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Abstract

Neurons in the primary visual cortex are more or less selective for the orientation of

a light bar used for stimulation. A broad distribution of individual grades of

orientation selectivity has in fact been reported in all species. A possible reason for

emergence of broad distributions is the recurrent network within which the stimulus

is being processed. Here we compute the distribution of orientation selectivity in

randomly connected model networks that are equipped with different spatial

patterns of connectivity. We show that, for a wide variety of connectivity patterns, a

linear theory based on firing rates accurately approximates the outcome of direct

numerical simulations of networks of spiking neurons. Distance dependent

connectivity in networks with a more biologically realistic structure does not

compromise our linear analysis, as long as the linearized dynamics, and hence the

uniform asynchronous irregular activity state, remain stable. We conclude that

linear mechanisms of stimulus processing are indeed responsible for the

emergence of orientation selectivity and its distribution in recurrent networks with

functionally heterogeneous synaptic connectivity.

Introduction

When arriving at the cortex from the sensory periphery, sensory signals are further

processed by local recurrent networks. Indeed, the vast majority of all the

connections a cortical neuron receives are from the cortical networks within

which it is embedded and only a small fraction of connections are from

feedforward afferents: The fraction of recurrent connections has been estimated to

be as large as 80% [1]. What is the precise role of this recurrent network in

sensory processing is not yet fully clear.

OPEN ACCESS

Citation: Sadeh S, Rotter S (2014) Distribution of
Orientation Selectivity in Recurrent Networks of
Spiking Neurons with Different Random
Topologies. PLoS ONE 9(12): e114237. doi:10.
1371/journal.pone.0114237

Editor: Thomas Wennekers, Plymouth University,
United Kingdom

Received: June 13, 2014

Accepted: November 4, 2014

Published: December 3, 2014

Copyright: � 2014 Sadeh, Rotter. This is an
open-access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All relevant data are within the paper.

Funding: Funding by the German Ministry of
Education and Research (BMBF; BFNT-F*T, grant
01GQ0830) and the German Research Foundation
(DFG; grant EXC 1086) is gratefully acknowledged.
The article processing charge was covered by the
open access publication fund of the University of
Freiburg. The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0114237 December 3, 2014 1 / 32

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0114237&domain=pdf
http://creativecommons.org/licenses/by/4.0/


In the primary visual cortex of mammals like carnivores and primates, for

instance, it has been proposed that the recurrent network might be mainly

responsible for the amplification of orientation selectivity [2, 3]. Only a small bias

provided by the feedforward afferents would be enough, and selectivity is then

amplified by a non-linear mechanism implemented by the recurrent network.

This mechanism is a result of the feature-specific connectivity assumed in the

model, where neurons with similar input selectivities are connected to each other

with a higher probability. This, in turn, could follow from the arrangement of

neurons in orientation maps [4–6], which implies that nearby neurons have

similar preferred orientations. As nearby neurons are also connected with a higher

likelihood than distant neurons, feature-specific connectivity is a straight-forward

result in this scenario.

Feature-specific connectivity is not evident in all species, however. In rodent

visual cortex, for instance, a salt-and-pepper organization of orientation selectivity

has been reported, with no apparent spatial clustering of neurons according to

their preferred orientations [6]. As a result, each neuron receives a heterogeneous

input from pre-synaptic sources with different preferred orientations [7].

Although an over-representation of connections between neurons of similar

preferred orientations has been reported in rodents [8–12], presumably as a result

of a Hebbian growth process during a later stage of development [13], such

feature-specific connectivity is not yet statistically significant immediately after eye

opening [10]. A comparable level of orientation selectivity, however, has indeed

been reported already at this stage [10]. If cortical recurrent networks make a

contribution to sensory processing at this stage, random recurrent networks

should be chosen as a model [14–16]. Activity-dependent reorganization of the

network, however, may still refine the connectivity and improve the performance

of the processing later during development.

Here we study the distribution of orientation selectivity in random recurrent

networks with heterogeneous synaptic projections, i.e. networks where the

recurrent connectivity does not depend on the preferred feature of the input to

the neurons. We show that in structurally homogeneous networks, the

heterogeneity in functional connectivity, i.e. the heterogeneity in preferred

orientations of recurrently connected neurons, is indeed responsible for a broad

distribution of selectivities. A linear analysis of the network operation can account

quite precisely for this distribution, for a wide range of network topologies

including Erdős-Rényi random networks and networks with distance-dependent

connectivity.

Methods

Network Model

In this study, we consider networks of leaky integrate-and-fire (LIF) neurons. For

this spiking neuron model, the sub-threshold dynamics of the membrane

potential Vi(t) of neuron i is described by the leaky-integrator equation
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t _Vi(t)zVi(t)~RIi(t): ð1Þ

The current Ii(t) represents the total input to the neuron, the integration of

which is governed by the leak resistance R, and the membrane time constant

t~20 ms. When the voltage reaches the threshold at Vth~20 mV, a spike is

generated and transmitted to all postsynaptic neurons, and the membrane

potential is reset to the resting potential at V0~0 mV. It remains at this level for

short absolute refractory period, tref~2 ms, during which all synaptic currents are

shunted.

The response statistics of a LIF neuron, which is driven by randomly arriving

input spikes, can be analytically solved in the stationary case. Assuming a fixed

voltage threshold, Vth, the solution of the first-passage time problem in response

to randomly and rapidly fluctuating input yields explicit expressions for the

moments of the inter-spike interval distribution [17, 18]. In particular, the mean

response rate of the neuron, r, in terms of the mean, m, and variance, s2, of the

fluctuating input is obtained

r~F(m,s)~ trefzt
ffiffiffi
p
p ð ~Vth

~V0

eu2
(1zerf (u))|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

h(u)

du

2
64

3
75

{1

ð2Þ

with ~Vth~(Vth{m)=s and ~V0~(V0{m)=s.

Employing a mean field ansatz, the above theory can be applied to networks of

identical pulse-coupled LIF neurons, randomly connected with homogeneous in-

degrees, and driven by external excitatory input of the same strength. Under these

conditions, all neurons exhibit the same mean firing rate, which can be

determined by a straight-forward self-consistency argument [19, 20]: The firing

rate r is a function of the first two cumulants of the input fluctuations, m and s2,

which are, in turn, functions of the input. If s is the input (stimulus) firing rate,

and r is the mean response rate of all neurons in the network, respectively, we

have the relation

m(s,r)~t½JsszJrrNE(f {g(1{f ))�,

s2(s,r)~t½J2
s szJ2

r rNE(f zg2(1{f ))�:
ð3Þ

Here Js denotes the amplitude of an excitatory post-synaptic potential (EPSP)

of external inputs, and Jr denotes the amplitude of recurrent EPSPs. The factor g is

the inhibition-excitation ratio, which fixes the strength of inhibitory post-synaptic

potentials (IPSPs) to {gJr. Synapses are modeled as d-functions, where the pre-

synaptic current is delivered to the post-synaptic neuron instantaneously, after a

fixed transmission delay of d~1:5 ms.

The remaining structural parameters are the total number of neurons in the

network, N , the connection probability, E, and the fraction f of neurons in the
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network that are excitatory (Nexc~fN), implying that a fraction 1{f is inhibitory

(Ninh~(1{f )N). For all networks considered here we have used f ~0:8 and g~8.

Js was always fixed at 0:1 mV. For all network connectivities, we fix the in-degree,

separately for the excitatory and the inhibitory population, respectively. That is,

each neuron, be it excitatory or inhibitory, receives exactly EexcNexc connections

randomly sampled from the excitatory population and EinhNinh connections

randomly sampled from the inhibitory population. Multiple synaptic contacts and

self-contacts are excluded.

