2)

Olfactory states, Features & Discretization.
Each agent stores the odor concentrations detected in
the previous T time steps in a vector M. We introduce
an adaptive sensitivity threshold function sthrp¨q defined
as

sthrpT q :“ max
!Cthr

T

T
ÿ

i“1

Mi, nthr

)

, (3)

where Mi denotes the i-th element of M and Cthr ą 0 is
a scaling constant (in our experiments we set it as 0.5).
T denotes the cardinality of M . Given a memory M ,
we can define the filtered memory ∆M as the set which
contains every element of the memory M that is higher
than the sensitivity threshold sthrpMq i.e.

∆M :“ tz P M | z ą sthrpMqu. (4)

Then at timestep t, given the agent memory Mt, we
define the average intensity cpMtq and the intermittency

ipMtq as:

cpMtq :“

$

’

’

’

’

&

’

’

’

’

%

1
|∆Mt |

|∆Mt |
ř

i“1

´

∆Mt

¯

i
, |∆Mt | ą 0

0

,

ipMtq :“
|∆Mt |

|Mt|
.

(5)

Note that the average intensity is defined on the filtered
memory ∆M , i.e. conditioned to detecting odors above
threshold. Since the features defined in (5) returns real
numbers, in order to use (tabular) q-learning, we need
to discretize them. We denote with īpMtq the discretized
intermittency. This is defined as follow

īpMtq :“

$

&

%

0, if ipMtq ď 0.33
1, if 0.33 ă ipMtq ď 0.66
2, if ipMtq ą 0.66

. (6)

The average intensity is bounded between zero and the
maximum concentration of odor at the source. To avoid
prior information on the source, we use a more struc-
tured procedure to discretize the average intensity on-
line, based on the agent’s experience only. At every
timestep t, the average intensity cpMtq is computed and
collected in a dataset Xt i.e.

Xt :“ tcpM0q, ¨ ¨ ¨ , cpMtqu.

Then, its discretized value is obtained by the following
rule:

c̄pMt, Xtq :“

$

’

’

’

’

&

’

’

’

’

%

0, cpMtq ď ppXt, 25q

1, ppXt, 25q ă cpMtq ď ppXt, 50q

2, ppXt, 50q ă cpMtq ď ppXt, 80q

3, ppXt, 80q ă cpMtq ď ppXt, 99q

4, cpMtq ą ppXt, 99q

,

(7)
where ppXt, nq denotes the n-th percentile ofXt. Finally,
we can define the feature map ϕt as a function of the
memory Mt and the dataset of average intensities Xt at
timestep t

ϕtpMt, Xtq :“ r̄ipMtq, c̄pMt, Xtqs.

This defines the current olfactory state st i.e. at timestep
t, the agent is in the olfactory state ot :“ ϕtpMt, Xtq.
The case where the agent has no odor detections above
threshold in its current memory, i.e. |∆pMtq| “ 0 cor-
responds to an additional state called void state (H) in
the main text.
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Agent Behavior and Policies. Now, we describe
how the agent interacts with the environment to solve
the navigation problem. At every time step t P N, the
agent observes an odor point zt and updates its memory
including the new observation and removing the oldest
i.e. it defines a memory Mt with the following rule

Mt :“

«

´

Mt´1

¯

2
, ¨ ¨ ¨ ,

´

Mt´1

¯

|Mt´1|
, ot

ff

. (8)

Then, it updates the dataset of average intensities
i.e. Xt :“ Xt´1 Y tcpMtqu and it computes the olfactory
state ot. According to ot, the agent chooses an action
at using a policy. As indicated in the main text, actions
are the coordinate directions i.e. we define an action set
A as follow

