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Abstract: The progression of atherosclerosis remains a major cause of morbidity and mortality. Plaque formation is an immunological 
response driven by a number of risk factors, and reduction of risk is the primary goal of treatment. The role of LDL-C is well established 
and statins have proved effective drugs, although the relative risk reduction is only around 30%. The importance of other factors—
notably low HDL-C and high TGs—has become increasingly clear and the search for alternative strategies continues. Niacin is par-
ticularly effective in achieving normalization of HDL-C but is clinically underutilized due to the side effect of cutaneous flushing. The 
discovery that flushing is mediated by mechanisms distinct from the lipid-lowering effects has led to the development of combination 
drugs with reduced side effects. This review considers the evidence regarding the clinical efficacy of extended-release niacin and the 
DP1 antagonist laropiprant in the treatment of hypercholesterolemia and mixed dyslipidemias.
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Background
Despite recent advances in our understanding of car-
diovascular disease, atherosclerosis with its associ-
ated adverse clinical outcomes remains a major cause 
of morbidity and mortality throughout the world. 
Consequently, new strategies for treatment remain a 
major goal of health sciences research. Much of this 
research over the last few decades has centred on the 
identification of risk factors and the development of 
strategies that facilitate the management of that risk. 
The identification of the particular risk posed by ele-
vated levels of LDL-cholesterol (LDL-C) has been 
the cornerstone of most recent clinical guidelines 
and statins have proved very effective drugs in this 
regard.1–4

Although the critical importance of address-
ing LDL-C targets is well accepted, and statins are 
widely recognized as the drug of choice, it is equally 
clear that this approach is not sufficient to prevent the 
majority of adverse events. Even aggressive lowering 
of LDL-C to below guideline targets only results in a 
relative risk reduction of around 25%–35%. Of equal 
importance is addressing other lipid abnormalities, 
most notably low HDL-cholesterol (HDL-C) and 
high triglycerides (TGs), as well as dyslipidemias 
associated with increased levels of small dense 
lipoproteins.1,4,5 These combinations are frequently 
found in conditions such as Type 2 diabetes, which 
has a strong association with all cardiovascular mor-
talities.2 Strikingly, low serum HDL-C demonstrates 
an inverse relationship with cardiovascular risk, even 
in patients whose LDL-C levels are well below treat-
ment targets. In addition, lipoprotein (a) (lp(a)) levels 
have also been identified as an independent risk factor 
and statins are ineffective in this regard,6,7 although 
the clinical relevance of this is not entirely clear. The 
risk posed by elevated lp(a) can be understood in 
terms of its ability to act as a vehicle for deposition 
of cholesterol in the intimal wall, and its structural 
homology with plasmin and plasminogen (combined 
with a notable lack of fibrinolytic activity) provides a 
prothrombotic environment which would support the 
development of vascular events. However, updated 
analyses suggest that the risk is modest, and the link 
between lp(a) and cardiovascular risk is certainly 
not as clear as that for LDL-C: Early data from stud-
ies with niacin suggest that lp(a) lowering may be 

favorable, but as yet there are no randomized clinical 
trials that demonstrate that selective lp(a) lowering 
translates into a clinical benefit. It is also true that 
the modest increased risk associated with lp(a) may 
be abrogated by aggressive LDL-lowering.8 This 
notwithstanding, niacin is the single most effective 
clinical agent available for addressing both HDL and 
lp(a) levels. Treatment with niacin also significantly 
increases levels of ApoA1,9 enhancing reverse cho-
lesterol transport, thus further reducing blood lipid 
levels. Furthermore, niacin has additional benefits, 
not all of which are related to its effects on plasma 
lipids.10,11 Early studies indicated that these effects 
translate into a significant risk reduction, although 
more recent studies suggest a more complicated 
picture. It is also true that patient compliance is 
severely reduced due to the frequency and severity 
of side effects, most notably cutaneous flushing.12–15

The Effects of Niacin  
on Blood Lipid Levels
The effects of niacin on blood lipids are described in 
detail elsewhere but, briefly, they are thought to result 
from signalling through the adipocyte niacin receptor 
HM74A (GPR109A), which is a G-protein-coupled 
receptor linked to a Gi/Go pathway.16–19 Inhibition 
of cAMP (and therefore PKA) reduces activity of 
the enzyme hormone sensitive lipase, resulting in 
a decreased release of free fatty acids (FFAs) from 
adipocytes. The resulting reduction in plasma FFAs 
means a reduced substrate for hepatic TG synthesis 
and therefore a reduction in VLDL synthesis. Since 
LDL-C is generated by the action of lipoprotein lipase 
on VLDL, there is ultimately a reduction in plasma 
LDL-C. Furthermore, the reduction in VLDL also 
reduces cholesteryl ester transfer protein (CETP)-
mediated transfer of cholesterol from HDL to VLDL 
and transfer of TGs from VLDL to HDL. The net 
result of this is a reduced catabolism of HDL. The 
exact contribution of these pathways to the lipid ben-
efits is unclear because the effects on FFAs are rather 
short-lived—immediate release niacin preparations 
see a rebound to above baseline some 2–3 hours after 
administration.

The major benefits may stem from other actions 
of niacin—it is known to inhibit diacyl glyceryl acyl 
transferase-2 (DGAT2), one of the key enzymes 
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involved in TG synthesis, and this inhibition leads to 
increased intracellular breakdown of ApoB.20 Niacin 
also downregulates expression of hepatocyte ATP 
synthase β-chain, an HDL/ApoA1 receptor facilitat-
ing endocytosis of HDL. Reduced expression there-
fore leads to reduced hepatic uptake and catabolism, 
increasing the plasma half-life of HDL-C.4 The mech-
anism of action of niacin on lp(a) is not clear, but it 
is known that levels can only be affected by drugs—
such as niacin—that affect lipoprotein production.7 
Drugs that work by altering lipoprotein catabolism 
(as the statins do) are ineffective. Typically, treatment 
with niacin results in 30% reduction in plasma lp(a) 
concentrations.

