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Copper(I)-catalyzed diastereo- and enantio-
selective construction of optically pure
exocyclic allenes
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Ping Tian 1,2,4✉ & Guo-Qiang Lin 1,2✉

Among about 150 identified allenic natural products, the exocyclic allenes constitute a major

subclass. Substantial efforts are devoted to the construction of axially chiral allenes, however,

the strategies to prepare chiral exocyclic allenes are still rare. Herein, we show an efficient

strategy for the asymmetric synthesis of chiral exocyclic allenes with the simultaneous

control of axial and central chirality through copper(I)-catalyzed asymmetric intramolecular

reductive coupling of 1,3-enynes to cyclohexadienones. This tandem reaction exhibits good

functional group compatibility and the corresponding optically pure exocyclic allenes bearing

cis-hydrobenzofuran, cis-hydroindole, and cis-hydroindene frameworks, are obtained with

high yields (up to 99% yield), excellent diastereoselectivities (generally >20:1 dr) and

enantioselectivities (mostly >99% ee). Furthermore, a gram-scale experiment and several

synthetic transformations of the chiral exocyclic allenes are also presented.
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Chiral allene moieties exist in about 150 natural products
and a variety of functional synthetic compounds1–3. Due
to the unique structural features and versatile reactivity of

allenes, significant applications have been found not only in
medicinal chemistry and material science, but also as important
intermediates in synthetic transformations, and chiral ligands or
catalysts in asymmetric catalysis4–8. Among these identified
allenic natural products, the exocyclic allenes constitute a major
subclass, such as Neoxanthin9, Grasshopper ketone10, Citroside
A11, and fungal metabolite A82775C12 which bearing a cyclo-
hexylidene ring (Fig. 1). Additionally, the chiral exocyclic allene
structural motifs are also present in pharmaceuticals, for example,
allenic carbacyclin13 which is an anti-thrombotic agent (Fig. 1).
Over the past decades, substantial efforts have been devoted to the
construction of axially chiral allenes, however, the strategies to
prepare chiral exocyclic allenes are still rare14–31. Traditional
methods to access chiral exocyclic allenes are mainly focused on
the nucleophilic substitution of enantioenriched propargylic
derivatives through central-to-axial chirality transfer32,33.
Recently, transition metal catalysis exhibited high efficiency in
preparation of chiral exocyclic allenes from achiral or racemic
precursors (Fig. 2)34–37. For instance, in 2004, Hayashi and
coworkers reported a rhodium(I)-catalyzed chemo- and enantio-
selective 1,6-conjugate addition of aryltitanates to 3-alkynyl-2-en-
1-ones to produce tetrasubstituted axially chiral exocyclic allenes
with good enantioselectivities (Fig. 2a)34. Later, an efficient
synthesis of axially chiral exocyclic allenes was achieved by Wang
and coworkers through copper(I)/chiral bisoxazoline-catalyzed
asymmetric cross-coupling between tetralone-derived diazo
compounds and terminal alkynes (Fig. 2b)35. In 2018, Trost and
coworkers developed a palladium(II)-catalyzed asymmetric [3+2]
cycloaddition reaction between racemic allenyl trimethylene-
methanes and electron-deficient olefins through a dynamic kinetic
asymmetric transformation process, in which the trisubstituted
chiral exocyclic allenic products bearing axial and central chirality
could be furnished, however, their diastereoselectivities were rela-
tively insufficient (Fig. 2c)36. Despite these successful advances, the
synthetic methods to prepare the chiral exocyclic allenes are still
rare and it is highly desired to develop more practical methods to
construct more diverse chiral exocyclic allenes.