A :“ te1, e2,´e1,´e2u,

where ei denotes the i-th canonical base. As explained
in the main text, actions are selected using one of two
policies according to the current olfactory state ot. More
precisely, if the olfactory state ot is not the void state,
then the (ϵ-greedy) Q-learning policy is used. Formally,
let Q be the Q matrix of the agent and let ot ‰ H, then
the agent plays the action at such that

at “

#

a P argmax
aPA

Qpot, aq with probability 1 ´ ϵ

a „ UpAq with probability ϵ
,

(9)
where, with a „ UpAq, we indicate an action a uni-
formly sampled from A. At test phase, the exploration-
exploitation parameter ϵ is set to 0 and, thus, in an ol-
factory state ot ‰ H the policy is deterministic. While
training phase behavior is described in next paragraphs.
In the void state ot “ H, the agent chooses the action
at P A according to a separated policy called recovery
strategy. In our experiments, we defined and compared
three different recovery strategies: Brownian, Backtrack-
ing and Learned.

Brownian recovery. It is the simplest strategy we
consider, consisting of playing random actions in the
void state. Suppose that at time step t, the agent is
in the void olfactory state, i.e., ot “ H, then at is sam-
pled uniformly from the action set A. However, it is
important to note for long memories agents start to re-
cover when they are already far from the plume, and
hitting the plume by random walk is prohibitively long.
To avoid wandering away from the plume, the memory
is constrained to be shorter, consistent with the obser-
vation that the optimal memory is T˚ “ 3 to 5, much
shorter than for backtracking. At this memory, several
blanks within the plume will cause the agent to recover,
hence the lower performance of the Brownian recovery.

Backtracking Recovery. In order to accelerate re-
covery from accidentally exiting the plume, we let the
agents backtrack to the position where they last detected
the odor. To this end, we first enumerate the actions
with numbers from one to four. Then we introduce a
new memory called action memory A. For simplicity,
we consider the setting in which |A| “ |M |. At time-
step t “ 0, this memory is initialized as a vector of zeros
indicating that the action memory is empty i.e. we define
A0 P N|M | such that for every i “ 1, ¨ ¨ ¨ , |A|

Ai “ 0.

For every timestep t ą 0, the agent observes an odor
point zt and updates the memory through (8). Moreover,
the action memory is updated according to the status
of the memory. If the last observation is smaller than
the sensitivity threshold i.e. zt ă sthrpMtq, the action
previously played at´1 (represented by a natural number
in r1, 4s) is stored in the action memory i.e. for some
∆ ą 0, let

At´1 “ rat´∆, ¨ ¨ ¨ , at´2, 0, ¨ ¨ ¨ , 0s.

Then
At “ rat´∆, ¨ ¨ ¨ , at´2, at´1, ¨ ¨ ¨ , 0s.

If at time-step t, the observation zt is larger than the
sensitivity threshold then the action memory is reset
i.e. At P N|M | with pAtqi “ 0 for every i. If at timestep t,
the memory is empty i.e. cpMtq “ 0, then the backtrack-
ing procedure is executed: the last non-zero element of
the action memory is extracted and the inverse action is
played i.e. For some ∆ ą 0, let

At´1 “ rat´∆, ¨ ¨ ¨ , at´2s.

Then, it plays the action at´2 and updates the action
memory as follow

At “ rat´∆, ¨ ¨ ¨ , at´3, 0s.

This procedure is repeated until either an observation
larger than the sensitivity threshold is obtained or the
action memory becomes empty. In the former case, the
action memory is cleared and the action is chosen accord-
ing to the Q-learning policy ((9)). In the latter case, a
random action is played.
Note that this strategy only provides exploration after
the backtracking fails to recover detections. Also, if
agents start with no detection at time 0, the procedure
is equivalent to Brownian motion.

Learned recovery. In this case recovery policy is
learned by splitting the void state in several states la-
beled by the time since entry in the void state. In our
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experiments, we split the void state in 30 states. Actions
are then learned as in all other non-void states and the
optimal action is always chosen with (9).