Clinical Benefits of Niacin Therapy
A number of studies have demonstrated the benefits 
of niacin therapy with regard to favorable modulation 
of lipid levels and the clinical benefits associated with 
this. These are reviewed in detail elsewhere, but the 
following is a brief summary:

The Coronary Drug Project21–24 is one of the ear-
liest trials suggesting a role for niacin in the pre-
vention of cardiovascular disease. Data showed 
that niacin was effective in favorably modifying 
blood lipid levels, and that this translated into a sig-
nificant reduction of adverse cardiovascular out-
comes persisting long beyond the discontinuation of 
treatment. Both the Familial Atherosclerosis Trial and 
the HDL Atherosclerosis Studies (FATS and HATS, 
respectively),25–27 demonstrated that combining nia-
cin with a statin led to a 75% reduction in adverse 
cardiovascular outcomes, compared with a reduc-
tion of approximately one-third with statins alone. 
Furthermore, a sub-analysis of the HATS trial indi-
cated that the HDL effects included a change in the 
subclass distribution, with niacin treatment eliciting 
an increase in the number of the large, buoyant cardio-
protective particles. The ARBITER (Arterial Biology 
for the Investigation of Treatment Effects of Reduc-
ing Cholesterol)-228–30 and -331–33 trials arose from the 
original ARBITER study comparing the efficacy of 
high-dose atorvastatin (80  mg/day) with 40  mg/day 
pravastatin in 161 patients being treated for primary 
or secondary prevention of CV disease. The primary 
outcome measure was carotid intima media thickness, 
(CIMT) thought to be indicative of atherosclerotic 

burden, and this was significantly reduced in the 
atorvastatin group. This benefit was thought to be 
due to the reduction in LDL. ARBITER-2 therefore 
sought to investigate whether any additional benefit 
could be achieved with HDL modulation. 167 patients, 
established on statin therapy and receiving treatment 
for secondary prevention, were randomly assigned to 
receive either extended release niacin or placebo. The 
placebo group saw a significant increase in CIMT, an 
effect not observed for those receiving niacin. There 
was also a trend that suggested that this benefit was 
reflected in a reduced clinical event rate, although the 
study was insufficiently powered to prove this. The 
SEACOAST (Safety and Efficacy of a Combination of 
Extended Release Niacin and Simvastatin in Patients 
with Dyslipidemia) studies34,35 provided evidence that 
niacin and statin combinations were also particularly 
beneficial with regard to lipid modulation. Such com-
binations were at least as effective as a statin alone for 
reducing LDL-C, while they were significantly more 
effective in increasing HDL and reducing triglycerides. 
The Open-Label Evaluation of the Safety and Effi-
cacy of a Combination of Niacin-ER and Simvastatin 
in Patients with Dyslipidemia (OCEANS)36 demon-
strated that the lipid benefits of once daily treatment 
with extended-release niacin and simvastatin were 
maintained during long-term treatment. These latter 
trials are concerned with the value of combining nia-
cin with simvastatin, but trials such as ADVOCATE 
(The Advicor Versus Other Cholesterol-modulating 
Agents Trial Evaluation) revealed that other statins 
may be even more beneficial when used in combina-
tion with niacin and that such combinations also elic-
ited favorable shifts in the density profiles of plasma 
lipoprotein particles.37,38

Although all of these studies seem to support the 
value of niacin as a valuable tool in the treatment of 
dyslipidemia, we are still lacking large outcome studies 
of niacin/statin combinations that will allow the thera-
peutic role of niacin to be fully determined. It is hoped 
that these question may be answered by the AIM-HIGH 
trial, which is discussed later in this review.

Benefits of Niacin Extend Beyond  
the Effects on Plasma Lipids
Modulation of plasma lipids has been shown to reduce 
atherosclerotic plaque formation and indeed induce 
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regression of existing lesions.39,40 However, this is 
only part of the story. The development of atheroscle-
rosis is primarily an immune response, thought to be 
triggered by endothelial injury and exacerbated by a 
host of risk factors.41 Niacin favorably influences a 
number of facets of this process, thus conferring ben-
efits outwith its lipid effects.11 Figure 1 describes the 
processes involved in plaque formation and indicates 
the role of niacin in each of these aspects. Plaque 
formation is an inflammatory response: circulating 
monocytes target the site of endothelial damage, 
where they leave the circulation and enter the intimal 
layer of the vessel wall. These cells differentiate into 
macrophages, which engulf oxidized (Ox)-LDL-C 
via the scavenger receptors SRA and CD36.42 The 
accumulation of lipid within the cytoplasm (stored 
in specialized, adipophilin-coated vesicles) gives 
rise to the ‘foam cell’ appearance. Cytokine signals 
released by foam cells include monocyte chemoat-
tractant protein-1 (MCP-1), which induces further 
monocyte migration to the site of the plaque.43,44 
Other cytokines, such as IFN-γ, promote migration 
of smooth muscle cells from the underlying media.45 
Under the influence of these signals, these cells also 
undergo a change in gene expression, accumulating 
lipid and becoming smooth muscle cell-derived foam 

cells. They also secrete connective tissue, particularly 
collagen, forming a cap that stabilizes the whole 
structure.46 Critical adverse outcomes are usually the 
result of breakdown of this connective tissue struc-
ture—rupture of the cap and exposure of the colla-
gen acts as a site for thrombus formation, potentially 
completely occluding blood flow.47 These events are 
dynamic in nature and progression in a given indi-
vidual will depend on the interaction of these immu-
nological processes and the risk factors present at that 
time. The lipid-lowering actions of niacin will lower 
the amount of LDL-C (and therefore Ox-LDL-C) 
reducing lipid accumulation within plaques. It is 
also worthy of note that unlike the LDL-receptor, 
expression of which is downregulated in response 
to high LDL-C-levels, scavenger receptor expres-
sion is increased when Ox-LDL-C levels are high.48 
LDL-C reduction therefore has the additional benefit 
of inhibiting the drive for lipid uptake into the plaque. 
The niacin-driven increase in HDL-C and ApoA1 
also facilitates reverse cholesterol transport,49,50 
meaning that the lipid effects of niacin profoundly 
effect plaque formation. However, in addition to 
this, signalling through HM74A provides ligands 
for the peroxisome proliferator-activated receptor-γ, 
activation of which will have a number of effects 

Mφ-derived foam cell

CD36 (facilitates Ox-LDL uptake)

Endothelium

Media

SMC-derived foam cell

Collagen productionABCA1 (enhances RCT)

MMP9 (enhances plaque
stability)

Monocyte
adhesion

HDL and ApoA1 (enhances RCT)LDL-C/Ox-LDL-C

PGD2 (enhances plaque
stability)

Figure 1. Niacin favorably alters a number of aspects of intimal plaque formation. Some of these effects are indirect as a result of PPARγ-mediated inhibi-
tion of NF-κB.
Abbreviation: RCT, reverse cholesterol transport.
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on the processes involved in plaque formation.10,11 
Activation of PPARγ upregulates expression of CD36 
(which may be considered to be a pro-atherosclerotic 
effect) but also enhances expression of ABCA1, 
another component of the ApoA1 mediated reverse-
cholesterol transport pathway.51 Activation of PPARγ 
also directly enhances expression of IκB, and thus 
inhibits NF-κB signalling, reducing expression of a 
number of pro-inflammatory cytokines that drive and 
maintain plaque formation.