In our simulations, inputs are stationary and independent Poisson processes,

denoted by a vector~s of average firing rates. Its i-th entry, si, corresponding to the

average firing rate of the input to the i-th neuron, depends on the stimulus

orientation h and the input preferred orientation (PO) of the neuron h�i according

to

si(h)~sb½1zm cos (2(h{h�i ))�: ð4Þ

The baseline sb is the level of input common to all orientations, and the peak

input is (1zm)sb. The input PO is assigned randomly and independently to each

neuron in the population. To measure the output tuning curves in numerical

simulations, we stimulated the networks for 8 different stimulus orientations,

covering the full range between 00 and 1800 in steps of 22:50. The stimulation at

each orientation was run for 15 s, using a simulation time step of 0:1 ms. Onset

transients (the first 150 ms) were discarded.

Linearized Rate Equations

To quantify the response of a network to tuned input, we first compute its

baseline (untuned) output firing rate, rb. This procedure is described elsewhere in

detail [16], and we only recapitulate the main steps and equations here. If the

attenuation of the baseline and amplification of the modulation is performed by

two essentially independent processing channels in the network [16], the baseline

firing rate can be computed from the fixed point equation

rb~F(m(sb,rb),s(sb,rb)), ð5Þ

the root of which can be found numerically [16, 20].

Now we linearize the network dynamics about an operating point defined by

the baseline. First, we write the full nonlinear rate equation of the network as

~r~F(~m,~s). Here, the mean and the variance of the input are expressed, in matrix-

vector notation, as

~m(~s,~r)~t½Js~szW~r �,

~s2(~s,~r)~t½J2
s~szV~r �,

ð6Þ

where~s and~r are N-dimensional column vectors of input and output firing rates,

respectively, and W is the weight matrix of the network. Its entry Wij, the weight
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of a synaptic connection from neuron j to neuron i, is either 0 if there is no

synapse, Jr if there is an excitatory synapse, or {gJr if there is an inhibitory

synapse. Matrix V is the element-wise square of W, that is Vij~W2
ij.

The extra firing rate of all neurons, d~r~~rm (output modulation), in response to

a small perturbation of their inputs, d~s~~sm (input modulation), is obtained by

linearizing the dynamics about the baseline, i.e. about mb and sb (obtained from

Eq. (3) evaluated at rb and sb)

d~r~
LF(m,s)

Lm mb,sb
d~mz

LF(m,s)

Ls

����
����

mb,sb

d~s: ð7Þ

The partial derivatives of F(m,s) at this operating point can be computed from

Eq. (2) as

a~
LF(m,s)

Lm
mb,sb

~{F2(mb,sb)t
ffiffiffi
p
p L

Lm

ð ~Vth

~V0

h(u)du

" #�����
�����

mb

~{t
ffiffiffi
p
p

F2(mb,sb) h(~Vb
th)

L~V th

Lm
mb

{h(~Vb
0 )

L~V0

Lm

�����
�����

mb

2
4

3
5

~
t
ffiffiffi
p
p

sb
r2

b h(~Vb
th){h(~Vb

0 )
� �

ð8Þ

and, in a similar fashion,

b~
LF(m,s)

Ls

����
mb,sb

~{t
ffiffiffi
p
p

F2(mb,sb) h(~Vb
th)

L~V th

Ls
sb

{h(~Vb
0 )

L~V0

Ls

�����
�����

sb

2
4

3
5

~
t
ffiffiffi
p
p

s2
b

r2
b h(~Vb

th)(~Vb
th{mb){h(~Vb

0 )(~Vb
0 {mb)

� � ð9Þ

where F(mb,sb)~rb, and ~Vb
th, ~Vb

0 , mb and sb are the corresponding parameters

evaluated at the baseline (for further details on this derivation, see [21]).

We also need to express d~m and d~s in terms of the input perturbations. In fact,

they can be written in terms of d~s and d~r from Eq. (6) as:

d~m~t½Jsd~szWd~r �,

d~s~t½ J2
s

2sb
d~sz

V
2sb

d~r �:
ð10Þ
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For the total output perturbation,~rm~d~r, we therefore obtain

~rm~at½Js~smzW~rm�zbt½ J2
s

2sb
~smz

V
2sb

~rm�: ð11Þ

With the simulation parameters used here, our network typically operates in a

fluctuation-driven regime of activity with a comparable level of input mean and

fluctuations, O(s)<O(m). As a result, the contribution of the mean, a~m, to output

modulation in Eq. (11) is O(sa=b) larger than the contribution of the variance,

b~s. In the noise-dominated regime, ~Vb
0 and ~Vb

th are small compared to mb in Eq.

(9), and hence we can write b< {t
ffiffi
p
p

s2
b

r2
bmb h(~Vb

th){h(~Vb
0 )

� �
, yielding b<{

mb
sb

a.

Thus, with a comparable level of mean and fluctuations, the contribution of the

mean to output modulation is O(s) larger than the contribution of the variance.

In fact, the more the network operates in the noise-dominated regime, the more

a~m becomes dominant over b~s, making the second term on the right hand side of

Eq. (11) negligible.

For the network shown in Fig. 1 and Fig. 2, for instance, rb<5 spikes=s. Given

the general parameters of our simulation, we obtain mb~7 mV and sb~10 mV.

This yields ~Vb
0 ~{0:7 and ~Vb

th~1:3, and finally a~1:12 and b~0:63. In response

to feedforward input perturbations, therefore, the contribution of the mean term

(atJs~sm) is 2asb
bJs

<250 times the contribution of the variance term (bt
J2
s

2sb
~sm). In

response to recurrent perturbation vectors with zero mean, both the mean term

(atW~rm) and the variance term (bt V
2sb
~rm) would respond with zero output, on

average. The variance, in contrast, is not zero; a similar computation as in Eq. (3)

yields t(aJr)
2rNE½f zg2(1{f )� and t(

bJ2
r

2sb
)2rNE½f zg4(1{f )�, the terms resulting

from the mean and variance contributions, respectively. That is, the mean

contribution is dominant again by a factor of
4s2

ba½f zg2(1{f )�
b2J2

r ½f zg4(1{f )�<300.

In the rest of our computation we therefore ignore the second part of the right

hand side in Eq. (11) and approximate the output modulation as:

~rm<at½Js~smzW~rm�: ð12Þ

We call

f~ta~
t2 ffiffiffi

p
p

sb
r2

b h(~Vb
th){h(~Vb

0 )
� �

ð13Þ

the ‘‘linearized gain’’ and write the linearized rate equation of the network in

response to small input perturbations as:

~rm~fW~rmzfJs~sm: ð14Þ
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Linear and Supralinear Gains

The gain f is the linearized gain in the firing rate of a single LIF neuron in

response to small changes in its mean input, while it is embedded in a recurrent

network operating in its baseline AI state. That is, the extra firing rate, dr, of a

neuron in response to a perturbation in its input, ds, when all other neurons are

receiving the same, untuned input as before, divided by the input modulation

weighted by its effect on the postsynaptic membrane f~ dr
Jsds.

Alternative to the analytic derivation we pursued above, this gain can also be

evaluated numerically by perturbing the baseline firing rate with an extra input,

ds:

f~
dr

Jsds
~

F(m(sbzds,rb),s(sbzds,rb))
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{rbzdr

{ F(m(sb,rb),s(sb,rb))
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{rb

Jsds
: ð15Þ

(Note that, as this is the response gain of an individual neuron to an individual

perturbation in its input when all other neurons receive the same baseline input, it

is not needed to consider the perturbation in the recurrent firing rate, r, in the

baseline state.)