Training An agent start at a random location within
the odor plume at time 0. Its memory is initialized
with the prior |M0| odor detections at its initial location
M0 “ rz´|M0|, ¨ ¨ ¨ , z0s, obtained from the fluid dynamics
simulation. The Q-function Q0 is initialized with 0.6 for
all actions and olfactory states. The first dataset of av-
erage intensities contains the first value X0 “ tcpM0qu.
At every times step t ą 0, the agent gets an odor obser-
vation zt from its new position and updates its memory
including the new observation and removing the oldest
and the olfactory state ot is computed (as described in
previous paragraphs). The dataset of average intensi-
ties is updated: Xt “ Xt´1 Y tcpMtqu. Exploration-
exploitation parameter ϵk is scheduled as follow

ϵk “ ηinit expp´ηdecaykq,

where, in our experiments, ηinit “ 0.99 and ηdecay “

0.0001. At every episode k, the Q-function is updated
at every time step t as

Qk`1pst, atq :“ p1´αkqQkpst, atq`αkprt`γmax
a1

Qkpst`1, a
1qq,

where Rt is the immediate reward received playing the
action at. ot and ot`1 are the current and the next ol-
factory states and αk is the learning rate at episode k.
This is scheduled as

αk “ αinit expp´αdecaykq,

where, in our experiments, αinit “ 0.25 and αdecay “

0.001. For the experiments, agents are trained in 100000
episodes and an horizon of 5000 steps. The agent veloc-
ity is set to 10 and the discount factor is γ “ 0.9999.

Agents Evaluation. To evaluate the performance of
the different agents, we consider four metrics: the cumu-
lative reward G (which is the actual quantity that the al-
gorithm optimizes for); normalized time (defined below);
the fraction of success f` and the value conditioned on
success g`. For a fixed position pi, jq, we denote with
τminpi, jq the minimum number of steps required to reach
the source region from pi, jq i.e. the length of the shortest
path.
We define Dinit the set of points in which the first ob-

servation is above the sensitivity threshold (valid points).
For each initial position pi, jq P Dinit, let τpi, jq be the
duration of the path obtained by an agent to reach the
source. Note that τpi, jq is a random variable for the
stochastic backtracking and Brownian recoveries, but it

is deterministic for the learned strategy that has no ran-
dom components. For each admissible location pi, jq, we
define four performance metrics:

Gpi, jq “ xe´λτpi,jq ´
η

1´γ p1 ´ e´λτpi,jqqy

f`pi, jq “
nsuccesspi,jq

nreps

g`pi, jq “ xe´λτpi,jq|successy
τmin

τ
pi, jq “ x

τminpi,jq

τpi,jq
y

where nreps is the number of test trajectories from each
admissible location, and we use nreps “ 10. We then
compute statistics of the perfomance metrics over the
Dinit initial positions and report the average (x¨y) and
standard deviation (std). Note that for the learned strat-
egy, τpi, jq is deterministic, hence f`pi, jq is 0 or 1 and
therefore we omit its standard deviation.
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Supplementary Figure 1 : The role of temporal memory
with Brownian recovery strategy (same as main Figure
2A). Total cumulative reward (top left) and standard
deviation (top right) as a function of memory showing an
optimal memory T˚ “ 3 for the Brownian agent. Other
measures of performance with their standard deviations
show the same optimal memory (bottom). The tradeoff
between long and short memories discussed in the main
text holds, but here exiting the plume is much more
detrimental because regaining position within the plume
by Brownian motion is much lenghtier.
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gies.
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Supplementary Figure 3 : Optimal policies for different recovery strategies and adaptive memory. From left to
right: results for backtracking (green), Brownian (red) and learnd (blue) recovery strategies. Top: probability
that an agent in a given olfactory state is at a specific spatial location color-coded from yellow to blue. Rows and
columns indicate the olfactory state; the void state is in the lower right corner. Arrows indicate the optimal action
from that state. Bottom: Circles represent occupancy of each state, olfactory states are arranged as in the top
panel. All statistics is computed over 43000 trajectories, starting from any location within the plume.
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