Inspired by recent progress in the copper(I)-catalyzed asym-
metric transformations of 1,3-enynes to functional chiral allenes
and our continuous interest in catalytic asymmetric desymme-
trization of cyclohexadienone derivatives38–48, we envisioned that
the key axially chiral allenylcopper intermediate T1, generated
from the chemo-, regio-, and enantio-selective insertion of 1,3-
enyne to chiral copper hydride species, would be rapidly trapped
by the intramolecular enones to yield the desired chiral exocyclic
allenes 2 with hopefully high enantioselectivity and diastereos-
electivity (Fig. 2d). Of course, the simultaneous control of axial
and central chirality of the optically pure exocyclic allenes 2
remains challenging36,49,50. Herein, we present a highly chemo-,
diastereo-, and enantio-selective synthesis of chiral exocyclic
allenes via copper(I)-catalyzed asymmetric intramolecular
reductive coupling of 1,3-enynes to cyclohexadienones (Fig. 2d).

Results
Optimization of reaction conditions. We commenced to opti-
mize the reaction conditions for this copper(I)-catalyzed asym-
metric intramolecular reductive coupling of 1,3-enynes to
cyclohexadienones by using methyl-substituted substrate 1a as
model checking (Table 1). At first, the reaction was carried out
with CuCl/(R,R)-Ph-BPE catalytic system in the presence of t-
BuONa and dimethoxy(methyl)silane (DMMS) at room tem-
perature, the desired exocyclic allene 2a could be obtained in 39%
yield, and with moderate diastereoselectivity and excellent
enantioselectivity (Table 1, entry 1). The different solvents were
next screened. The diastereoselectivity of 2a had no obvious
change, but the yield and enantioselectivity could be dramatically
improved, when 1,2-dichloroethane (DCE) was used as solvent
(Table 1, entries 2–5). To some extent, increasing the loading of
DMMS could enhance the yield (Table 1, entries 6, 7). However,
when 2.5 equiv DMMS was adapted, overreduction of the product
2a occurred and dramatically eroded the yield (Table 1, entry 7).
Besides, the reaction temperature had a significant influence on
the diastereoselectivity of 2a and high diastereoselectivity was
obtained under −30 °C (Table 1, entries 7–9). Subsequently,
when poly(methylhydrosiloxane) (PMHS) was applied instead of
DMMS, superior yield and diastereoselectivity were observed
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Fig. 1 Bioactive allenes. Representative examples of chiral exocyclic allenes in natural products and pharmaceuticals.
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(Table 1, entry 10). Further investigating the amount of PMHS
led to a higher yield (Table 1, entries 11, 12). Ultimately, we could
obtain the chiral exocyclic allene 2a with 75% yield, >20:1 dr, and
>99% ee when the reaction was performed using 2.2 equiv PMHS
in DCE at −30 °C (Table 1, entry 11).

Substrate scope of 1,3-enyne-tethered cyclohexadienones. With
the optimal reaction conditions identified, we started to evaluate
the scope for this diastereo- and enantio-selective Cu-catalyzed

intramolecular reductive coupling reaction (Fig. 3). At first, we
examined the diversity of O-linked substrates 1. With the R2

substituents in the cyclohexadienone as simple alkyl, cyclohexyl,
even sterically hindered adamantyl, vinyl, benzyl, and phenyl
groups, the reactions proceeded smoothly with good to high
yields (68–99%) and excellent diastereo- and enantio-selectivities
(up to >20:1 dr and >99% ee, Fig. 3, 2a–2i). Notably, the steric
hindrance had an obvious effect on the efficiency of this reaction
(Fig. 3, 2a vs 2f). Furthermore, phenyl bromide, nitrophenyl,
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Fig. 2 Strategies for synthesis of chiral exocyclic allenes. a–c Previous works on synthesis of chiral exocyclic allenes. d This work: Cu(I)-catalyzed
intramolecular reductive coupling of 1,3-enynes to enones.
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phenyl nitrile, and even pyridine groups which potentially coor-
dinate with copper, were totally compatible in this process, pro-
viding the corresponding products with good to high
diastereoselectivities and excellent enantioselectivities (Fig. 3, 2j–
2m). The absolute configuration of chiral exocyclic allene 2k was
unambiguously established by X-ray crystallography analysis. It’s
worthy to mention that various functional groups, such as alkyl
ketone, ester, silyl ether, alkyl halogens (Cl, Br, and I), amine, and
imide, were also tolerant with equally excellent diastereo- and
enantio-selectivities (Fig. 3, 2n–2u). When the readily available
O-linked 1,3-enynes 1v and 1w, derived from estrone and δ-
vitamin E, were applied to this transformation, the cyclization
products could be successfully offered with moderate to good
yields and excellent catalyst-controlled diastereoselectivities.