Plaque stability depends on a number of factors, 
but it is known that destabilization is promoted by an 
increase in expression and activity of the matrix met-
alloproteinase MMP-9.46,47 Critically, MMP-9 activity 
appears to be lower in plaques that contain high levels 
of PGD2. Niacin’s ability to elicit PGD2 production 
may therefore enhance plaque stability.10,52,53

The use of niacin has also been associated with a 
number of other cardiovascular benefits, including a 
reduction in artery intima-media thickness as well as 
a reduction in the occurrence of stenosis, all of which 
are likely to improve vascular compliance.11,28,29,33 
Niacin can also reduce both systolic and diastolic 
blood pressure. It is clear from the side effect profile 
that niacin is vasoactive: in addition to the cutane-
ous flushing discussed later in this review, there are 
other (rare) side effects including acute syncope and 
hypotension (including postural hypotension), espe-
cially when niacin is administered alongside other 
vasoactive medications.54 However, there is little 
quantitative information available, although there 
are some clinical trials that included baseline and 
endpoint measurements of blood pressure as part of 
a range of clinical outcomes. One such study55 dem-
onstrated that acute administration of niacin had no 
effect on blood pressure in normotensive subjects. 
However, these results mask profound changes in 
hemodynamic parameters: there was a significant 
reduction in both stroke volume and systemic vascu-
lar resistance, but both systolic and diastolic blood 
pressures were maintained by a reflexive increase in 
heart rate. The response for hypertensive patients was 
somewhat different—infusion was associated with a 
small but significant decrease in diastolic pressure, 
as well as a drop in pulse pressure. As for the nor-
motensive subjects, stroke volume and systemic vas-
cular resistance were shown to be lower as a result 
of the niacin treatment, and an increase in heart rate 

was also observed. However, in the hypertensive sub-
jects, this did not appear to compensate for the other 
hemodynamic changes. In normotensive patients, the 
blood pressure is likely to remain stable, because any 
significant peripheral vasodilation is likely to trig-
ger vasoconstriction in other vascular beds as part of 
the autonomic homeostatic response. Such counter-
regulatory responses may not be possible in patients 
with reduced vascular compliance, such as those with 
hypertension. This effect may be further exacerbated in 
hypertensives with abnormal baroreceptor responses, 
a condition not uncommon in diabetic patients who 
may have significant autonomic neuropathy.

The molecular explanation for the effects on blood 
pressure is unclear—and from a metabolic perspective 
it may seem anomalous. Treatment with niacin leads 
to a sustained rebound increase in FFAs which tends 
to provoke insulin resistance in skeletal muscle. One 
of the effects of normal insulin signalling is to main-
tain normal blood pressure by enhancing expression 
of endothelial nitric oxide synthase (eNOS). Thus it 
may be surmised that a state of niacin-induced insu-
lin resistance may be accompanied by an increase in 
both systolic and diastolic pressures. In this particular 
study, the reduced blood pressure may simply reflect 
the short-term nature of the treatment.

This issue was considered in another study, which 
investigated the relationship between the effects of nia-
cin on FFAs, insulin sensitivity and blood pressure.56 
This involved only seven patients, enrolled on a ran-
domized, double-blind, placebo-controlled crossover 
study. During the first week, the treatment regime 
comprised a twice-daily dose of 250 mg immediate-
release niacin, escalated to 500 mg twice daily for the 
second week. Interestingly, patients receiving niacin 
displayed a reduced sensitivity to insulin, although 
fasting glucose, insulin and FFA concentrations 
remained unchanged compared to placebo. Over the 
duration of the two-week study, there was no sig-
nificant effect on either systolic or diastolic blood 
pressure.

However, these limited studies are not the only 
source of information with regard to the effects of 
niacin on blood pressure. Post-hoc analysis of data 
from the Coronary Drug Project reveals that long-term 
treatment results in a small but significant decrease 
in both systolic and diastolic pressures compared to 
placebo.54
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Overall, the evidence suggests that niacin is capable 
of eliciting a significant reduction in blood pressure, 
which would be yet another ‘plus point’ for overall 
cardiovascular risk reduction. Bays et  al54 suggest 
that this effect is related to the beneficial effects of 
niacin on plasma lipids. There is evidence to suggest 
that the ApoB:ApoA1 ratio inversely correlates with 
the extent of endothelium-dependent vascular smooth 
muscle relaxation, and that HDL-C may also increase 
expression and activity of eNOS. As niacin increases 
HDL-C and ApoA1 levels (whilst reducing ApoB) it 
may be expected that it would increase eNOS activity 
and thus reduce blood pressure. Consistent with this 
notion is the fact that the blood pressure response is 
slow and progressive and mirrors the timeframe of 
the change in HDL-C levels. One thing is clear: the 
effects of niacin on blood pressure need to be more 
extensively evaluated. Interestingly, the AIM-HIGH 
trial includes hemodynamic measurements, although 
this information is likely to be affected by the early 
cessation of the trial due, in part, to a slightly elevated 
risk of ischemic stroke.57 Blood pressure is one of 
the outcomes being measured in the Heart Protection 
Study-2 Treatment of HDL to Reduce the Incidence 
of Vascular Events (HPS2-THRIVE) study, although 
this is assessing the efficacy of niacin combined with 
laropiprant.58

Side Effects of Niacin Treatment
Niacin use is associated with hyperglycemia, partly 
resulting from an increase in glucose production in 
response to lower circulating FFAs, but also because 
the increased FFA levels associated with the nia-
cin ‘rebound’ promote insulin resistance in skeletal 
muscle.59,60 The Assessment of Diabetes Control 
and Evaluation of the Efficacy of Niaspan Trial 
(ADVENT)61 investigated the effect of extended 
release niacin on blood glucose and found that all 
doses were associated with an increase in fasting 
blood levels. However, most of the patients were on 
some kind of anti-diabetic medication (usually either 
metformin or a sulfonlyurea, but occasionally insu-
lin) and it appeared that the hyperglycemic effects 
could be prevented by concomitant adjustment of 
anti-diabetic medication. Although higher doses of 
niacin were associated with a slight increase in HbA1c 
levels, this only just reached significance and it is rec-
ommended that concerns regarding diabetic control 

should not put healthcare professionals off using 
niacin in the treatment of diabetic patients: the lipid-
lowering benefits (and the associated clinical effect 
of reducing macrovascular complications) is likely to 
outweigh the slight reduction in glycemic control.62 
These results are backed up by the ARBITER 
studies28–33 which indicate that patients with diabetes 
see benefits of a similar magnitude to non-diabetics. 
Once again, AIM-HIGH is likely to provide further 
insight, as approximately one-third of the patients 
enrolled in this study are diabetics.

