
cells

Review

Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial
Function in Cancer Cells

Csaba Szabo

����������
�������

Citation: Szabo, C. Hydrogen

Sulfide, an Endogenous Stimulator of

Mitochondrial Function in Cancer

Cells. Cells 2021, 10, 220. https://

doi.org/10.3390/cells10020220

Received: 1 January 2021

Accepted: 21 January 2021

Published: 22 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland;
csaba.szabo@unifr.ch

Abstract: Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; in-
hibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its
cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological
regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine
γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST)
are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its in-
hibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a
stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with
sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial
roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial
mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of
mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance
of mitochondrial organization (protection against mitochondrial fission) and the maintenance of
mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair com-
plexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial
functions of endogenously produced H2S in cancer cells.
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1. Hydrogen sulfide (H2S), an Endogenous Mammalian Biological Mediator

Over the majority of the last century hydrogen sulfide (H2S) has been viewed as
an environmental toxin and biological hazard. H2S (administered as an inhaled gas, or
systemically, in aqueous solutions) exerts various toxicological effects in all mammalian
organisms including humans. An extensive body of literature exists which focuses on
the toxicological aspects of H2S [1–5]. Relevant for the current article is the fact that the
molecular mode of H2S’ toxic action is largely (although not exclusively) attributed to its
ability to inhibit mitochondrial Complex IV (cytochrome c oxidase), which, in turn, shuts
down mitochondrial electron transport and inhibits aerobic ATP generation. The (largely
reversible) binding of H2S to the cytochrome a3 prosthetic group of Complex IV has been
extensively characterized [6,7]. Although Complex IV inhibition by H2S is usually viewed
in the environmental toxicological context, there are some pathophysiological conditions—
for example Down syndrome, where increased levels of endogenously produced H2S can
inhibit Complex IV [8,9].

Over the last two decades, the field of H2S has undergone a significant transition,
whereby various endogenous H2S-producing enzymes have been recognized and charac-
terized, and a broad spectrum of biological roles of H2S has been identified. The timeline
of H2S research and the emergence of H2S as an endogenous mammalian mediator has
been covered in specialized review articles [10,11]. Moreover, the diverse biological roles
of H2S in mammals in the regulation of the cardiovascular, nervous and immune sys-
tem, and the biochemistry and pharmacology of various H2S-producing enzymes—a
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stand-alone field that consists of over 10,000 published papers—is covered in specialized
review articles [12–30]. Briefly, H2S in mammalian cells and tissues is produced by three
principal enzymes: cystathionine-β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-
mercaptopyruvate sulfurtransferase (3-MST), with several additional enzymes (as well
as non-enzymatic reactions and H2S-producing bacteria in the bacterial microbiota) also
contributing. CBS, CSE and (indirectly) 3-MST all utilize sulfur-containing amino acids as
their enzymatic substrates; the biochemistry and the molecular regulation of each enzyme
in health and disease has been extensively reviewed in specialized articles [31–35]. H2S is a
diffusible mediator that reaches various cellular compartments, and can also exit the cell
that produces it. Thus, it can exert biological actions in autocrine as well as paracrine man-
ners. H2S can also react with other labile, diffusible small molecules (such as nitric oxide,
peroxynitrite, superoxide, hydrogen peroxide and others) to produce various secondary
and tertiary reactive species: thus, H2S is now viewed as a component of the “reactive
species interactome” [36,37]. While we cannot attempt to outline the complex roles and
regulation of H2S and the H2S-producing enzymes in the current article, a brief discussion
of the following aspects will be useful in the context of the current, focused review article:

There are important parallels between bacterial sulfur biochemistry and the mito-
chondrial roles of H2S. This is not at all surprising considering that mitochondria, from an
evolutionary standpoint, are, in fact, modified bacteria. Bacteria (similar to present-day
mitochondria) are known to produce and/or utilize H2S; these processes involve several
evolutionarily conserved enzymes [10,38].

The mammalian H2S-producing enzymes are (partially) mitochondrial. While 3-MST
is often referred to as a “mitochondrial enzyme”, it actually has both mitochondrial and
cytosolic localization; the other two major enzymes can either have low-level mitochondrial
baseline localization, and/or can translocate to mitochondria under various specialized
(pathophysiological) conditions (including cancer) [39–41]. However, mitochondrial lo-
calization of a H2S-producing enzyme is not an absolute requirement for mitochondrial
effects of H2S, since this mediator can readily diffuse from one intracellular compartment
to another [28].