More importantly, when internal enynes 1x and 1y were
subjected to this reaction, optically pure exocyclic allenes were
uneventfully obtained, albeit in slightly low yields (Fig. 3, 2x and
2y). To our delight, for the free amine-linked (N-linked)
substrates 4a–4c, the corresponding cis-hydroindole products
could be also generated with good yields and exceptional
diastereo- and enantio-selectivities (>20:1 dr and 96->99% ee,
Fig. 3, 5a–5c). It’s interesting that none of the desired products
were observed for the N-Boc- and N-Ts-linked substrates. Then,
we concentrated on the more challenging C-linked substrates 4d–
4f. Surprisingly, the reactions occurred ideally to give the cis-
hydroindene products with perfect diastereo- and enantio-
selectivities (>20:1 dr and >99% ee, Fig. 3, 5d–5f). The extensive
functional group compatibility displayed in Fig. 3 proved that this
mild reaction system was an extremely efficient access to
construct chiral exocyclic allenes, containing cis-hydrobenzo-
furan, cis-hydroindole, and cis-hydroindene frameworks with
good yields, as well as excellent diastereo- and enantio-
selectivities. Finally, other types of 1,3-enyne substrates were

investigated. For longer tethered cyclohexadienone 4g, the in-situ
generated chiral allenylcopper intermediate underwent direct
protonation to form the optically pure 1,3-disubstituted allene 5g
rather than conjugate addition to produce six-membered ring
product, which demonstrated that the formation of six-
membered product was less favorable than five-membered one
in this case, probably due to the ring strain48. In the previous
report on Cu-catalyzed asymmetric semi-reduction of ketone-
tethered 1,3-enyne, only direct protonation product and no
further cyclized product was detected42. In our cases of 1,3-
diketone-tethered 1,3-enynes 4h and 4i, similar results, ie, only
the optically pure 1,3-disubstituted allene products 5h and 5i,
were observed, which revealed that it remains challenging for the
addition of allenylcopper intermediate to ketone.

Gram-scale experiment and synthetic transformations. To
demonstrate the synthetic applicability of this method, a gram-
scale experiment of 1e was carried out and the chiral exocyclic
allene 2e was isolated with constant yield, diastereoselectivity and
enantioselectivity (Fig. 4a). Then, several transformations of 2e
were conducted to show the unique utilities of allene unit. In the
presence of palladium catalyst, the allene structure could be easily
converted to conjugate 1,3-diene (Fig. 4b)51. Next, upon treat-
ment of 2e with p-toluenesulfonic acid, ring-opening and aro-
matization of the cis-hydrobenzofuran section occurred and a
subsequent gold-catalyzed intramolecular nucleophilic addition
of hydroxyl to allene led to the formation of chiral dihydrofuran
product 7e (Fig. 4c)52,53. The axial-to-central chirality transfer of
allene 2e was also realized through a rhodium-catalyzed hydro-
arylation reaction of allene 2e with N-methoxybenzamide 8
(Fig. 4d)54. Moreover, a practical transformation of N-linked
product 5b was also performed. The exposed amine in 5b could

Table 1 Optimization of reaction conditionsa.
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1a