Other commonly cited side effects are those asso-
ciated with hepatoxicity,63 theoretically a greater risk 
with extended-release formulations because of the 
increased metabolism through the hepatic pathway.64,65 
Hepatotoxicity can be recognized by an elevation in 
liver transaminases, with a sustained elevation of 
greater than 3 times the upper limit of the normal 
level being taken as a cause for concern. In practice, 
this is rarely seen and only accounts for a very small 
percentage of the drop out observed in clinical trials. 
Also of clinical relevance is the observation that none 
of the side effects discussed here are exacerbated by 
co-administration with statins.11

Perhaps the most serious side-effect of niacin treat-
ment is skin flushing.12,13,66,67 Although this is gener-
ally considered benign, it is distressing and not only 
affects initial compliance, but prevents the dose esca-
lation required to reach the gram quantities necessary 
to achieve full clinical benefit. The recognition that the 
increase in the blood flow to the skin is caused by PGD2 
acting on the DP1 receptor, and therefore independent 
of the HM74A-mediated effects on lipids, theoreti-
cally allows the flushing response to be targeted.

Extended release formulations (such as Niaspan-RTM) 
have been a big step forward in improving tolerabil-
ity, but skin flushing still remains the major reason 
for discontinuation.11 Even with extended release 
formulations, some 90% of patients on 2  mg daily 
doses of niacin experience flushing, and studies have 
shown that by 3 months dropout rates can be as high 
as 92%.68 Furthermore, the titration necessary to reach 
the therapeutic dose is still complicated,68 requiring 
dose increments over a period of 4–5 weeks. Existing 
measures to combat flushing include treatment with 
aspirin, although this has limited efficacy. Patient 
education has also been shown to have an important 
role in improving compliance.68
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A Closer Look at the Flushing 
Response
As described above, many of the effects of niacin are 
mediated by its interaction with a G-protein coupled 
receptor. Signalling through Gi/Go pathways does not 
usually yield significant amounts of arachidonic acid 
(AA), although this is very much cell- and receptor-
type specific: in immune cells particularly, HM74A has 
appears to synergize with Gq-coupled receptors, lead-
ing to an increase in intracellular Ca2+ concentration 
which mediates the translocation of activated phos-
pholipase A2 to the cell membrane, where it catalyzes 
the release of AA. AA acts as the substrate for the 
enzyme commonly known as cyclo-oxygenase, which 
catalyzes the initial steps in the generation of eico-
sanoids, including prostaglandins, prostacyclin and 
thromboxanes.69–71 More accurately, cyclo-oxygenase 
is an enzyme complex (PGH2 synthase) which has 
both peroxidase and cyclo-oxygenase activity. Aspirin 
and NSAIDs block this cyclo-oxygenase activity.

The overall effect of PGH2 synthase on AA is to 
produce the unstable endoperoxide intermediate 
PGH2. The fate of PGH2 will be determined by the 
cell-specific distribution of the prostaglandin and 
thromboxane synthase enzymes.72 Many cell types 
possess either hematopoietic or lipocalin-type PGD2 
synthase and thus are capable of producing large 
amounts of the acidic lipid mediator PGD2. PGD2 
binds to and activates two distinct receptor types: 
DP1 and DP2 (also known as CRTH2), but it is also 
metabolized fairly rapidly: initially to PGJ2, and then 
to 15-deoxy-PGD2. This step is followed by further 
reactions which yield the cyclopentone prostaglan-
dins, which include 15-deoxy∆12,14 PGJ2, the endoge-
nous ligand for the peroxisome proliferator-activated 
receptor PPARγ.73 This prostaglandin is produced in 
sufficient quantities to activate PPARγ,72 and many of 
the anti-inflammatory effects of niacin may well be 
mediated by this receptor, as discussed above.

Cell types that express PGD2 synthase—and thus 
produce PGD2 in significant quantities—include mast 
cells, which when activated by IgE, can produce up 
to 50 ng PGD2 per million cells.74 Peripherally, other 
immune cells are known to be effective in producing 
PGD2, and one cell type relevant to the niacin story 
is the epidermal Langerhans cell.14,75 Stimulation of 
these cells with niacin has been shown to result in sig-
nificant PGD2 release and it is generally considered 

that Langerhans cell-derived PGD2, acting on DP1 
receptors in the vascular smooth muscle of dermal 
blood vessels, is responsible for the hyperemia asso-
ciated with niacin treatment.

DP-1 Receptor
The DP-1 receptor is a Gs-coupled GPCR. Activation 
leads to an increase in cAMP, and therefore in PKA 
activity and the net effect in vascular smooth mus-
cle leads to a profound vasodilation in dermal blood 
vessels.76,77 Since this effect is thought to be inde-
pendent of the lipid-lowering benefits of niacin, the 
co-administration of niacin and DP1 antagonists has 
been suggested as an appropriate step forward in 
enhancing tolerability. However, there is some evi-
dence to suggest that the currently held view with 
regard to the dermal effects of niacin may be some-
what simplistic.

Dunbar and Gelfand75suggest that the term ‘flushing’ 
is inaccurate in describing the effects of niacin on 
the skin, and significantly understates the nature of 
the problem. Rather than a simple hyperemia, they 
suggest that HM74A activation results in ‘an aggres-
sive irritant effect on the skin.’ This is manifested 
as a response that bears a great deal of similarity to 
an acute hypersensitivity reaction. They argue that 
niacin administration elicits dermal infiltration with 
polymorph neutrophils within a matter of minutes, 
and the flushing is usually accompanied by significant 
swelling, paresthesia and pruritis, and suggest a better 
term for this collection of effects would be ‘niacin-
associated skin toxicity.’ Indeed, most clinical studies 
focus on the measurement and assessment of the red-
ness of the skin (rubor) and there is the concern that a 
reduction in rubor may not necessarily translate into 
an improved tolerability.75 It seems likely that a num-
ber of cell types are involved in the adverse effects 
of niacin on the skin: there is certainly evidence for 
a role for macrophages and platelets.7 Furthermore, 
even the issue of rubor is likely to be more complex—
DP1 receptor knockout mice do not show a complete 
lack of a flushing response to challenge with niacin,13 
and it seems that the vasodilatory response is medi-
ated at least in part by the release of PGE2, which acts 
on PGE2/E4 receptors. Similarly, clinical trials of the 
DP1 receptor antagonist laropiprant (discussed later) 
failed to demonstrate a complete abrogation of both 
objective and subject-reported measures.
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Our understanding of the complex nature of the skin 
response to niacin has taken a step forward as a result 
of a series of experiments that have indicated that the 
Langerhans cell may be something of a minor player, 
and that the true mediator of the rubifacient proper-
ties of niacin may in fact be the keratinocyte.76 Firstly, 
the authors demonstrated that HM74A is expressed 
by both murine and human keratinocytes, and that for 
both species, the receptor is indeed functional. Using 
Doppler flowmetry to measure dermal blood flow, 
they showed that in wild-type mice this flow could 
be seen to have a characteristic biphasic response: 
an initial transient rise followed by a slower onset, 
but sustained, major peak. HM74A knockouts show 
neither of these peaks, while replacement of the wild-
type Langerhans cells with HM74A-null cells results 
in loss of the transient peak. Interestingly, it appears 
that the transient peak is mediated by the action of 
PGD2 produced by Langerhans cells in response to 
actions of COX-1. This is followed by the more sus-
tained response of the epidermal keratinocytes, which 
release PGE2 as a result of COX-2 activity. PGE2 
mediates its vasodilatory effects through the E2 and 
E4 receptors.77 Each peak could be inhibited by pre-
treatment with an appropriate COX inhibitor.76

Lai and colleagues suggest that the hyperemia is 
one of the most persistent dermal effects of niacin, 
and continues well into treatment, even as patients are 
reporting that the symptoms of irritation are reduc-
ing.78 This adds further support to the notion that the 
pruritis and other problems are not simply a result of 
increased blood flow to the skin, suggesting that DP1 
antagonism may not be completely effective in block-
ing the side effects of niacin treatment.