For the sake of simplicity, one tends to simply refer to “H2S”, when discussing the
complex biochemical products of CBS, CSE and 3-MST. However, the reality is that in
a cellular environment, due to a complex series of reactions, multiple reactive sulfur
species exist, as well as various hybrid (“S/N”) species. These diverse species can have
different chemical reactivity and diverse (but often overlapping) sets of molecular targets.
Polysulfides (small segments of S-Sn chains) represent a special group of reactive sulfur
species; while CBS and CSE is primarily viewed as “H2S synthases”, 3-MST’s principal
product is polysulfide (although, each enzyme generates a mixture of these species in the
intracellular environment) [28,34,42].

While H2S (and polysulfides) have multiple intra- and extra-cellular molecular targets,
one of the principal modes of reactive sulfur species’ action is sulfhydration (a posttrans-
lational modification of protein cysteines), which is primarily catalyzed by polysulfide
(rather than H2S) [34,42,43].

“Protein sulfhydromes” (collections of sulfhydrated proteins) have recently been
characterized in various cells and tissues; thousands of proteins are subject to this modifi-
cation [44–47]. Some of the better-characterized enzymes that are known to be functionally
affected by sulfhydration include KATP channels (regulating vascular tone, angiogenesis
and many other processes), nuclear factor kB (regulating signal transduction), and Keap 1
(regulating NRF2 activation and thus inducing a generalized cellular antioxidant response,
responsible for cytoprotection, preconditioning and other responses) [43–47].

It should be mentioned that a significant reprogramming of the cellular sulfur metabolism
(which includes alterations in cysteine catabolism and metabolism, cysteine transport,
methionine homeostasis, and many other aspects) occurs in cancer cells [48,49]; the mi-
tochondrial roles of H2S in cancer (reviewed in the current article), therefore, should be
viewed in this broader context.
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Generally, H2S is known to have a bell-shaped (or biphasic) biological character, with
low-to-mid levels exerting one type of biological response (in many cases, regulatory,
protective or stimulatory), while higher (toxicological) levels of H2S often exerting the
opposite effects (which are, in many cases, related to the inhibition of mitochondrial
Complex IV, as discussed above) [28].

Finally—as extensively discussed previously [24,28,31,41]—it should be emphasized
that many of the experimental findings discussed in the following sections rely on phar-
macological inhibitors of CBS (such as aminooxyacetic acid, AOAA) and of 3-MST (such
as 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one, HMP-
SNE). These agents have low micromolar potency on their respective enzymatic targets
in biochemical assays in vitro, and have acceptable cell uptake. (When cells are incubated
with these agents in mid-to-high micromolar concentrations, cellular H2S production is
significantly suppressed). However, these compounds can also inhibit other enzymes
(for instance, AOAA also inhibits CSE, and indirectly, 3-MST), and their selectivity and
specificity, as well as their bioavailability and metabolism are incompletely understood. It
is, therefore, always preferable to test the potential reversibility of the biological effects of
these inhibitors with H2S donors, and to complement the pharmacological studies with
genetic studies (e.g., CBS, CSE or 3-MST silencing).

2. Upregulation of Various H2S-Producing Enzymes in Cancer Cells

In 2013, we have discovered that CBS is upregulated and H2S generation is increased
in primary human colon cancer tissues compared to the surrounding (nominally healthy)
tissues [50]. Similarly, we have noticed that several human colon cancer cell lines have
highly expressed CBS levels [50]. Over the subsequent seven years, these findings have
been confirmed and extended to many different tumor types: it is now clear that CBS,
and/or CSE and/or 3-MST is overexpressed in many forms of cancer. Table 1 shows an
overview of the currently published body of literature in this respect [40,41,51,52].

Table 1. Changes in H2S-producing enzymes in various types of cancer.

Cancer Type Upregulation of H2S-Producing Enzyme(s)

Biliary tract carcinoma CBS ↑
Bladder urothelial cell carcinoma CSE ↑, CBS ↑, 3-MST ↑