CuCl (10 mol%), t -BuONa (15 mol%)
(R,R )-Ph-BPE (12 mol%), DMMS

t-BuOH (1.2 equiv), solvent, T(oC), 12 h

Entry DMMS (equiv) Solvent T (oC) Conv. (%)b Yield (%)b drb ee (%)c

1 1.2 THF rt 51 39 6:1 98
2 1.2 CyH rt 50 27 7:1 96
3 1.2 Toluene rt 63 33 7:1 98
4 1.2 Dioxane rt 78 45 7:1 99
5 1.2 DCE rt 50 49 7:1 >99
6 1.8 DCE rt 85 63 7:1 >99
7 2.5 DCE rt 100 23 7:1 >99
8 2.5 DCE 0 100 27 7:1 >99
9 2.5 DCE -30 100 35 >20:1 >99
10d 2.5 DCE -30 100 55 >20:1 >99
11d 2.2 DCE -30 100 75 >20:1 >99
12d 2.0 DCE -30 91 66 >20:1 >99

THF tetrahydrofuran, CyH cyclohexane.
aReactions were performed using 1a (0.1 mmol, 1.0 equiv), CuCl (10 mol%), t-BuONa (15 mol%), (R,R-Ph-BPE) (12 mol%), DMMS, t-BuOH (1.2 equiv), solvent (1.0 mL) under Ar atmosphere, unless
otherwise noted.
bDetermined by 1H NMR analysis with CH2Br2 as an internal standard.
cDetermined by HPLC analysis on a chiral stationary phase.
dPMHS was used instead of DMMS.
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Fig. 3 Reaction scope of 1,3-enyne-tethered cyclohexadienones. aConditions A: Reactions were performed using 1,3-enyne 1 (0.2 mmol), PMHS (2.2
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easily react with isothiocyanate 10 to generate a tricyclic product
11b (Fig. 4e)43.

Discussion
In conclusion, we have developed a copper(I)-catalyzed intra-
molecular reductive coupling of 1,3-enynes to cyclohexadienones
to construct trisubstituted chiral exocyclic allenes. The reactions

took place efficiently and were compatible with diverse func-
tional groups. The chiral exocyclic allenic products, containing
cis-hydrobenzofuran, cis-hydroindole, and cis-hydroindene fra-
meworks, were obtained with good yields, excellent diastereo-
and enantio-selectivities. Additionally, a gram-scale reaction and
several synthetic transformations of the chiral exocyclic allenes
were also presented.
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Methods
General procedure for the preparation of product 2a. A dried Schlenk flask was
charged with CuCl (1.0 mg, 0.01 mmol, 5 mol%), (R,R)-Ph-BPE (6.1 mg, 0.012
mmol, 6 mol%), t-BuONa (1.5 mg, 0.015 mmol, 7.5 mol%), backfilled with argon.
Then under −30 °C, anhydrous DCE (1.0 mL) was added and the solution was
stirred for 10 min under −30 °C. After that, PMHS (26.4 ul, 0.44 mmol, 2.2 equiv)
was added dropwise and the solution was stirred for another 10 min under −30 °C.
Finally, a solution of substrate 1a (0.20 mmol, 1 equiv) and anhydrous t-BuOH (22
μL, 0.24 mmol, 1.2 equiv) in DCE (1.0 mL) was added. The resulting reaction
mixture was stirred at −30 °C for 12 h. The reaction mixture was filtered through a
short column of silica gel. The diastereomeric ratio of the crude reaction mixture
was determined by 1H NMR spectroscopy. The residue was purified by flash silica
gel (300–400 mesh) chromatography (hexanes/acetone= 5/1) to afford the desired
products 2a in 70% yield as colorless oil.

Data availability
Detailed experimental procedures and characterization of compounds can be found in
the Supplementary Information. The X-ray crystallographic structure reported in this
study have been deposited at the Cambridge Crystallographic Data Centre (CCDC)
under deposition numbers CCDC 1975229 (2k). These data can be obtained free of
charge from The CCDC via www.ccdc.cam.ac.uk/data_request/cif. All data are available
from the authors upon request.
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