Role of PGD2
One of the arguments supporting the use of DP1 
antagonists is the notion that PGD2 is a pro-in-
flammatory eicosanoid and therefore blockade is 
likely to confer additional benefit. Conventionally, 
the so-called ‘2-series’ eicosanoids, production of 
which is catalysed by the inducible COX-2 isoform, 
are considered pro-inflammatory.74,79,80 In addition, 
PGD2 has been shown to provoke vasodilation and 
bronchoconstriction, as well as mediating chemoat-
traction of eosinophils and TH2 lymphocytes.78 Mice 
overexpressing the lipocalin-type PGD synthase in 
the lungs demonstrate enhanced features of asthma,79 

suggesting that inhibition of PGD2 production is 
associated with reduced allergic inflammation. How-
ever, there is an increasing body of evidence to sug-
gest that the story is more complicated, one example 
being the cardiovascular problems associated with 
the use of selective COX-2 inhibitors.81–83 Of further 
interest is the observation that COX-2  inhibitors 
administered during the resolution phase actually 
prolong the duration of inflammation, suggest-
ing that 2-series eicosanoids can have potent anti-
inflammatory properties84 and that these effects are 
context dependent.

Some of the anti-inflammatory effects of PGD2 are 
likely to be mediated by PPARγ as discussed earlier, 
but results of a number of studies suggest that many 
of the pro-inflammatory effects are mediated through 
its activation of the DP2 (CRTH2) receptor74,79 and 
that DP1 activation may actually mediate some 
of the anti-inflammatory effects.72,77,79,85 Certainly 
PGD2 is protective against neuronal damage caused 
either by glutamate excitotoxicity or by ischemia.77,86 
PGD2 is the most abundant prostanoid in the brain, 
and both its receptors are also expressed by neu-
ronal tissue.77,87 Cerebral ischemia is associated with 
induction of COX-2, which leads to an upregulation 
of PGD2 synthesis. DP1 activation in neuronal tis-
sue triggers a PKA-mediated decrease in intracel-
lular calcium which protects neuronal tissue against 
necrosis and apoptosis in the early phase of cerebral 
ischemia. Similarly, DP1 activation protects against 
glutamate-induced damage: the activated glutamate 
receptor triggers sodium and calcium influxes that 
increase intracellular osmolarity, leading to water 
influx and cell swelling. The calcium influx has 
the further effect of impairing mitochondrial func-
tion, resulting in a failure of the pumps responsible 
for maintaining normal ionic equilibrium and the 
swelling worsens. DP1 activation prevents the rise 
in intracellular calcium, largely as a result of PKA-
mediated modulation of the activity of the SERCA 
pump which increases calcium uptake by the endo-
plasmic reticulum.77,86 The critical role of the DP1 
receptor in this process is demonstrated by the fact 
that DP1 antagonism ablates this protective effect. 
These results led the authors to draw the conclusion 
that DP1 agonists are promising therapeutic agents 
for the treatment of acute cerebral ischemia and CNS 
problems associated with multi-infarct damage.
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Other evidence supporting the notion that 
DP1 receptor mediated effects of PGD2 are anti-
inflammatory is the observation that hematapoeitic 
PGD2 synthase knockout mice have a hyperinflamma-
tory response,72 an effect that can be rescued by treating 
the animals with a DP1 agonist. These knockout mice 
appear to have a compromised resolution phase which 
supports the notion that PGD2 is particularly critical in 
this phase. Treatment with a DP1 agonist stems fresh 
polymorph neutrophil influx to the site of inflamma-
tion and also promotes macrophage clearance.

Even in asthma, signalling through DP1  may be 
anti-inflammatory. Many studies have indicated a 
pro-inflammatory role for this receptor: DP1 knock-
out mice have reduced signs of asthma88 and PGD2 
on its own can mimic the key features of allergic dis-
ease, including vasodilation, erythema and edema, 
as well as the recruitment of eosinophils and TH2 
lymphocytes.74 PGD2 activity also appears to modulate 
TH2 lymphocyte cytokine expression and also triggers 
bronchoconstriction. However, a study by Hammad 
et al79 demonstrated that, in a mouse model, treatment 
with a DP1 agonist potently inhibits asthma, and that 
this affect appears to result from altered function of 
lung dendritic cells in response to DP1  signalling. 
Dendritic cells play role in mediating the allergic 
inflammatory responses associated with asthma 
because they express an number of antigens (such as 
CD86, CD40 and MHCII) known to be essential for 
inducing both naïve and memory effector responses 
in the lung. DP1 agonists downregulate expression 
of these molecules, and have also been shown to 
reduce expression of cytokines involved in dendritic 
cell migration and maturation.79 Some of the appar-
ent problems associated with PGD2 activity in asthma 
may be independent of either receptor. DP1  signal-
ling in bronchial smooth muscle causes bronchodila-
tion, but in practice this seems to be overcome when 
concentrations of PGD2 are particularly high and its 
ability to activate the TP receptor becomes significant. 
The TP receptor is Gq coupled and therefore leads to 
constriction of bronchial smooth muscle.74

Other Effects Mediated  
by the DP-1 Receptor
Perfusion of rat brains with PGD2 induces sleep 
indistinguishable from physiological sleep, and 
PGD2 is secreted into the cerebrospinal fluid with 

a circadian rhythm. This suggests that PGD2 has an 
important role to play in the regulation of sleep and 
wakefulness, and this appears to be at least partially a 
DP1 mediated effect.87 The DP1 receptor has also been 
shown to mediate the erectile response in a number 
of species, including humans One possible concern 
with DP1 anatgonists must therefore be impotence, 
which may already be of concern in patients with 
cardiovascular disease.89 Another issue which may 
have particular relevance for diabetics is the observa-
tion that, in a mouse model, overexpression of PGDS 
led to an increase in PGD2 production in adipocytes. 
The effect of this was to stimulate adipogenesis and 
enhanced insulin sensitivity.90 While this seems likely 
to result from the generation of PPARγ ligands, a 
DP1 mediated-effect has not been ruled out.