Breast cancer CBS ↑
Colon cancer CSE ↑, CBS ↑↑
Gastric cancer CSE ↑, CBS ↑

Glioma 3-MST ↑
Hepatocellular carcinoma CSE ↑, CBS ↑

Leukemia, lymphoma CBS ↑
Melanoma CSE ↑, 3-MST ↑
Myeloma CBS ↑

Ovarian cancer CBS ↑↑
Oral squamous cell carcinoma CSE ↑, CBS ↑, 3-MST ↑

Prostate cancer CSE ↑, CBS ↑↑
Renal cell carcinomas CSE ↑, CBS ↑, 3-MST ↑

Thyroid carcinoma CSE ↑, CBS ↑↑

What, then, is the functional relevance of this increased H2S production in cancer
cells? The functional role of CBS- or 3-MST-derived H2S in colon cancer cells has been
studied extensively. Utilizing knockdown of various H2S-producing enzymes and/or
pharmacological inhibitors, and/or forced overexpression of H2S-producing enzymes
into non-transformed cells, our group as well as several other groups of independent
investigators have demonstrated that cancer cells upregulate their H2S-producing capacity
to help their bioenergetic function (glycolysis as well as oxidative phosphorylation, see
below), to maximize ATP generation in support of their increased (uncontrolled) growth,
proliferation and migration [50–71].
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Moreover, endogenously produced H2S in colon cancer cells stimulates various cel-
lular signalling pathways, reinforces stemness, provides protection against anticancer
chemotherapeutic agents, and helps maintaining cancer cells in a mesenchymal (as op-
posed to epithelial) state, in support of cellular mobility, invasion and metastasis. H2S is
an endogenous vasodilator [72–74] and pro-angiogenic factor [75–78]; tumor-derived H2S,
therefore, also exerts local (paracrine) actions in the tumor microenvironment, which are
important to increase blood flow and nutrient supply to the growing tumor tissue [39,40,50].
The above-listed roles of H2S are not restricted to colon cancer: similar roles of H2S have
also been demonstrated in a variety of other cancer types [40,51,79–83]. Some of the en-
zymes that are known to be regulated by H2S, and which, in turn, serve the increased
metabolic demands of the tumor cell are listed in Table 2 [19,60,66,71,84–101].

All of the above actions of H2S can also be viewed, in a broader context, as one of
the multitude of mechanisms that cancer cells mobilize, in order to serve their extreme
bioenergetic demand. According to the original version of the “Warburg hypothesis”, can-
cer cells switch to glycolysis from oxidative phosphorylation. However, more recent data
indicate that many cancer cells, while upregulating glycolysis (as well as glutaminolysis,
and many additional metabolic pathways) can also maintain or even increase their aerobic
ATP generation via the stimulation of mitochondrial electron transport [101–106]. To an-
thropomorphize: maximizing ATP generation is the cancer cell’s primary “metabolic goal”:
whatever biochemical mechanism serves this goal—even if it is ”wasteful” or perhaps
useful in the short-term but detrimental in the longer-term—will be deemed ‘good enough’
to satisfy the “short-term thinking” of the cancer cell.

Table 2. Selected, H2S-activated enzymatic targets with potential relevance for cancer cell metabolism.

Target Effect Functional Consequence Reference

Glyceraldehyde-3-
phosphate

dehydrogenase
(GAPDH)

Activation via
sulfhydration Stimulation of glycolysis [84]

Sirtuin 1, Sirtuin 3
(Sirt1, Sirt3)

Activation via
sulfhydration Elevation of cellular NAD+ [85,86]

Lactate
dehydrogenase A

(LDH-A)

Activation via
sulfhydration Elevation of cellular NAD+ [60]

Protein phosphatase
2A

(PP2A)

Inhibition via
sulfhydration Stimulation of AMP kinase [87]

ATP citrate lyase
(ACLY)

Upregulation via
promoter activation

Stimulation of
acetyl-CoA synthesis [71]

Sulfide quinone
oxidoreductase (SQR) Electron donation

Stimulation of
mitochondrial electron

transport
[66,88–90]

F0F1 ATP synthase
(Complex V)

Activation via
sulfhydration

Stimulation of
ATP synthesis [91,92]

Mitochondrial cAMP
phosphodiesterase

(PDE2A)

Inhibition via
sulfhydration and

dimerization

Increased mitochondrial
cAMP content, stimulation

of mitochondrial
ATP synthesis

[93]

Mitofusin 2
(MFN2)

Upregulation through
inhibition of its

proteosomal degradation

Stimulation of
mitochondrial biogenesis [94]
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Table 2. Cont.

Target Effect Functional Consequence Reference

Dynamin 1 like
protein
(Drp1)

Upregulation via ERK1/2 Stimulation of
mitochondrial biogenesis [95]

Reactive oxygen
and reactive nitrogen

species
(ROS, RNS)

Neutralization of
ROS/RNS via direct
interactions and via

upregulation of
antioxidant systems

through NRF2 activation
and p66Shc sulfhydration

Protection against
mitochondrial

oxidative stress
[19,96–100]

DJ-1
Sulfhydration, which
prevents its oxidative

inactivation

Maintenance of
mitochondrial redox

balance
[45]