If this procedure is repeated for each ds, a numerical f –I curve is obtained. This

is the curve we have plotted in Fig. 3A as ‘‘Numerical perturbation’’. If this curve

was completely linear, it should not be much different from the results of our

analytical perturbation (Eq. (13), denoted by ‘‘Linearized gain’’ in Fig. 3A). The

results of the numerical perturbation, however, show some supralinear behavior,

i.e. larger perturbations lead to a higher input-output gain. As a result, if we

compute the gain at a perturbation size equal to the input modulation (sm), a

different gain is obtained. We use the term ‘‘stimulus gain’’ to refer to this

supralinear gain at the modulation size of input (i.e. when ds~sm):

fs~
dr

Jssm
~

F(m(sbzsm,rb),s(sbzsm,rb)){F(m(sb,rb),s(sb,rb))

Jssm
: ð16Þ

This is shown by the red line in Fig. 3A.

Linear Tuning in Recurrent Networks

Once we obtained the linearized gains at the baseline state of network operation,

the linearized rate equation of the network for modulations about the baseline

activity is obtained. Each neuron responds to the aggregate perturbation in its

input with a gain obtained by the linearization formalism employed. The total

perturbation consists of a feedforward component, which is the modulation in the

input (stimulus) firing rate of the neuron, and a recurrent component, which is a

linear sum of the respective output perturbations of the pre-synaptic neurons in
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the recurrent network. This can, therefore, be written, in vector-matrix notation,

as:

~rm~fW~rmzfJs~sm: ð17Þ

If {fW is invertible, the output firing rates can be computed directly as

Figure 1. Distribution of orientation selectivity in networks with Erdős-Rényi random connectivity. (A) Raster plot of network activity in response to
stimulus with orientation h~00. Neurons are sorted according to their input preferred orientations, h�, indicated on the vertical axis. The histogram on the
bottom shows the population firing rates, averaged in time bins of 10 ms width. Here, and in all other figures, red and blue colors denote excitatory and
inhibitory neurons, or neuronal populations, respectively. (B) Average firing rates, for all neurons in the network, estimated from the spike count over the
whole stimulation period (tstim~15 s). The distribution of firing rates over the population is depicted in the histogram at the bottom. (C) Coefficient of Variation
(CV) of the inter-spike intervals (ISI), CVISI~std(ISI)=mean(ISI), computed for all neurons in the network with more than 10 spikes during the stimulation. The
distribution of CVISI is plotted at the bottom. (D) Sample output tuning of 800 excitatory and 200 inhibitory neurons randomly chosen from the network, all
aligned at their input preferred orientations. The input tuning (green, same as Eq. (4)) is normalized to the population average of the baseline (mean over all
orientations) of output tuning curves. Inset: The mean (across population) of aligned output tunings are shown in black. The gray shading indicates
mean+std extracted from the population. Linearly interpolated versions of individual tuning curves (generated at a resolution of 10) have been used to
compute mean and std of aligned tuning curves. The population average of the baseline (mean over all orientations) of output tuning curves is shown
separately for excitatory and inhibitory populations with a red and a blue line, respectively (the lines highly overlap, since the average activity almost coincide
for both populations). The normalized input tuning curve (green) is obtained by the same method as used for the main plot. (E) Scatter plot of F0 and F2
components, extracted from individual output tuning curves in the network. The individual distributions of F0 and F2 components over the population are
plotted in the inset. (F) Distribution of single-neuron F2 components from a network simulation (histogram) compared with the prediction of our theory
(dashed line, computed from Eq. (25)). To evaluate the goodness of match, the overlap of the empirical and predicted probability density functions (Premp and

Prprd, respectively) is computed as
Ð?
{? min(Premp(x’),Prprd(x’)) dx’. This returns an overlap index between 0% and 100%, corresponding to no overlap and

perfect match of distributions, respectively. Parameters of the network simulation are: N~10000, Eexc~Einh~10%, Jr~0:25 mV, g~8, sb~15000 spikes=s,
Js~0:1 mV, m~10%.

doi:10.1371/journal.pone.0114237.g001
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Figure 2. Correlations in the network. (A) Distribution of correlation coefficients for pairs of neurons in the
network. For the example network of Fig. 1, the distribution of Pearson correlation coefficients (CC) between
spike trains of pairs of neurons is plotted. 200 excitatory and 200 inhibitory neurons are randomly sampled from
the network and all pairwise correlations (between pairs of excitatory, CCee, between pairs of inhibitory, CCii,
and between excitatory and inhibitory, CCei, samples), based on spike counts in bins of width 20 ms are
computed. The corresponding distributions for smaller (10 ms) and larger (50 ms) bins are shown in the inset
(top and bottom, respectively). (B) The time series for the excitatory and inhibitory population spike counts
indicate a fine balance on the population level. The correlation of activity between excitatory (red) and
inhibitory (blue) populations is quite high on different time scales. The similarity of the temporal pattern of
population activities is again quantified by the Pearson correlation coefficient.

doi:10.1371/journal.pone.0114237.g002
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~rm~( {fW){1fJs~sm~AfJs~sm, ð18Þ

which can be further expanded into

~rm~
X?
k~0

(fW)kfJs~sm: ð19Þ

Ignoring higher-order contributions O((fW)2), Eq. (19) can be approximated

as

~rm<( zfW)fJs~sm: ð20Þ

Eq. (20) for each stimulus orientation returns the modulation of the output

firing rate of all neurons in the network in response to a given input modulation.

We then assume that all inputs si are linearly tuned to the stimulus~w according

to

si(~w)~y�i zh~w
�
i ,~wi, ð21Þ

where y�i is the baseline rate in absence of stimulation and the vector ~w�i is the

vector of preferred feature for the i-th neuron. The length of the vector that

Figure 3. Supralinear neuronal gain affects the linear prediction. (A) Discrepancy of the linearized gain
with the gain computed at stronger input modulations. The linearized gain of the neuron obtained analytically
from Eq. (13) (dashed blue line) is compared with the numerical solution of Eq. (5) with an input perturbation
equal to the modulation in the feedforward input, ds~sm~msb~1500 spikes=s (see Eq. (15) in Methods). The
red line shows the corresponding linearized gain that would have been computed with this perturbation, fs

(Eq. (16)). (B) Comparison of our theoretical prediction of the distribution with f and fs (dashed and solid lines,
respectively). The overlap index of the improved prediction, i.e. when f is replaced by fs in Eq. (30), has
greatly increased.

doi:10.1371/journal.pone.0114237.g003
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represents the preferred feature E~w�i E is the tuning strength. To ensure the linearity

of operation, the firing rate si(~w) should remain always positive

0ƒ min
~w

si(~w)~y�i {E~w�i E E~wE: ð22Þ

If this condition is satisfied, the linearity of the tuning and positivity of firing

rates remain compatible. If the condition is violated, partial rectification of the

neuronal tuning curve follows and the linear analysis does not fully hold.

To obtain the operation of the network on input preferred feature vectors, we

can write Eq. (20) for input tuning curves

~rm(~w)~AfJs~sm(~w)~AfJs
~W�~w: ð23Þ

Here ~W� is a matrix the rows of which are given by the transposed preferred

features (~w�i )T . Therefore, all neurons in the recurrent network are again linearly

tuned, with preferred features encoded by the rows of the matrix AJs
~W�. From

here we can compute the matrix of output feature vectors, ~W�out, as

~W�out~AfJs
~W�<( zfW)fJs

~W�: ð24Þ

The first term on the right-hand side is the weighted tuning vector of the

feedforward input each neuron receives, and the second term is the mixture of

tuning vectors of corresponding pre-synaptic neurons in the recurrent network.

Distribution of Orientation Selectivity

The length of the output feature vector represents the amplitude of the

modulation component of output tuning curves. This is a measure of orientation

selectivity, and we compute its distribution here.

Orientation is a two-dimensional feature, and the input feature vector (~W� in

Eq.(24)) is now a vector of two-dimensional input feature vectors (a vector of

vectors). Its each entry, corresponding to the input orientation selectivity vector of

each neuron, can, therefore, be determined by a length and a direction. The length

of all vectors is sm~msb, as all inputs have the same modulation, and the direction

is twice the input PO of neurons (see Eq. (4)), which are drawn independently

from a uniform distribution on ½0,p). They are assumed to be independent of the

weight matrix W, implying the absence of feature specific connectivity.