Laropiprant
Laropiprant (MK-0524) is a potent (Ki 0.57  nM) 
orally active and highly selective antagonist of the 
DP1 receptor,91,92 originally developed as an anti-
allergy agent.68 Once-daily dosing is sufficient to 
achieve DP1 antagonism throughout the 24 period, 
which means that it is well-suited to combination 
with extended-release niacin, which is also given 
as a single daily dose. Concomitant administration 
of niacin and laropiprant has been shown to attenu-
ate both incidence and intensity of flushing without 
affecting the lipid-lowering benefits seen with niacin 
alone.68,80,93 This reduction in flushing is seen both in 
terms of objective measures such as reduced malar 
perfusion, as well as subjective measures, such as 
patient-rated severity of pruritis, warmth and tingling. 
The improved tolerability associated with the use of 
laropiprant in combination with extended-release nia-
cin has also removed the need for complicated titra-
tion regimes.80

Following oral administration, laropiprant is 
rapidly absorbed. In a study by Karanam et  al,94 
healthy human subjects were given a 40 mg dose of 
14C-labelled drug, and peak plasma concentrations 
were observed within 1.5 hours, which is supported 
by the clinical trials described below which indi-
cate that peak plasma concentrations are typically 
achieved between 0.8–2 hours after administration.4 
Laropiprant was rapidly metabolized in the liver and 
excreted in the bile, primarily via the acyl glucaronic 
acid conjugate, a process catalyzed by the enzymes 
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UGT1A1, 1A3, 1A9 and 2B7. Phase I metabolites 
(hydroxylated and keto-derivatives) were also 
detected, although these accounted for only a minor 
part of the metabolism (and probably resulting pri-
marily from CYP3A4 activity). Approximately 68% 
of the dose was recovered in the feces, with the rest 
accounted for by urinary excretion. Of the material 
retrieved in the feces, most of it was in the form of 
the parent compound and it is thought that this is 
the result of hydrolysis of the acyl glucaronic acid 
conjugate. Oral bioavailability was seen to be in the 
order of 80%.94

Clinical trials also indicate that laropiprant con-
centration in the plasma undergoes a biphasic pat-
tern of decline: initially, a rapid decrease is observed 
between two and four hours, followed by a slower 
decrease. The half-life appears to range from about 
twelve to eighteen hours.4 Kinetic profiling appears to 
be similar for both single and multiple dosing, hence 
the development of TredaptiveTM—a combination 
tablet consisting of a bilayer: one layer of controlled-
release niacin (Niaspan-RTM) and one layer of imme-
diate release laropiprant, 1 g and 20 mg respectively.20 
This drug has received approval for the treatment 
of dyslipidemia in the European Union and other 
countries, but notably not in the US, where concerns 
remain about the use of laropiprant.95

One potential problem is inhibition of CYP2C8,92 
an enzyme important in the metabolism of a num-
ber of drugs, with one of the most significant being 
the insulin-sensitizing PPARγ agonist rosiglita-
zone (AvandiaTM). Rosiglitazone is extensively 
metabolized—no unchanged drug can be detected in 
the urine—predominantly via CYP2C8 with a minor 
contribution from CYP2C9. Side effects include the 
increased risk of adverse cardiovascular outcomes 
which has prompted caution in the use of this drug, 
especially in patients with heart failure.96–98 Inhibition 
of CYP2C8 activity theoretically may potentiate this 
effect. A study by Schwartz et  al92 investigated the 
effects of laropiprant on the pharmacokinetics of 
rosiglitazone in normal healthy adults. This was an 
open-label, randomized, 2-period crossover investi-
gation, comprising two treatments: A (1 × 4 mg tab-
let of AvandiaTM on day 1) or B (40 mg, once daily 
dose of laropiprant for seven days, with a single 4 mg 
dose of AvandiaTM on day 6). Each patient received 
both treatments, in random order, with a 3-day washout 

period between the two treatment phases. For patients 
on the AvandiaTM-only phase, blood samples were 
collected throughout the first 24 hours, while during 
the laropiprant/AvandiaTM phase, blood samples were 
taken throughout. The laropiprant dose selected for 
this trial was the highest dose tested during Phase III 
clinical trials, and the results suggest that alone or in 
combination with rosiglitazone, it was well tolerated. 
Significantly, at this ‘maximum recommended dose’ 
laropiprant had no clinically meaningful effects on 
rosiglitazone concentrations, suggesting that inhibi-
tion of CYP2C8 is not relevant in practice.92

Another concern is the possible effect of laropiprant 
on platelets. PGD2, acting through the DP1 receptor, 
is known to inhibit platelet activity. Activated plate-
lets produce PGD2, and it is thought that this acts as 
negative feedback mechanism, preventing excessive 
activation. It follows, therefore, that DP1 antagonism 
may indirectly enhance platelet activity by blocking 
this negative feedback.20,78 However, this is not the 
only possible effect on the platelet: laropiprant has 
also been shown to be an antagonist of the TP receptor, 
albeit its potency is orders of magnitude lower than at 
the DP1 receptor. It is the TP receptor that mediates 
the powerful activation driven by thromboxane A2, 
and it may be that laropiprant acting in this capac-
ity would inhibit platelet activation. While the role of 
the TP-mediated pathway in platelet function is well 
known, the contribution of DP-1 mediated effects is 
less clear. To explore this further, Lai and colleagues 
investigated the effect of laropiprant, niacin and com-
binations on platelet aggregation and bleeding time in 
normal subjects. This trial involved four treatments: 
extended-release niacin alone (2 g single daily dose), 
laropiprant alone (40 mg single daily dose), a combi-
nation of both drugs and placebo to all treatments. All 
patients received all treatments (in random order) and 
there was a seven-day washout period between each. 
Platelet aggregation in response to both ADP and col-
lagen was measured, as was bleeding time. The assay 
used to measure platelet aggregation in this study 
was considered to be highly sensitive and possibly 
detected a mild transient inhibitory effect of laropip-
rant on platelet activation, but this was not sustained, 
and did not translate into any clinically meaningful 
effect on bleeding time. This backs up the results of 
the clinical trials (discussed later in this review) that 
indicate that there is no increase in bleeding time 
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associated with laropiprant treatment even with doses 
up to 300 mg daily over a 4–5 week period.78

Of course, platelet activation and subsequent 
aggregation involves more than just the platelet 
itself—endothelial mediators also influence the 
process. Platelet function in vivo can be assessed by 
measuring urinary 11-dehydrothromboxane and treat-
ment with laropiprant did not significantly affect lev-
els of this marker. Similarly, there was no change in 
levels of PGD2 and PGI2 as measured by their urinary 
metabolites. Overall, these studies appear to indicate 
that laropiprant has little or no effect on platelet func-
tion in vivo.78