3. H2S, a Mitochondrial Electron Donor and Stimulatory Bioenergetic Factor in Cancer Cells

Mitochondrial respiration is responsible for the majority of ATP generation in eu-
karyotes. Electron transport along mitochondrial electron transport chain complexes I,
II, III and IV creates an electrochemical proton gradient, which acts as the driving force
for ATP generation; the proton gradient is “harvested” by ATP synthase (mitochondrial
Complex V). Pioneering work of Bouillaud and colleagues, starting in 2007, demonstrated
that H2S can serve as an alternative mitochondrial electron donor; in fact, H2S was char-
acterized as the ”first inorganic substrate for human cells” [88]. The initial studies have
been conducted in nominally normal cells (i.e., non-transformed intestinal epithelial cells),
and was discussed in a physiological context (i.e., the function of the gut epithelial cells to
protect against the H2S generated by the intestinal microbiome, and to utilize it as their
own bioenergetic “fuel”) [89,107–110]. However, further studies demonstrated that the
same basic biochemical mechanisms are also operative in cancer cells; in this case the
H2S that drives the mitochondrial electron transport is not the consequence of external
(i.e., bacterial) sources but is produced internally (through the upregulation of the vari-
ous H2S-producing enzymes; Table 1). For instance, in colon cancer cells CBS silencing
suppresses basal mitochondrial function (oxygen consumption, ATP generation) [50] and
similar effects are seen with CBS silencing in ovarian cancer cells [111] and with 3-MST
silencing in hepatoma cells [90]. Likewise, AOAA, a pharmacological inhibitor of CBS,
or HMPSNE, a pharmacological inhibitor of 3-MST, suppresses electron transport and
mitochondrial bioenergetics in various cancer cell types, while supplementation of these
enzymes’ respective substrates further stimulates these processes [55,56,67,70,90,111–113].
While H2S, on its own, is unable to initiate or maintain mitochondrial electron transport, it
balances and enhances the effects of the physiological, glycolysis-derived electron donors
such as NADH and FAD2, which physiologically deliver electrons to mitochondrial electron
transport Complexes I and II.

The mechanism of H2S-mediated mitochondrial electron donation involves the reac-
tion of H2S with SQR [66,89,90,114–117]. The SQR mechanism appears to be evolutionary
conserved, as various bacteria are also utilizing SQR for H2S “detoxification” [118,119];
as mentioned earlier, such parallels make sense due to the evolutionary bacterial origin
of mitochondria. Hypoxia acts as a stimulus to induce an upregulation of SQR expres-
sion [66]—perhaps as a potential mechanism by which tumor cells attempt to maximize
the bioenergetic stimulatory impact of H2S. However, it must be pointed out that, in a
cell-type dependent manner, and especially when cells are exposed to higher [exogenous]
H2S concentrations, the electron flow from SQR can also occur in the opposite direction
(i.e., reverse electron transport) [89,120]; such a mechanism, in a cancer cell, would not be
useful to support electron transport, proton pumping or ATP generation, but rather, would
stimulate mitochondrial ROS generation.
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In addition to direct electron transport stimulation, H2S can also directly increase the
catalytic activity of ATP synthase, via cysteine sulfhydration [91,92]. This effect makes
functional sense; increased mitochondrial electron transport would be expected to lead to
a consequent increase in the proton gradient between the two sides of the mitochondrial
inner membrane; this proton gradient, would, in turn, be better “harvested” if the specific
activity of ATP synthase is also increased.

H2S has been shown to act as an inhibitor of various cAMP and cGMP phosphodi-
esterases; this effect is important in mediating many physiological actions of H2S, such
as vasodilatation and angiogenesis [73,121–126]. We have demonstrated that H2S is an
inhibitor of the mitochondrial form of cAMP phosphodiesterase (PDE2A), which, in turn,
elevates mitochondrial cAMP levels and stimulates mitochondrial electron transport [93].
cAMP in mitochondria is known to activate various cAMP-dependent kinases (e.g., pro-
tein kinase A), which, in turn, phosphorylates (and consequently activates) various key
proteins in the mitochondrial electron transport chain [127–131]. Thus, a H2S-induced
elevation in intramitochondrial cAMP may be a further mechanism by which cancer cells
may maximize their mitochondrial electron transport and ATP generation.

The above three principal mechanisms by which H2S can enhance mitochondrial
electron transport and ATP production in cancer cells are shown in Figure 1. Additional
mechanisms whereby H2S may contribute to the stimulation of cancer cell metabolism
are summarized in Table 2. Some of these mechanisms relate to the regulation of mito-
chondrial organization (discussed below). H2S can also stimulate glycolysis (another key
energetic process in cancer cells, which, however, is also intimately linked to the support of
mitochondrial function, because it supplies electron donors to the mitochondria). Several
sulfhydration targets (e.g., LDH-A and various sirtuins) can be activated by H2S, which, in
turn, will lead to an increase in cellular NAD+ levels.