The feedforward tuning vector of each neuron is accompanied by a

contribution from the recurrent network (Eq. 24). For each neuron, the recurrent

contribution is a vectorial sum of the input tuning vectors of its pre-synaptic

neurons. According to the multivariate Central Limit Theorem, the summation of

a large number of independent random variables leads to an approximate multi-

variate normal distribution of the output features. Tuning strength is given by the
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length of output tuning vectors, L~EwE~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�out,x2zw�out,y2

q
. For a bivariate

normal distribution with parameters mL and s2
L, we can compute the distribution

of this length

L2(L; mL,s2
L)~

L
s2

L
e{(L2zm2

L)=(2s2
L)I0(

LmL

s2
L

), ð25Þ

where

I0(z)~
1
p

ðp
0

ez cos (y)dy

is the modified Bessel function of the first kind and zeroth order. Therefore, we

only need to compute the mean and the variance of the resulting distribution.

The mean of the distribution mL is equal to the length of feedforward feature

vector, fJssm. This is because the expected value of the contribution of the

recurrent network vanishes in each direction

E½W�rec,x�~E½fWfJssm cos (2H�)�~f2JssmE½W�E½cos (2H�)�~0: ð26Þ

W and H� denote, respectively, the random variables from which the weights

and input POs are drawn. A similar computation yields E½W�rec,y�~0. Here we

have used the property that the two random variables W and H� are independent,

and that all orientations are uniformly represented in the input (E½cos (2H�)�~0).

As a result, we obtain

E½L�~E½W�f fwzW�rec�~fJssm: ð27Þ

The recurrent contribution does not, on average, change the length of output

feature vectors. However, it creates a distribution of selectivity, which can be

quantified by its variance

Var½W�rec,x�~(f2Jssm)2Var½W�Var½cos (2H)�

~(f2Jssm)2Var½W�
ðp

0
cos2 (2H)dH

~
1
2

(f2Jssm)2Var½W�:

ð28Þ

Again, we have exploited the independence of random variables W and H, and

the uniform representation of input POs (E½cos (2H�)�~0), to factorize the

variance, i.e. Var½W cos (2H)�~Var½W�Var½cos (2H)�. Similar computation yields

the same variance for the second dimension.

For our random networks, the weights for each row of the weight matrix are

drawn from a binomial distribution, W. The number of non-zero elements is

determined by connection probabilities (Eexc and Einh for excitation and inhibition

respectively), and each non-zero entry is weighted by the synaptic strength (Jr and
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{gJr for excitation and inhibition respectively). The variance Var½W� can

therefore be computed explicitly:

Var½W�~J2
r NE(1{E) f zg2(1{f )

� �
: ð29Þ

For more complex connectivities, the variance can be numerically computed

from the weight matrix. For our networks here, the mean and the variance of the

distribution of output tuning vectors can, therefore, be expressed as

mL~fJssM and s2
L~

1
2

(f2JssM)2J2
r NE(1{E) f zg2(1{f )

� �
: ð30Þ

For an output tuning curve with a cosine shape, R(h)~RbzRm cos (h{h�), the

tuning strength we introduced above corresponds to Rm, namely the modulation

(F2) component of the tuning curve. Rb is also obtained as the baseline firing rate

of the network, rb, from Eq. (5). To compare the prediction with the result of our

simulations, we compute the mean and modulation of individual output tuning

curves from the simulated data. Mean and modulation are taken from the zeroth

and the second Fourier components of each tuning curve (F0 and F2

components), respectively. The distribution given by Eq. (25) should, therefore,

precisely match the distribution of modulation (F2) component of output tuning

curves obtained from simulations, if our linear analysis grasps the essential

mechanisms of orientation selectivity in model recurrent networks.

Results

Erdo99s-Rényi Random Networks

We first study excitatory-inhibitory Erdős-Rényi random networks of LIF neurons

(Eq. (1)) with a doubly fixed in-degree, namely where both the excitatory in-

degree and the inhibitory in-degree is fixed for both excitatory and inhibitory

neurons. Figs. 1A–C show the response of a network with Jr~0:25 mV and

Eexc~Einh~0:1 to the stimulus of 0 0 orientation. The network with these

parameters operates in the fluctuation-driven regime, which shows asynchronous-

irregular (AI) dynamics (Fig. 1A), with low firing rates (Fig. 1B) and high

variance of inter-spike intervals (ISI) (Fig. 1C). The network at this regime is

capable of amplifying the weak tuning of the input, as it is reflected both in the

network tuning curve in response to one orientation (Fig. 1B) and in individual

tuning curves in response to different stimulus orientations (Fig. 1D).

The joint distribution of the modulation (F2) component of (individual)

output tuning curves and the respective baseline (F0) component (Fig. 1E) shows

that the average values of these two components have become comparable after

network operation. However, the F2 component has a much broader distribution

(Fig. 1E, inset). The distribution predicted by our theory (Eq. (25)) matches

partially with the distribution measured in the simulations (Fig. 1F). The degree
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of match is quantified by an index, which assesses the overlap area of the two

probability distributions.

As our analysis is based on the assumption of linearity of network interactions,

the result of our theoretical prediction holds only if the network is operating in

the linear regime. Any violation of our linear scheme would, therefore, lead to a

deviation of the linear prediction from the measured distribution. The remaining

discrepancy should, therefore, be attributed to any factor which invalidates our

approximation scheme here. Possible contributing factors of this sort in our

networks are partial rectification of tuning curves, correlations and synchrony in

the network providing the input, and supralinearity of neuronal gains.

Partial rectification of firing rates is obvious in Fig. 1B. However, this does not

seem to be a very prominent effect. Only a small fraction of the population is

strictly silent, as is evident in the distribution of firing rates (Fig. 1B, bottom).

Correlations, in contrast, seems to be a more important contributor, as is reflected

in the raster plot of network activity (Fig. 1A).

To investigate the possible contribution of correlations in the distribution of

orientation selectivity, we plotted the distribution of pairwise correlations in the

network (Fig. 2). Although the distribution of pairwise correlations has a very

long tail, on average correlations are very small in the network (Fig. 2A). This is

the case for excitatory-excitatory, excitatory-inhibitory, and inhibitory-inhibitory

correlations, and there is the same trend when spike counts are computed for

different bin widths (Fig. 2A, insets). Low pairwise correlations in the network are

a result of recurrent inhibitory feedback, which actively decorrelates the network

activity [22–24]. As illustrated in Fig. 2B, upsurges in the population activity of

excitatory neurons are tightly coupled to a corresponding increase in the activity

of the inhibitory population. However, the cancellation is not always exact and

some residual correlations remain.

Since each neuron receives random inputs from 10% of the population,

approximately the same correlation of excitation and inhibition is, on average,

also expected in the recurrent input to each neuron. Note that, as our networks

are inhibition-dominated, the net recurrent inhibition would be stronger than the

net recurrent excitation (indeed twice as strong, given the parameters we have

used). Altogether, this implies that inhibition is capable of fast tracking of

excitatory upsurges (Fig. 2B) such that fast fluctuations in the population activity

would not be seen in the recurrent input from the network.

Finally, the single-neuron gain that we computed by linearization (Eq. (13))

could be a source of mismatch, as for a highly non-linear system it might only be

valid for small perturbations in the input, and not for stronger modulations. This

is shown in Fig. 3A, where the linearized gain, f, from Eq. (13) is compared with

fs, the numerically obtained neuronal gain (see Eq. (15) in Methods) when the

perturbation has the size of the input modulation, sm~msb. This gain could be

approximated analytically by expanding Eq. (5) to higher order terms. Here,

however, we have computed this gain numerically (Eq. (16)).