Clinical Trials Concerning  
the Efficacy of Laropiprant  
with Respect to Lipid Parameters
Phase III trials have investigated the efficacy of 
extended-release niacin (ERN) and laropiprant with 
regard to lipid modulation (Table  1). Maccubbin 
et  al99 describe how an early phase III trial demon-
strated a significant improvement in a number of lipid 
parameters compared to placebo including an 18.4% 
reduction in LDL-C, combined with a 20% increase 
in HDL-C. Furthermore, TG levels were reduced by 
over a quarter, while ApoB levels fell by 18.8% and 
ApoA1  increased by almost 7%. These figures are 
similar to those observed with niacin alone, indicating 
that laropiprant does not attenuate the lipid benefits. 
Paolini and colleagues4,100 also looked at the impact 
of ERN/laropiprant on lipid levels and blood pressure 
although this was a short term study more concerned 

with safety and tolerability. A drop in LDL-C of 15% 
was observed, as was an increase in HDL-C of 20%. 
A second phase III trial101 involved a much larger 
group of patients and looked at the effects of ERN/
laropiprant in combination with a statin. 1398 par-
ticipants were randomized to receive either 1000 mg 
ERN/20 mg laropiprant, simvastatin (10, 20 or 40 mg) 
or both, following a 6–8 week washout and a 4-week 
placebo/diet run-in period. After 4 weeks, the doses of 
ERN and laropiprant were escalated to 2000 mg and 
40 mg respectively. The combination was shown to 
be more effective than simvastatin alone, with respect 
to all lipid parameters and this result was consistent 
across all patient groups. The increase in HDL-C was 
particularly impressive: 28% compared with 6% for 
simvastatin alone.

A more recent study by Shah et  al93 looked at 
combining ERN/laropiprant with either simvastatin 
or atorvastatin, and comparing the results to those 
obtained by simply doubling the dose of the statin. 
Once again, this was a short term study (12 week 
treatment period) and involved patients with pri-
mary hypercholesterolemia or mixed dyslipidemia. 
In this multi-center, randomized, double-blind, paral-
lel study, one group of patients received either ERN/
laropiprant in combination with either simvastatin (10 
or 20 mg) or atorvastatin (10 mg). The other group 
received either simvastatin (20 or 40 mg) or atorvas-
tatin 20 mg. The primary endpoint in this trial was 
the LDL-C level, but secondary endpoints included 
a range of lipid measurements (including HDL-C). 
Doubling the dose of statin proved more effective 

Table 1. Summary of the main findings with respect to lipids of trials involving ERN/laropiprant combinations.

Trial Main lipid findings Comments
Maccubin 
et al97

Reduction in LDL-C of 18.4% 
Reduction of ApoB of 18.8% 
Increases in HDL-C and ApoA1 of  
20% and 7% respectively

Similar to the results observed for  
extended-release niacin alone

Paolini  
et al98

Reduction of 15% in LDL-C 
Increase in HDL-C of 20%

This study was concerned mainly with safety 
and tolerability. Blood pressure was also 
measured: no significant differences observed

Gliem  
et al99

This trial compared ERN/laropiprant with  
ERN/laropiprant and simvastatin. Patients receiving  
all 3 drugs saw an average increase in HDL-C of 28%

Shah  
et al91

Treatment groups were ERN/laropiprant/statin  
compared with double-dose statin. Between-treatment  
group differences were: LDL-C: -4.5%; HDL-C 15.6%;  
TG -15.4%

Effects on LDL-C were not of the same 
magnitude as those observed in earlier trials
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than the ERN/laropiprant/statin combination with 
regard to the effects on LDL-C levels, although it was 
interesting to note that the effects on LDL-C were less 
dramatic than those observed in other trials involving 
niacin and laropiprant. The authors suggest that the 
lack of a placebo comparator arm may have led to 
an underestimation in the magnitude of the LDL-C 
response. However, the effects of the combination 
drugs on all other lipid parameters was superior to 
those observed for the double-dose statin group, espe-
cially with regard to HDL-C.

The results so far with respect to lipid modification 
are promising. However, all studies so far undertaken 
are short-term and as yet do not make any assessment 
of clinical outcome. The HPS2-THRIVE study,58 due 
to report in 2013 will go some way towards answer-
ing these concerns. Unfortunately, the ACHIEVE 
(Assessment of Coronary Health using an Intima-
media thickness Endpoint for Vascular Effects) trial, 
which would have offered more insight in this regard 
has been halted,102 although this is largely due to 
concerns that carotid intima-media thickness is not a 
robust surrogate endpoint.103,104

Effect of ERN/Laropiprant 
Combinations on Blood Pressure
There have been two trials so far involving ERN/
laropiprant that have considered the effect on blood 
pressure. The first of these was the short term titra-
tion study by Paolini and colleagues described above. 
Involving 412 patients, it showed no significant effect 
on blood pressure.100 However, a second larger study 
involving 1613 patients had different results. This 
was a worldwide, multicenter double-blind, random-
ized, placebo-controlled parallel study, beginning 
with a 4-week placebo run-in followed by a 24-week 
double-blind treatment period.105 Participants’ ages 
ranged from 18–85 years and all had either primary 
hypercholesterolemia or mixed dyslipidemia. Patients 
were randomized to receive either ERN + laropiprant, 
ERN or placebo in a 3:2:1 ratio. Those on active treat-
ment had an initiation period of 1 week on 1000 mg 
niacin/20  mg laropiprant, which was increased to 
2 g/40 mg after this time. Both systolic and diastolic 
blood pressures were measured at baseline then at 
4, 8, 12, 18 and 24 weeks. Treatment with either ERN 
or ERN/laropiprant was associated with significant 
sustained reductions in both systolic and diastolic 

pressures compared to placebo. These figures were 
similar to the 2–3 mmHg drop observed in the post-
hoc analysis of the CDP data described previously.

Efficacy of Laropiprant  
as an ‘Anti-Flush’ Agent
There have been a number of trials that have specifi-
cally investigated the ability of laropiprant to attenu-
ate the niacin flush. Most of the trials described above 
have assessed this aspect to some degree and there are 
other trials that have been solely concerned with this 
aspect.8,106,107 Regardless of the method of assessing 
the extent of flushing (subjective or objective) it is 
clear that co-adminstration of laropiprant with ERN 
significantly increases tolerability and allows optimal 
therapeutic dosing to be achieved, which is likely to 
improve the clinical efficacy of niacin. These studies 
also indicate that 20 mg laropiprant is the optimum 
dose to prevent the flushing induced by a 1000 mg 
niacin dose, whereas 40 mg is more effective at atten-
uating the flush caused by 2000 mg niacin. Currently, 
for the use of ERN, a 4-step titration regimen is 
recommended. The use of laropiprant removes some 
of the need for this process, and the currently recom-
mended strategy is the two-step regimen described by 
Gliem and colleagues above.101