A further, recently discovered mechanism relates to the upregulation of ACLY by
H2S [71]. So far, this mechanism has only been investigated in the context of colon epithe-
lial cells’ mesenchymal-epithelial transition process: the H2S-mediated upregulation of
ACLY serves to maintain the cells in the mesenchymal state, at least in part through the
upregulation of the Wnt pathway [71]. However, given the broad bioenergetic roles of
ACLY, and its known upregulation in cancer cells [132–134], the H2S-ACLY axis may have
further bioenergetic and metabolic implications.

“Broader” (i.e., more generalized) mechanisms by which H2S can protect mitochondria
may be related to its antioxidant effects, which, in part, may relate to direct reactions of
H2S with various reactive species, and, in part, may be due to a globalized upregulation of
antioxidant processes—at least in part via NRF2 and p66Shc activation [19,96–100].
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mitochondrial electron transport and aerobic ATP generation in cancer cells. #1: H2S acts as a direct 
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of Complex II. #2: H2S inhibits intramitochondrial cAMP phosphodiesterase; this results in an 
elevation of intramitochondrial cAMP, which, in turn, phosphorylates electron transport chain 
proteins via the activation of intramitochondrial cAMP-dependent protein kinases. #3: H2S acts as 
direct stimulator of ATP synthase activity via sulfhydration of the α subunit (ATP5A1) at Cys 244 
and Cys 294.  
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H2S has been shown to regulate all significant aspects of mitochondrial dynamics: 

mitochondrial fusion, mitochondrial fission, mitochondrial macroautophagy/mitophagy, 
and mitochondrial biogenesis) [87,94,95,135–146]. The majority of the published studies 
indicate that H2S (especially in lower concentrations) tends to stabilize and preserve 
mitochondria, and, in many cases, can also stimulate mitochondrial biogenesis. 
Importantly, most of the studies conducted to date utilized exogenous H2S administration 
(as opposed to investigating the role of endogenously produced H2S). Moreover, most 
studies focus on pathophysiological conditions other than cancer. In the current section, 
primarily the body of evidence that directly relates to cancer will be discussed.  

The first study, investigating the role of endogenous CBS on the organization of 
mitochondria in a cancer cell was conducted in ovarian cancer cells by Bhattacharyya and 
colleagues in a human ovarian cancer cell line (OvCa). These cells contain predominantly 
fused, elongated mitochondria. After siRNA-mediated silencing of CBS, the mitochondria 
exhibited predominantly spherical morphology, with increased individual unbranched 
populations and impaired mitochondrial network quality (i.e., fewer average branches 
per network and shorter average network branch length). These data indicate that CBS 
(via its enzymatic product, H2S) protects ovarian cancer cells against mitochondrial 
fragmentation; this effect may be important in maintaining mitochondrial function. The 
molecular mechanism that was implicated in the mitochondrial quality control in OvCa 
cells was the regulation of mitofusin 2 (MFN2) stability by CBS-derived H2S via a JNK-
mediated regulation of MFN2 degradation via the via the ubiquitin-proteasome system 
[94]. (A similar MFN2-related mechanism has recently also been implicated in the 

Figure 1. Mechanisms by which mitochondrial H2S (produced by CBS, CSE or 3-MST) can stimulate mitochondrial electron
transport and aerobic ATP generation in cancer cells. #1: H2S acts as a direct electron donor at the level of SQR, which
feeds electrons into the electron transport chain at the level of Complex II. #2: H2S inhibits intramitochondrial cAMP
phosphodiesterase; this results in an elevation of intramitochondrial cAMP, which, in turn, phosphorylates electron transport
chain proteins via the activation of intramitochondrial cAMP-dependent protein kinases. #3: H2S acts as direct stimulator of
ATP synthase activity via sulfhydration of the α subunit (ATP5A1) at Cys 244 and Cys 294.

4. H2S, a Regulator of Mitochondrial Dynamics in Cancer Cells

H2S has been shown to regulate all significant aspects of mitochondrial dynamics:
mitochondrial fusion, mitochondrial fission, mitochondrial macroautophagy/mitophagy,
and mitochondrial biogenesis) [87,94,95,135–146]. The majority of the published studies
indicate that H2S (especially in lower concentrations) tends to stabilize and preserve
mitochondria, and, in many cases, can also stimulate mitochondrial biogenesis. Importantly,
most of the studies conducted to date utilized exogenous H2S administration (as opposed to
investigating the role of endogenously produced H2S). Moreover, most studies focus on
pathophysiological conditions other than cancer. In the current section, primarily the body
of evidence that directly relates to cancer will be discussed.