When the prediction of Eq. (25) is repeated with the new gain (fs), a great

improvement in the match between the measured and predicted distributions is
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indeed observed (Fig. 3B). We therefore concluded that the main source of

mismatch in our prediction was our misestimate of the actual neuronal gains.

Other sources of nonlinearity, like rectification and correlations, could therefore

be responsible for the remaining discrepancy of distributions (less than 5% in the

regime considered here). However, given so many possible sources of nonlinearity

in our networks, both at the level of spiking neurons and network interactions, it

is indeed quite surprising that a linear prediction works so well.

A remark about rectification in our networks should be made at this point. In

the type of networks we are considering here, rectification is in fact not a single-

neuron property, i.e. only the result of a rectification effect due to the spike

threshold in the LIF neuron. This is not the case as the linearized gain of neurons

within the network (Eq. (13)) implies a non-zero response even to small

perturbations in the input. This is a result of (internally generated) noise within

the recurrent network, as a consequence of balance of excitation and inhibition,

which smoothens the embedded f-I curve [25, 26]. Rectification could therefore

only happen at the level of network, e.g. by increasing the amount of inhibition.

As our networks are inhibition-dominated, increasing the recurrent coupling

would be one way to increase the inhibitory feedback within the network. This can

be done in two different ways, either by increasing the connection density or by

increasing the weights of synaptic connections. The first strategy is tried in

Fig. 4A, where the connection probability has been increased (from

Eexc~Einh~0:1 to Eexc~Einh~0:2). The second strategy is added to the first in

Fig. 4B, where an increase in the connection density is accompanied by an

increase in synaptic weights (from Jr~0:25mV to Jr~0:5mV). In both cases,

however, a significant rectification of tuning curves did not result, and the

prediction of our linear theory still holds.

This unexpected effect can be explained intuitively as follows: An increase in

recurrent coupling not only decreases the baseline firing rate of the network, but

also changes neuronal gains (f and fs). A crucial factor in determining this gain is

the average membrane potential of neurons in the network, which in turn sets the

mean distance to threshold. The larger the mean distance to threshold is in the

network, the less is the neuronal gain. This in turn decreases the mean F2

component of output tuning curves. As a result, with a reduced baseline firing

rate, a significant rectification of tuning curves still does not follow, as output

modulation components have been scaled down by a comparable factor. This is

indeed the case in networks of Fig. 4, where the mean (over neurons) membrane

potential (temporally averaged) and the neuronal gains have both been decreased

compared to the network of Fig. 1 (results not shown; for a detailed analysis, see

[16]).

Networks With Distance-Dependent Connectivity

To extend the scope of the linear analysis, we asked if our theory can also account

for networks with different statistically defined topologies. In particular, we

considered networks with a more realistic pattern of distance-dependent
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connectivity: Each neuron is assigned a random position in a two-dimensional

rectangle representing a 1 mm|1 mm flat sheet of cortex (Fig. 5A). The

probability of having a connection between a pre-synaptic excitatory (inhibitory)

neuron to a given post-synaptic neuron falls off as a Gaussian function with

distance, with parameter sexc (sinh). Similar to the Erdős-Rényi random networks

considered before, we fix the in-degree, i.e. each neuron receives exactly EexcNexc

excitatory and Ein±hNinh inhibitory connections. Multiple synaptic contacts and

self-contacts are not allowed.

The connectivity profile is illustrated in Figs. 5B, C. The pre-synaptic sources of

a sample neuron are plotted in Fig. 5B, for sexc~sinh~0:55 mm. The resulting

distribution of the distances of connected neurons, for the example neuron and

for the entire population, is shown in Fig. 5C.

Note that the connectivity depends only on the physical distance. As input

preferred orientations are assigned randomly and independently of the actual

position of neurons in space, distance-dependent connectivity does not imply any

feature-specific connectivity. That is, neither a spatial nor a functional map of

orientation selectivity is present here.

Figure 4. The impact of the strength of recurrent coupling on the distribution of selectivities. The figure layout is similar to Fig. 1 (panel (E) not
included), shown are networks with stronger recurrent couplings. In (A), the recurrent coupling is increased by doubling the connection density; in (B), this is
further enhanced by doubling all recurrent weights. The parameters of network simulations are: (A) N~10000, Eexc~Einh~20%, Jr~0:25mV, g~8,
sb~15000 spikes=s, Js~0:1 mV, m~10%, and (B) N~10000, Eexc~Einh~20%, Jr~0:5 mV, g~8, sb~15000 spikes=s, Js~0:1 mV, m~10%. The predicted
distributions are computed by considering fs (see Fig. 3).

doi:10.1371/journal.pone.0114237.g004
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Before discussing the simulations of the spiking networks, it is informative to

look at the eigenvalue spectrum of the associated weight matrix, W. It is plotted,

for Jr~0:5 mV and Eexc~Einh~10%, in Fig. 5D. Each entry of the matrix is

normalized by the reset voltage, Vreset~Vth{V0~Vth, for the eigenvalue

spectrum shown in the main panel. The effective firing rate equation of the

network can then be written as td~r=dt~{~rz 1
Vth
½W~rzJs~s�. The exceptional

eigenvalue (green cross) corresponding to the uniform eigenvector (inset, top)

and the bulk of eigenvalues (orange dots) are the structural properties that this

network has in common with the previous Erdős-Rényi networks (not shown).

There is, however, a small number of additional (in this case, 8) eigenvalues in

between, which are the consequence of the specific realization of our

Figure 5. Networks with distance-dependent connectivity. (A) Random positioning of Nexc~8000 excitatory (red) and Ninh~2000 inhibitory (blue) neurons
in a square, representing a flat 1 mm|1 mm sheet of cortex, wrapped to a torus. (B) For a sample (excitatory) neuron (large black cross), positions of
excitatory (red) and inhibitory (blue) pre-synaptic neurons are explicitly shown as little crosses. A Gaussian connectivity profile with sexc~sinh~0:55 mm was
assumed. For each post-synaptic neuron, we fixed the number of randomly drawn pre-synaptic connections of either type, i.e. Cexc~EexcNexc and
Cinh~EinhNinh (Eexc~Einh~10%). Multiple synapses and self-coupling were not allowed. (C) Histogram of distances to pre-synaptic neurons for the sample
neuron (bars) and for the entire population (lines). (D) Eigenvalue spectrum of the weight matrix, W. Weights are normalized by the reset voltage,
Vreset~Vth{V0~Vth, leading to wij~Jr=Vth or {gJr=Vth, depending on whether the synapse is excitatory or inhibitory, respectively. We used Jr~0:5mV. For
better visibility, the eigenvalues outside the bulk of the spectrum are shown by larger dots. The green cross marks the eigenvalue corresponding to the
uniform eigenmode, which is plotted in the top inset. Re-normalized spectrum, according to the gain fs, is shown in the bottom inset; i.e. wij~fsJr and {gfsJr ,
for excitatory and inhibitory connections, respectively.

doi:10.1371/journal.pone.0114237.g005
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distance-dependent connectivity here. The corresponding eigenmodes will, in

principle, affect the response of the network, both in its spontaneous state and in

response to stimulation.

All these eigenvalues have, however, negative real parts. They will, therefore,

ensure the stability of the linearized network dynamics, as far as these eigenmodes

are concerned. The bulk of the spectrum, in contrast, also comprises eigenvalues

with real parts larger than 1, which implies an instability. An alternative

normalization of the weight matrix according to the neuronal gain fs (Fig. 5,

inset, bottom; see also [16]), however, does not render these modes unstable.

Here, we are resorting to a linearized rate equation describing the response of

the network to (small) perturbations, td~r=dt~{~rzfs½W~rzJs~s� (see Eq. (17) in

Methods). The eigendynamics corresponding to the common-mode (green cross)

is faster, and hence it relaxes to the fixed point more rapidly than the other

eigenmodes. The common mode effectively leads to the uniform, baseline state of

the network (reflected in the baseline firing rate, rb), about which the network

dynamics has indeed been linearized in our linear prediction. The effect of other

eigenmodes, in the stationary state, should therefore be computed by considering

the linearized gain about that uniform, baseline state.