It is, however, worth stating again that DP1 antag-
onism does not completely abrogate the flushing 
response. Drop-out rates due to flushing are vastly 
improved, but they are still significant. For example, in 
the study by Bays et al, describing the effect of ERN/
laropiprant combinations on blood pressure,105 of the 
1613 participants, 453 discontinued treatment. 35.7% 
of the patients receiving ERN alone discontinued: 
this is not unexpected and is in line with previous 
studies assessing the tolerability of this agent (this 
compared with a dropout rate of 11.5% for the pla-
cebo group). However, the dropout rate for the group 
receiving ERN/laropiprant was still 28.5%, which is 
conistent with other studies that suggest that the drop-
out rate due to flushing with laropiprant is still around 
25%.9,106,107

This is perhaps not unexpected given the consid-
erable body of evidence to suggest that the flushing 
effect is also PGE2 mediated. Aspirin and NSAIDs 
have been used in the past to attempt to attenuate the 
flush but this has not been particularly successful.108–110 
A phase I trial, reported by Dishy et al9 looked at the 
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possibility of further reducing the skin toxicity of 
niacin by combining ERN/laropiprant with aspirin. 
Participants were all healthy non-smoking men and 
non-pregnant women aged between 18–75. This was 
a double-blind, double-dummy, randomized, place-
bo-controlled cross-over study with three treatment 
periods. There were four treatment combinations: 
each participant received three of these treatments 
and the sequence of treatments was randomized. 
Treatment A comprised ERN 2 g/laropiprant 40 mg 
plus placebo to aspirin 325  mg. Treatment B was 
ERN 2  g/laropiprant 40  mg plus aspirin 325  mg. 
Treatment C was placebo to both the ERN/laropiprant 
and aspirin treatments, while treatment D was ERN 
1 g/laropiprant 20 mg plus aspirin 325 mg. All par-
ticipants received treatments A and B at some point 
during the study and also received either treatment C 
or D. Aspirin (or placebo to aspirin) was adminis-
tered 30 minutes prior to the treatment with niacin/
laropiprant or its appropriate placebo. The treatment 
period was 3  days and flushing was assessed using 
a flushing symptom questionnaire. Interestingly, the 
results indicated that there was no significant benefit 
conferred by pre-treatment with aspirin.

Safety and Tolerability
Generally, laropiprant has been shown to be well-
tolerated. Many of the potential concerns have been 
shown to be of little practical consequence in the 
short studies so far conducted. Guidance issued by 
the International Conference on Harmonisation states 
that early phase clinical testing of novel drugs should 
involve an assessment of the effect of that drug on 
the QTc interval.111 Prolongation of the QTc interval 
is of particular concern because it may cause poten-
tially fatal ventricular tachycardias such as Tor-
sades de pointes. A study by Luo et al112 involved a 
double-blind, randomized, placebo-controlled, dou-
ble dummy, four-period balanced crossover study, 
which involved the administration of a single dose of 
laropiprant (either 50 or 600 mg) and found that even 
the 600 mg dose, which is far in excess of the maxi-
mum clinically used dose, was well-tolerated and did 
not prolong the QTc interval relative to placebo.

Although the potential effects of laropiprant on 
platelet activity appear to have no clinical relevance, 
it is possible that it may be of concern to patients who 
are receiving anti-coagulation therapy, which is of 

particular relevance to the patient groups most likely 
to benefit from lipid-lowering therapy.113,114 A study 
by Schwartz et al indicates that there are no signifi-
cant effects of laropiprant on the pharmacokinetics 
and pharmacodynamics of warfarin.115 Especially 
important is the observation that there is no signifi-
cant change in the INR meaning that it is likely that 
ERN/laropiprant combinations can safely be used in 
patients on warfarin.

Both niacin65,116–119 and statin61,120–123 treatment have 
the potential to elevate liver transaminases. Most of the 
trials involving laropiprant have indicated that there 
is an increase in the number of patients experiencing 
more than one elevation $3 times the upper limit of 
normal ALT or AST levels. These did not appear to be 
problematic: they were asymptomatic and resolved 
rapidly following discontinuation of treatment.93,100,107 
However, these are all short-term studies, and it may 
become more of an issue when higher statin doses are 
used. For this reason, it is currently recommended that 
patients receiving laropiprant combinations should 
have liver function tests performed at 3 months and 
6 months after the initiation of treatment and every six 
months thereafter. Similarly, the myopathy associated 
with statin use124–126 does not appear to be aggravated 
by laropiprant treatment.90 The evidence also suggests 
that adding laropiprant to ERN does not exacerbate 
the effects of niacin on glycemic control.93

AIM-HIGH: Challenging  
the HDL Hypothesis?
The Atherothrombosis Intervention in Metabolic syn-
drome with low HDL/high triglycerides: Impact on 
Global Health outcomes (AIM-HIGH) trial was a 
large-scale multi-center study designed to answer the 
question as to whether or not extended-release nia-
cin can further reduce cardiovascular risk in patients 
whose LDL-C levels are already well-controlled. 
3414 patients were enrolled, and inclusion criteria 
included the presence of established CV disease and 
atherogenic dyslipidemia. Diabetes was not an exclu-
sion criterion. Patients received simvastatin at a dose 
required to reach a target LDL-C of 40–80  mg/dL, 
although ezetemibe could also be added to the treat-
ment if the statin alone was insufficient to achieve 
the target LDL-C. Patients were then randomized 
to receive either placebo or extended-release niacin 
(2000 mg/day, or 1500 mg if the higher dose proved 
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difficult to tolerate). The study began in 2005, and 
was due to finish in September 2012, with the pri-
mary outcome measure being a composite endpoint 
of CHD death, non-fatal MI, ischemic stroke, hos-
pitalization for non-ST segment acute coronary syn-
drome or a symptom-driven coronary or cerebral 
revascularization.127 However, the trial was halted in 
May 2011, because the study aim of reducing risk by 
an additional 25% could not be met,128 although the 
supposedly beneficial lipid alterations were achieved. 
This underlines the importance of measuring clinical 
outcomes rather than relying on surrogate endpoints,129 
but the full impact of the results remains to be seen.

Conclusion: Place in Therapy
Despite the recent controversy generated by the ces-
sation of AIM-HIGH, which has led some to sug-
gest that treatment goals should remain focussed on 
LDL-C lowering,130 there is an extensive body of 
evidence to support a wider approach with regard 
to lipid modulation and ERN is well-proven in this 
regard. Combination with laropiprant is effective 
in reducing the side effects and does not appear to 
attenuate the clinical benefits. However, the present 
studies are all short-term, whereas the development 
of cardiovascular disease is most certainly a chronic 
condition. Especially in light of the considerations 
with regard to the potential anti-inflammatory ben-
efits of DP1 signalling, it is critical that longer-term 
studies are undertaken not only to back up the initial 
findings, but to ensure that the benefits with regard 
to lipid modulation extend to clinical risk reduction. 
Health care professionals should be aware of the 
potential risks and remain vigilant to prevent a repeat 
of the sort of issues observed with rosiglitazone.
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