The first study, investigating the role of endogenous CBS on the organization of mi-
tochondria in a cancer cell was conducted in ovarian cancer cells by Bhattacharyya and
colleagues in a human ovarian cancer cell line (OvCa). These cells contain predominantly
fused, elongated mitochondria. After siRNA-mediated silencing of CBS, the mitochondria
exhibited predominantly spherical morphology, with increased individual unbranched
populations and impaired mitochondrial network quality (i.e., fewer average branches per
network and shorter average network branch length). These data indicate that CBS (via its
enzymatic product, H2S) protects ovarian cancer cells against mitochondrial fragmenta-
tion; this effect may be important in maintaining mitochondrial function. The molecular
mechanism that was implicated in the mitochondrial quality control in OvCa cells was
the regulation of mitofusin 2 (MFN2) stability by CBS-derived H2S via a JNK-mediated
regulation of MFN2 degradation via the via the ubiquitin-proteasome system [94]. (A
similar MFN2-related mechanism has recently also been implicated in the maintenance of
mitochondrial integrity in endothelial cells [146]). In an independent study, performed in
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N2a cells (a murine neuroblastoma cell line), H2S (in this case, administered exogenously to
the cells) was found to inhibit mitochondrial fission; in this case the molecular mechanism
was attributed to the downregulation of dynamin 1 like protein (Drp1) mRNA and protein
expression by H2S, most likely through the modulation of ERK1/2 activity [95].

There are multiple H2S-regulated pathways that can influence mitochondrial quality
control in various cell types. For instance, in murine hepatocytes, H2S was shown to
upregulate peroxisome proliferator activated receptor-γ coactivator-related protein (PPRC)
and peroxisome proliferator activated receptor gamma coactivator-1α (PGC-1α) which, in
turn, stimulates mitochondrial biogenesis [141]. In the diabetic heart, ubiquitin specific
peptidase 8 (USP8) has been implicated: H2S was found to increase the association of
parkin with USP8. In turn, USP8 (a deubiquitination enzyme) was shown to promote the
association of parkin to damaged mitochondria to augment mitophagy [145]. In another
study focusing on cardiac myocytes, H2S-stimulated mitochondrial biogenesis was shown
to involve AMP-activated protein kinase (AMPK) activation and subsequent induction of
PGC1α signaling [87]. The various mechanisms by which H2S stimulates mitochondrial
DNA repair and maintain mitochondrial DNA integrity (see below) can also play an
indirect role in the maintenance of mitochondrial structural integrity. Future studies are
needed to test whether the above-mentioned pathways are connected to each other in the
regulation of mitochondrial dynamics in cancer cells.

5. H2S, A Stimulator of Mitochondrial DNA Repair in Cancer Cells

The regulation of DNA integrity is another example where the bell-shaped or biphasic
effects of H2S are prominently featured. It has been known, for at least two decades, that ex-
posure of high concentrations of H2S can induce DNA damage, while lower concentrations
of H2S (i.e., endogenously generated H2S) can stimulate DNA repair. The nature of the
H2S-induced DNA damage—predominantly characterized in the context of nuclear, rather
than mitochondrial DNA—is, to a significant part, indirect, i.e., related to the intracellular
generation of secondary, reactive oxygen species [147–153]. The molecular mechanisms
of H2S-stimulated nuclear DNA repair are complex; multiple pathways and mechanisms
(including PARP11 and g-H2AX foci formation, PCNA, CHK2, Ku70, Ku80, and DNA
polymerase-d) have been implicated; this topic has been recently covered in a comprehen-
sive review [154]. The subsequent paragraph of the current review will concentrate on the
role of H2S in the regulation of mitochondrial DNA repair.

Perhaps the best proof for the bacterial evolutionary origin of mitochondria is the
existence, structure and function of the mitochondrial DNA. Similar to bacterial DNA,
mitochondrial DNA consists of a small, circular DNA structure which is not protected by
histones (and which, therefore, is substantially more sensitive to oxidative damage than the
nuclear DNA). The mitochondrial DNA has only approximately 16,500 base pairs, and it
only encodes 13 proteins (as well as 22 tRNAs, and 2 rRNAs). The mitochondrially encoded
proteins are essential protein components of the mitochondrial electron transport chain
complexes. (From an evolutionary standpoint, it appears that many more mitochondrial
proteins that were originally encoded on the mitochondrial DNA are now encoded by
the nuclear DNA, but a select number of proteins remain mitochondrially encoded, most
likely in order to maintain a rapid local control of mitochondrial function). Mutations in
mitochondrial DNA disrupt the transcription of mitochondrially encoded proteins, which,
in turn, can disrupt mitochondrial protein synthesis (and, consequently, mitochondrial
function) in the short term and mitochondrial dynamics and organization in the long
term [155–157].