Simulation results for a network with this connectivity are illustrated in Fig. 6.

Inspection of the spiking activity of the network (Fig. 6A) does not suggest a

behavior very different from the behavior of random networks shown in Fig. 1.

The irregularity of firing is, however, more pronounced, as the variance of inter-

spike intervals is larger (Fig. 6C); the ISI CV has indeed a distribution about 1,

which is more similar to the strongly coupled networks described in Fig. 4.

Similar to Erdős-Rényi networks, networks with distance-dependent local

connectivity are capable of amplifying the weak tuning of the input signal, and

comparable levels of baseline (F0) and modulation (F2) components are emerging

(Fig. 6E). When the predicted distribution of F2 components is obtained applying

the normalization by the linear gain fs, a very good match to the measured

distribution is obtained (Fig. 6F), comparable to predictions in Fig. 4, and only

slightly worse than the prediction in Fig. 1.

Although partial rectification of tuning curves seems to be negligible in the

example shown (Fig. 6B), correlations in the network could still be responsible for

the remaining discrepancy. Moreover, size and structure of correlations in the

network might be different here as compared to random networks due to non-

homogeneous connectivity. Distance-dependent connectivity implies that con-

nectivity is locally dense, which can lead to more shared input and this way

impose strong correlations at the output.

In fact, however, pairwise correlations do not seem to be systematically larger

than in random networks Fig. 2A, judged by the distribution of Pearson

correlation coefficients (Fig. 7A). In contrast, the fluctuations in the activity of

excitatory and inhibitory populations seem to be even less correlated (compare

Fig. 7B with Fig. 2B). Occasional partial imbalance of excitatory and inhibitory

input may therefore cause systematic distortions of our linear prediction.
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Another potential contributor to the discrepancy of predictions are the

different structural properties of these networks, reflected among other things in

their respective eigenvalue spectrum. It is therefore informative to look more

carefully into the eigenvalues which mark the difference to Erdös-Rényi networks,

i.e. the ones localized between the bulk spectrum and the exceptional eigenvalue

corresponding to the common-mode. To evaluate this, the first ten eigenvectors

(corresponding to the ten largest eigenvalues sorted by their magnitude) of the

network are plotted (Fig. 8A). The first eigenvector is the uniform vector

(common-mode), and the tenth one is hardly distinguishable from noise. (Note

that the corresponding eigenvalue is already part of the bulk.) In between, there

are eight eigenvectors with non-random spatial structure.

These eigenvectors reflect the specific sample from the network ensemble we are

considering here, and they can, in principle, prefer a specific pattern of

stimulation in the input. While other patterns of input stimulation would be

processed by the network W with a small gain, any input pattern matching these

special eigenmodes would experience the highest gain (in absolute terms) from

the network. The corresponding eigenvalues l have, however, a negative real part,

therefore these modes would in this case be attenuated: the corresponding

Figure 6. Distribution of orientation selectivity in a network with distance-dependent connectivity. Same figure layout as Fig. 1, for a network with
distance-dependent connectivity, similar to Fig. 5. Parameters of the network simulation are: N~10000, Eexc~Einh~10%, sexc~sinh~0:55 mm, Jr~0:5 mV,
g~8, sb~15000 spikes=s, Js~0:1 mV, m~10%. Note that the distribution of F2 components is computed by using the stimulus gain fs, as in Fig. 3.

doi:10.1371/journal.pone.0114237.g006
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eigenvalues of the operator A~( {W){1 that yields the stationary firing rate

vector, namely lA~ 1
1{l W

, would then be very small.

We do not, however, explicitly represent any of these patterns in our stimuli.

The stimuli considered in this work can be broken down to a linear sum of the

common-mode (i.e. the first eigenvector) and the modulation component (i.e. a

random pattern, as preferred orientations are assigned randomly and indepen-

Figure 7. Correlations in a network with distance-dependent connectivity. Distribution of correlation
coefficients for pairs of neurons (A) and temporal correlation of population activities (B) in the example
network of Fig. 5 with distance-dependent connectivity. Other conventions are similar to Fig. 2.

doi:10.1371/journal.pone.0114237.g007
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dently to all neurons, irrespective of the position of the neuron in space). The

modulation component would therefore only have a very small component in the

direction of each any special eigenmode. It is however possible that for non-

stationary inputs to the network, transient patterns with a bias for selected

eigenmodes resonate more than others.

The question arises, if spatially structured eigenmodes (cf. Fig. 8A) have an

impact on the observed pattern of spontaneous and evoked neuronal activity.

Plotting the response of the network to a stimulus reflecting one particular

orientation, as well as the mean activity of neurons over different orientations, do

not reveal any visible structure (Fig. 8B, C). The baseline activity of the network

seems to be quite uniform, and the response to a certain orientation does not

reveal any structure beyond the random spatial pattern one would expect from the

random assignment of preferred orientations of the input. This is further

Figure 8. Structure and dynamics of a network with distance-dependent connectivity. (A) First ten eigenvectors, corresponding to the ten eigenvalues
of largest magnitude, are plotted for the sample network described and discussed in Figs. 5 and 6. For each eigenvector, the value of the vector
corresponding to each neuron is plotted at the respective spatial position of the neuron (as in Fig. 5A). In the first row, this is shown for all neurons, and in the
bottom rows, the structure of eigenvectors are separately plotted for excitatory and inhibitory neurons, respectively (with zeros replaced on the positions of
the other population, respectively). Only the real part of the components of the eigenvectors are plotted here. Note that the tenth eigenvector already
corresponds to an eigenvalue from the bulk of the spectrum in Fig. 5D. (B) Shown is the mean firing rate of neurons in the network, extracted from a 15 s
simulation, in response to a stimulus with orientation h~00. (C) For each neuron, the mean tuning curve (Mean TC) is plotted as the average (over different
orientations) of the mean firing rate. (C, D) From each tuning curve, r(h), the output preferred orientation (Output PO) and output orientation selectivity index
(Output OSI) is extracted and plotted, respectively. They are obtained as the angle and length of the orientation selectivity vector,
OSV~

P
h r(h) exp (2pih=1800)=

P
h r(h); i.e. OSI~jOSVj and PO~ arg (OSV). Insets show the distributions in each case.

doi:10.1371/journal.pone.0114237.g008
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supported by visual inspection of the map of preferred orientations for the output

(Fig. 8D) and orientation selectivity index (Fig. 8E) in the network.

In principle, it is conceivable that spatially structured eigenmodes could affect

the response of the network by setting the operating point of the network

differently at different positions in space, as a result of the selective attenuation of

certain eigenmodes. However, we have never observed such phenomena in our

simulations. The fact that those structured modes get attenuated (and not

amplified) might be one reason; another reason might be the fact that eigenmodes

are typically heterogeneous and non-local, which makes the selection of the

corresponding overall preferred pattern unlikely. Spatial structure of the network,

and of its built-in linear eigenmodes, are therefore not dominant in determining

the distribution of orientation selectivity. They could, however, be potential

contributors in the small deviation of the predicted distribution from the

measured one.

Spatial Imbalance of Excitation and Inhibition

To test the robustness of our predictions, we went beyond the case of spatial

balance of excitation and inhibition, and also simulated networks with different

extents of connectivity. Roughly the same overall behavior of the network, and

accuracy of our predictions, were observed for the case of more localized

inhibition and less localized excitation (sinh~0:45 mm and sexc~0:75 mm,

Fig. 9A), as well as for the case of more localized excitation and less localized

inhibition (sinh~0:75 mm and sexc~0:45 mm, Fig. 9B).