The “grand total” of the literature on the role of H2S in the regulation of mitochondrial
DNA repair consists of three published articles [99,158,159]. The first report, conducted in
endothelial cells, demonstrates that AP39, a mitochondrially targeted H2S donor, attenuates
the degree of mitochondrial DNA damage and accelerates the recovery of mitochondrial
DNA integrity after oxidative damage [99]. However, this study did not investigate the
underlying mechanisms of the H2S donor’s action. The second report, conducted in murine



Cells 2021, 10, 220 9 of 18

smooth muscle and aorta tissue focused on the role of CSE-derived H2S in the regulation of
mitochondrial DNA copy numbers, mitochondrial content, mitochondrial-specific mRNAs
(MT-CO1, CytB, and Atp 6), and implicated a role of mitochondrial transcription factor A
mRNA and protein expression (TFAM) in these processes. The study concluded that H2S,
via the regulation of DNA methyltransferase 3A (Dnmt3a) expression, and the consequent
regulation of TFAM promoter methylation, is involved in the stimulation of mitochondrial
DNA repair [158]. The most recent study (and, to date, the only published report focusing
on the role of H2S in mitochondrial DNA repair in cancer cells) was conducted by our
group in A549 lung adenocarcinoma cells [159]. These cells show an increased expression
of all 3 H2S-producing enzymes. Oxidative mitochondrial DNA damage in these cells
was increased and/or the efficacy of the DNA repair was impaired when the cells’ H2S
biosynthesis was suppressed (either by treating of the cells with the pharmacological CBS
inhibitor AOAA or after siRNA-mediated silencing any of the three major H2S-producing
enzymes). The mechanism of H2S’ action to stimulate mitochondrial DNA repair was
linked to the ability of H2S to induce the sulfhydration of the mitochondrial DNA repair
enzyme EXOG (on Cys 76), which, in turn, promoted the assembly of a mitochondrial
DNA repair complex (including EXOG, APE1 and Lig3) [159].

Clearly, the current body of knowledge on the role of H2S in regulating mitochondrial
DNA integrity (or replication) or other mitochondrial DNA-related processes (e.g., the
transcription or translation of mitochondrially encoded proteins) in cancer cells is minimal
or non-existent: thus, future work will be needed to investigate these processes. Nev-
ertheless, even from the current body of data, an interesting paradox emerges: on one
hand, H2S production in cancer cells is upregulated, and mitochondrial DNA repair is
activated. On the other hand, there are reports that show that in cancer cells, in fact, the
mitochondrial DNA integrity is impaired [160,161]. It is conceivable that the increased
DNA repair capacity of the cancer cell is unable to keep up with the extent of DNA damage
(which is also increased in cancer cells, due to a multitude of processes including increased
cellular ROS/RNS generation). A possible rationalization may be related to the previously
mentioned “short-term thinking” of the cancer cell: by maximizing bioenergetic capacity in
the short-term, cellular integrity (including DNA integrity) may be “expandable”. Possibly,
survivable mutations may even be beneficial to the tumor tissue as a whole (although
not necessarily to individual cancer cells), as they might produce clones that are resistant
to the body’s own immunological tumor elimination processes or to chemotherapeutic
agents [160,161].

6. Anticancer Effects of Pharmacological H2S Donation

In line with the bell-shaped or biphasic effects of H2S, a significant body of data
demonstrates that H2S donor compounds can exert anticancer effects by suppressing cancer
cell metabolism and inducing cancer cell death. As previously discussed, [28,39,40,81,162],
these cytotoxic H2S effects are do not invalidate the mechanisms and pathways discussed
in the current article; while endogenously produced H2S maintains and supports a variety
of beneficial (for the cancer cell, that is—i.e., not for the tumor-bearing host) processes
(such as DNA repair, mitochondrial ATP generation, etc.), exogenously administered H2S
donors reach high local concentrations, which are cytotoxic to cancer cells (but also to any
other cell type) (Figure 2). The various chemical classes of anticancer H2S donors, their
cellular actions (which, in some cases include the initiation of mitochondrial cell death
pathways), and the potential difficulties with testing and developing such compounds (e.g.,
the theoretical and practical problems around selective targeting of the tumor cells with
H2S donors in vivo) are extensively discussed in specialized reviews [163–170] and will
not be reiterated in the current article.
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(via the removal of the stimulatory effects of endogenously produced, CBS, CSE or 3-MST-derived H2S) as well as exogenous,
pharmacological H2S donor compounds (via stimulation of multiple cytostatic and cytotoxic mechanisms) can exert
anticancer effects.