This trend was further corroborated when we systematically scanned the

accuracy of our predictions for a large set of different networks, by scanning the

parameter space (Fig. 10A). Indeed, for most of the parameters studied, the

predicted distribution of orientation selectivity matched very well with the actual

distribution (more than 90% overlap). For the more ‘‘extreme’’ combinations of

parameters, however, where the spatial extent of excitation and inhibition were

highly out of balance, the quality of the match degraded. The deviation was more

significant when excitation was more local and inhibition was more global

(Fig. 10A, upper left portion). Note that, even for the most extreme cases of local

excitation (sexc~0:25 mm), the accuracy of our prediction is still fairly good, as

long as the inhibition has a similar extent (sinh~0:25 – 0:45 mm).

To investigate what happens in each extreme case, we chose two examples

(marked in Fig. 10A) for further analysis. The connectivity patterns of these two

examples, with (sexc,si±nh)~(0:75,0:25) and (0.25,0.75) (numbers indicated in

mm), are illustrated in Fig. 10B, C, respectively. The eigenvalue spectra of the

corresponding weight matrices are shown in Fig. 10D, E. When the weights are

normalized with respect to the reset voltage (upper panels), both spectra suggest

an unstable linearized dynamics, as they both have eigenvalues with a real part

larger than one.

The picture changes, however, when a normalization according to the effective

gain, fs, is performed. While the network with local excitation still has several
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clearly unstable eigenmodes (Fig. 10E, bottom), the spectrum of the network with

local inhibition comprises only one positive eigenvalue which is only slightly

larger than one (Fig. 10D, bottom). Some of the eigenvectors corresponding to

the largest positive eigenvalues are plotted for both networks in Fig. 10F, G,

respectively. From this, it seems therefore possible that the source of deviation

from the linear prediction is indeed instability of the linearized dynamics (namely

the instability of the uniform asynchronous-irregular state about which we

perform the linearization) for these extreme parameter settings. When this

instability is more pronounced, i.e. for the network with local excitation, the

deviation is highest. When the network is at the edge of instability, i.e. for the

network with local inhibition, our predictions show only a modest deviation.

To test this hypothesis further, namely that instability of the linearized

dynamics is the source of mismatch between the linear prediction and the actual

distribution of orientation selectivity, we need to scrutinize the response behavior

of the sample networks. The outcome of this is shown in Fig. 11. While the

network with local inhibition does not look very different from other examples

considered before (Fig. 11A), the behavior of the network with local excitation

very clearly shows deviating behavior (Fig. 11B). First, firing rates are much

Figure 9. The impact of spatial extent of excitation and inhibition on the distribution of F2 components. Same illustration as in Fig. 4, for simulations
with different extents of excitatory and inhibitory connectivity. (A) shows the results for a network with inhibition being more localized than excitation
(sinh~0:45 mm and sexc~0:75 mm). In (B) we show the results for excitation being more localized than inhibition (sinh~0:75 mm and sexc~0:45 mm). Other
parameters are the same as in Fig. 6. The distribution of F2 components is computed after re-normalization of the connectivity matrix by fs, as explained
before.

doi:10.1371/journal.pone.0114237.g009
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higher than in the less extreme cases, for both excitatory and inhibitory

populations (Fig. 11B, first column). Moreover, the activity of excitatory and

inhibitory neuronal populations are not well correlated in time, as it is the case for

the other networks (Fig. 11B, first column, bottom). The firing rate distribution

Figure 10. Accuracy of the linear prediction for different spatial extents of excitation and inhibition. (A) The overlap index (using fs) is plotted for
networks with different extents of excitation and inhibition. (B, C) Pre-synaptic connections for a sample post-synaptic neuron, along with the histogram of
distances to pre-synaptic neurons for the entire population (inset), are shown here for two extreme cases, marked in panel (A). (D, E) Eigenvalue distribution
of the example networks in (B) and (C), respectively. Two ways of normalization of the weight matrix are compared in the top and bottom panels. (F, G) First
nine eigenmodes, corresponding to the nine largest positive eigenvalues (in terms of their real component), are plotted for the example networks in (A).
Panels (F) and (G) correspond to the networks in (B) and (C), respectively. Note that the ninth eigenvector in (G) corresponds to an eigenvalue from the bulk
of the spectrum in (E). Only the real part of the components of the eigenmodes are plotted.

doi:10.1371/journal.pone.0114237.g010
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has a very long tail, and the tail is longer for the excitatory than for the inhibitory

population (Fig. 11B, second column). The long tail is accompanied by a peculiar

peak at zero firing rate (which is cut for illustration purposes in Fig. 11B, second

column, bottom). It reflects the fact that most of the neurons in the network are

actually silent, and a small fraction of the population is highly active. The average

irregularity of spike trains (the CV of the inter-spike intervals) in the network is

reduced compared to our previous examples (Fig. 11B, third column). All these

properties are consistent with the presumed instability of the linearized dynamics,

as inferred from the eigenvalue spectrum.

In terms of functional properties of the network, the output tuning curves are

much more scattered when aligned by the respective preferred orientations of the

inputs (Fig. 11B, fourth column, upper panel). In fact, the mean output tuning

curve for all neurons of the network does not show any amplification, if it is

aligned at the Input PO (Fig. 11B, fourth column, lower panel). The picture

changes, however, if tuning curves are aligned according to their Output PO

(Fig. 11B, fifth column). Here a clear amplification of the modulation is evident

in output tuning curves, although the relation to the feedforward input gets lost.

Also, the average output tuning curve is not smooth, i.e. not all orientations are

uniformly represented in the distribution of output preferred orientations.

This breaking of the symmetry becomes even more obvious when we look at the

response of the two networks to stimuli of different orientations (Fig. 12A, B).

While both networks show some degree of inhomogeneity in the spatial pattern of

their firing rate responses, the response pattern of the second network is much

more clustered (Fig. 12B). In fact, it seems that the internal connectivity structure

of the network determines the position of a discrete set of potential activity

bumps, and the orientation bias in the input can only choose between these

bumps. As the nonlinear dynamics of the unstable network is crucially affecting

the activity in response to stimuli, it is not surprising that the distribution of

orientation selectivity is not matching the prediction which relies on a

linearization about the uniform asynchronous-irregular state (compare Fig. 12C

and D, first columns).

In fact, this internal structure is even reflected in the pattern of baseline firing

rates (mean of the tuning curves over orientation). While for the network with

local inhibition this pattern is covert and ineffective (Fig. 12C, second column), in

the network with local excitation clear clusters of activity, resembling the ones in

Fig. 12B, are evident (Fig. 12D, second column). One may, therefore, expect that

there exists a corresponding pattern in the spatial organization of orientation

selectivity. Larger domains of neighboring neurons, who get activated together,

also exhibit the same selectivity. This is reflected in the clustering of output

preferred orientations (Fig. 12C, third column) and orientation selectivity index

(Fig. 12C, fourth column).

Note that a consequence of this clustering of PO is a degenerate representation

of orientation selectivity, i.e. not all orientations are represented equally in the

network. While the distribution of Output POs is almost uniform in the network

with local inhibition (inset in Fig. 12C, third column), clear peaks are present in
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the distribution of Output POs in the network with local excitation (inset in

Fig. 12D, third column). This is in line with our observation of broken symmetry

described before, reflected in the pattern of mean output tuning curve in Fig. 11B.

Discussion

We presented a linear analysis, which was capable of predicting the distribution of

orientation selectivity in networks with different patterns of random connectivity,

including some degree of spatial organization, and for a wide range of parameters.