7. Additional Mitochondrial Roles of H2S in Cancer Cells

It is likely that the stimulation of mitochondrial electron transport, ATP generation,
mitochondrial dynamics and mitochondrial DNA repair by endogenous H2S are not stand-
alone processes, but, rather, they are part of a coordinated broad metabolic reprogramming
process of the cancer cell. In fact, H2S may play an active role in this reprogramming
process. For instance, H2S has been reported to sulfhydrate (activate) GAPDH to stimulate
glycolysis [84]. An additional, H2S-regulated bioenergetic pathways that may become
upregulated in cancer cell include the nicotinamide phosphoribosyltransferase (Nampt)
(which has been implicated in the cancer cells’ ability to recover from hypoxic or oxidative
damage) [54]. Moreover, metabolomic studies indicate that H2S can stimulate the activ-
ity of multiple Krebs cycle enzymes [56,58]. H2S was also found to upregulate glucose
uptake in various cell types [171–174]; this may be very important to support the high
glucose utilization of the cancer cell. Multiple metabolomic studies and genome wide gene
expression studies [56,58,174] suggest that endogenously produced H2S plays a role in
the reprogramming of the pyrimidine and purine metabolism, amino acid metabolism,
nicotinate and nicotinamide metabolism, fatty acid metabolism, glutamate metabolism, the
urea cycle, and several other pathways. The target enzymes involved in these processes
remain to be characterized in the future. The available “sulfhydrome libraries” list thou-
sands of sulfhydrated cellular proteins [44–47]. Although, for the majority of these proteins,
functional follow-up studies remain to be conducted, it is important to point out that many
of these sulfhydratable proteins are involved in the regulation of the above-mentioned
biochemical and metabolic processes.

Endoplasmic reticulum stress (ER stress) has been implicated in the pathophysiology
of many forms of cancer; this process also known to have a close and complex interrelation-
ship with mitochondrial function/dysfunction [175–177]. Exogenous and endogenous H2S
has been demonstrated to regulate ER stress [178–181]; deeper mechanistic aspects of this
interrelationship remain to be investigated in the future. In addition (and, at least in part,
in the context of ER stress) the potential role of cancer-cell-derived H2S in the regulation
of mitochondrial KATP channels and mitochondrial aspects of cellular calcium handling
should also be investigated in the future, given the fact that several studies implicate a
regulatory role of H2S in these processes [182–185].

Many investigators consider CBS, CSE and 3-MST as the sole sources of H2S in
mammalian cells. However, there are additional sources of H2S, the function of which
remains largely unexplored in the pathophysiology of cancer. For instance, there are non-
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enzymatic sources of H2S; however, these are difficult to investigate for practical reasons
(e.g., the lack of selective H2S scavengers). Moreover, several additional enzymes have been
identified as mammalian sources of H2S; these include D-amino acid oxidase (DAO) in the
kidney and gut [185,186], cysteinyl-tRNA synthetases (CARSs) [44], and selenium-binding
protein 1 (SBP1) [187,188]. The regulation of DAO, CARSs and SBP1 in cancer and the
functional role of the associated H2S/polysulfide production remains to be explored in
future studies.

Clearly, many questions remain to be addressed in the context of the above-discussed
processes. One of them relates to the mechanism(s) involved in the upregulation of H2S
biosynthesis in cancer cells (in general, and with respect to potential translocation of
H2S-producing enzymes into the mitochondria). CBS and 3-MST expression may be
regulated both at the level of transcription, as well as at the level of degradation/protein
stability [31,35]; the importance of these mechanisms in various cancers remain to be
further defined. It will be also interesting to assess whether the increased H2S biosynthesis
in cancer cells is linked to the well-known global reprogramming of substrate (cysteine,
homocysteine) biosynthesis and/or cell uptake in cancer. Clearly, cancer cells undergo a
global reprogramming of sulfur metabolism [48,49], and the mechanisms discussed in the
current article must be placed into this broader context.

8. Conclusions and Implications

In cancer cells, upregulation of various H2S-producing enzymes occurs in various
cellular compartments (including the mitochondria), which raises intracellular (including
intramitochondrial) H2S levels. H2S, in turn, stimulates mitochondrial electron transport,
ATP generation, regulates mitochondrial dynamics and promotes mitochondrial DNA
repair: all of these processes serve the extreme bioenergetic demand of the cancer cell. Phar-
macological inhibition of H2S generation, which can impair the cancer cell’s mitochondrial
function (and, more broadly, it can disrupt the cancer cell’s bioenergetic supply) emerges
as a potential novel anticancer therapeutic concept.
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