The effective strength of excitation and inhibition in the network (Figs. 1 and

Fig. 4), as well as the spatial extent of excitatory and inhibitory connectivity

(Fig. 10), did not affect the prediction accuracy very strongly, as long as the

linearized dynamics remained stable. We therefore conclude that linear

mechanisms are the major network operations that explain amplification and

Figure 11. Orientation selectivity in networks with extreme spatial imbalance of excitation and inhibition. (A, B) As extreme examples, networks with
highly local inhibition (sinh~0:25 mm and sexc~0:75 mm, Fig. 10B) or highly local excitation (sinh~0:75 mm and sexc~0:25 mm, Fig. 10C), were considered,
respectively. The spiking activity of the network (first column), distribution of firing rates (second column) and spike train irregularity index (third column), as
well as output tuning curves (fourth and fifth columns). In the fourth column, the tuning curves are aligned according to their Input PO, whereas in the fifth
column they are aligned according to their Output PO. Other conventions are the same as Fig. 9.

doi:10.1371/journal.pone.0114237.g011
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Figure 12. Dynamic instability leads to nonlinear distortions in the processing of orientation selectivity. (A, B) Mean firing rate of neurons in the
network (the same networks as in Fig. 11, (A) and (B), respectively) in response to stimuli of different orientations. (C, D) For the networks in (A) and (B),
respectively, the distributions of F2 components are compared with the linear prediction (using fs, dashed line) in the first column. The subsequent columns
depict the map of average (over orientation) tuning curves (Mean TC), Output PO and Output OSI. Insets in the last two columns show the distribution of
Output PO and Output OSI, respectively.

doi:10.1371/journal.pone.0114237.g012
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attenuation, and the distribution of the resulting orientation selectivity in our

networks, within their stable regimes of linearized dynamics.

Operating Regime of Orientation Selectivity

Note that even in networks with localized connectivity of excitation and/or

inhibition, the linearized dynamics remained stable for a vast set of parameter

combinations. Even when excitation was highly local and clustered, as long as

inhibition had the same spatial connectivity profile, stability of the network was

guaranteed. A similar conclusion has been recently obtained from an analysis of

spatially embedded balanced networks [27]. It has also been shown before that

networks with distance-dependent connectivity can show the same macroscopic

behavior similar to random networks without local connectivity [28].

The asynchronous irregular (AI) state has been argued to best match the

activity of cortical networks in vivo (see e.g. [19, 29, 30]). The relevance of this

regime has only been discussed, however, for cortical networks in response to

uniform stimulation. On the other hand, with regard to the processing of a non-

uniformly modulated input, it has been claimed that a ‘‘marginal state of

recurrent dynamics’’ might be the relevant regime of operation for the processing

of weakly tuned inputs [2]. Also, it has recently been suggested that a recurrent

regime with ‘‘macroscopic chaos’’ (probably corresponding to our regime of

unstable dynamics) might be advantageous for sensory processing, as it may

support a better separation of trajectories [31].

In contrast to these proposals, the results of our study suggest that a stable AI

state of of dynamics might indeed be the relevant regime of operation also for

sensory processing in cortical networks in response to tuned inputs. Notably, the

dense and local pattern of inhibition in real cortical circuits [8, 32, 33] is in line

and consistent with our proposal. It might indeed be a general strategy biological

networks of spiking neurons have exploited to ensure their overall stability to

modulated inputs. We note again that we are talking about dynamic stability here,

where the network dynamics is linearized about the uniform asynchronous-

irregular state, and the effective weights of coupling linearized about this baseline

state are considered.

Distribution of Orientation Selectivity

A broad distribution of orientation selectivity is reported across all cortical layers

in the primary visual cortex of macaque monkeys [34], as well as in mice [35] (for

a comparison of the distributions, see panel C in Fig. S2 therein). Although we

chose random connectivities by fixing the in-degree of all neurons (which we refer

to as ‘‘structural homogeneity’’), a broad distribution of orientation selectivities

also emerged in all our networks. The main contributor to this broad distribution

was, therefore, not the structural heterogeneity of synaptic connectivity. In fact,

there is no heterogeneity at all, if one only considers the number of connections

each neuron receives from pre-synaptic excitatory and inhibitory neurons Nor
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were the temporal fluctuations of activity generated by our networks a major

source of this variability, although the networks were mostly operated in the

fluctuation-driven regime with high amounts of temporal and trial-by-trial

variability. As we have generally chosen a homogeneous connectivity pattern, this

temporal variance would be essentially the same for all neurons, at least in the

baseline state. (This also justifies the mean-field ansatz we have employed for our

analysis.) This is again reflected in the narrow distribution of F0 components in all

our networks.

The main source of variability in orientation selectivity is rather the ‘‘functional

heterogeneity’’ in synaptic connectivity, namely heterogeneous preferred features

(here, preferred orientations of inputs) of the pre-synaptic sources within the

recurrent network. Receiving input from neurons with different preferred features

may be a computational strategy to integrate the information, and help to remove

distractive correlations in the activity. The fact that each neuron within the

recurrent network receives input from a heterogeneous pool of neurons with a

wide range of preferred orientations leads to a random ‘‘summation’’ of pre-

synaptic preferred orientations, which eventually changes the output preferred

orientation of the post-synaptic neuron [16].

The quenched noise of preferred orientations, and not structural or dynamic

fluctuations, is, therefore, the main mechanism responsible for the distribution of

orientation selectivity in our networks. We showed that even with this most

conservative estimate of neuronal heterogeneity, consistent with recent experi-

ments [7], a broad distribution of neuronal selectivities can be obtained. However,

we cannot rule out a possible contribution of other sources of heterogeneity, like

heterogeneous connectivity and heterogeneous amounts of excitation and

inhibition different neurons may receive in their baseline state (leading to

different levels of spontaneous activity, see e.g. [34]), as well as variability in

neuron parameters [36] and synaptic noise. Also, heterogeneity in the pattern of

feedforward projections to neurons in V1 can be a prominent source of

distribution in orientation selectivity. However, if the distribution of orientation

selectivity is mainly dominated by feedforward heterogeneity, or/and if single

neuron heterogeneities like variability in threshold and synaptic noise are the

main source of this distribution, the distribution should not much change when

the recurrent network is absent. On the other hand, if functional heterogeneity

resulting from recurrent interactions is a major contributor to this distribution, it

should get narrowed when the intra-cortical circuitry is deactivated. It therefore

awaits further experimental tests which mechanisms are dominant in creating the

distribution of feature-selectivity in the cortex.

Future Directions

There are several ways in which the the current study could be expanded. First,

sticking to a linear framework of analysis enabled us to analytically compute the

distribution of orientation selectivity. In this simplified framework, however, we

neglected several nonlinearities, both at the level of neuronal properties and
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network interactions. These nonlinearities are deemed to be more prominent in

biological networks, for instance in the form of rectification [37, 38], or an

expansive-compressive transfer nonlinearity [26, 39, 40]. Such mechanisms might

play a major role in sharpening and amplification of orientation selectivity. A

more complete theoretical treatment of the problem should therefore consider the

contribution of nonlinear mechanisms as well, although this may come at the

expense of less rigorous analytical predictions.

One way to embrace additional nonlinear mechanisms that are effective in

biological networks, at least at the level of simulations, is to use a more realistic

and more detailed neuron model. In our simulations here we used the current-

based LIF neuron model. Simulating networks of more realistic neuron models,

like conductance-based LIF neurons, may change certain behaviors of the network

[41, 42]. For instance, increasing the recurrent coupling in our inhibition-

dominated networks can decrease the mean membrane potential of neurons in the

network to very negative values, as there is no reversal potential limiting it. This is

not the case in a conductance-based neuron model, and therefore a network of

that sort might show a different behavior, especially when operated in extreme

regimes.

Finally, it would be interesting to see how the predictions of our current theory

change when one considers networks with feature-specific connectivity. This

scenario might be corresponding to species with orientation maps, where

neighboring neurons tend to have a similar preferred orientation [4–6], or to

species without spatial map of selectivity, but with feature-specific functional

connectivity [8–12]. A linear amplification of feedforward input, for instance, has

been recently reported in cortical circuits of mice [43–45]. How this effect could

be modeled within our theoretical framework, and how it affects the distribution

of orientation selectivity, should therefore be a next step in our research.
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