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Abstract

Magnetoencephalography (MEG) is a neuroimaging technique that accurately captures the

rapid (sub-millisecond) activity of neuronal populations. Interpretation of functional data

from MEG relies upon registration to the participant’s anatomical MRI. The key remaining

step is to transform the participant’s MRI into the MEG head coordinate space. Although

both automated and manual approaches to co-registration are available, the relative accu-

racy of two approaches has not been systematically evaluated. The goal of the present

study was to compare the accuracy of manual and automated co-registration. Resting MEG

and T1-weighted MRI data were collected from 90 participants. Automated and manual co-

registration were performed on the same subjects, and the inter-method reliability of the two

methods assessed using the intra-class correlation. Median co-registration error for both

methods was within acceptable limits. Inter-method reliability was in the “good” range for co-

registration error, and the “good” to “excellent” range for translation and rotation. These

results suggest that the output of the automated co-registration procedure is comparable to

that achieved using manual co-registration.

Introduction

Magnetoencephalography (MEG) is a neuroimaging technique that accurately captures the

rapid (sub-millisecond) activity of neuronal populations. Indeed, MEG can only detect signal

from the synchronous firing of neuronal populations in a cortical patch of approximately 10

mm2 or larger [1], making it essentially a network-detection technique. Due to a relative scar-

city of reimbursable MEG-based clinical procedures, historically MEG was available at only a

relatively limited number of cutting-edge research and clinical institutions [2]. However, inter-

est in MEG has grown as the technique’s potential has been revealed over the past four

decades, with increased recognition of MEG as a means of directly evaluating neuronal net-

works and their relevance to a range of disorders as well as to typical cognitive and affective

processes.

As is the case for other functional neuroimaging approaches, interpretation of functional

data from MEG relies upon registration to an anatomical or template MRI [3]. Because the

data for the two modalities are collected on different scanners and therefore in different
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coordinate spaces [4], the procedure for MRI-MEG co-registration is somewhat involved. Typ-

ically during preparation for an MEG scan, three to five head position coils are affixed to the

participant’s scalp, and then a 3D digitizing pen is used to digitize important points including

the coil locations, anatomical landmarks that typically include the nasion and preauricular

points, as well as a detailed headshape using approximately 150 points (Fig 1). The headshape

points are collected primarily from the brow, bridge of the nose, and skull, avoiding the lower

jaw and cartilaginous or fatty tissue that would be expected to shift when the participant

moves or might be compressed by the head coil during the participant’s MRI scan. Because

this preparation process can be somewhat labor-intensive and subject to variability in techni-

cian skill, alternatives such as use of a bite bar [5], 3-D camera [6], or 3-D laser scanner [7]

have also been explored but are not widely used.

Subject preparation and co-registration procedures are important because they influence

the quality of electromagnetic source localization [8, 9]. Research using MEG has consistently

shown that poor co-registration quality can lead to poor source localization [10, 11]. When

source localization is performed using beamforming, co-registration error greater than

approximately 2 mm may yield unacceptably large errors in both source localization [12] and

source extent [13]. The same 2 mm threshold appears to apply to source localization using

minimum-norm estimates [14], suggesting this threshold as an heuristic for co-registration

quality.

During the MEG scan session, the head position coils are energized at known frequencies,

which permits the precise measurement of their locations relative to the MEG sensor array.

Because at the conclusion of an MEG scan the relative locations of the sensors, coils, anatomi-

cal landmarks, and headshape points are known, transforming the MEG data to the

Fig 1. Example of collection of headshape points during participant preparation.

https://doi.org/10.1371/journal.pone.0232100.g001
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participant’s head coordinate space is relatively simple. The key remaining step is to transform

the participant’s MRI into the MEG head coordinate space. This transformation is the focus of

the MEG-MRI co-registration process.

The manual co-registration process itself is straightforward. A high-resolution 3-D head

surface based on the skin-air boundary can be extracted from a T1-weighted MRI using read-

ily-available analysis toolkits such as Freesurfer [15]. Incorporation of this surface into the co-

registration process has been shown to improve the quality of the co-registration [10] and is

the standard in MNE-python and its predecessor, MNE [16]. In the absence of significant MRI

artifacts, the participant’s distinguishing features, including the face and the anatomical land-

marks collected during MEG preparation, are clearly visible on this surface. The anatomical

landmarks and MEG headshape can be used to co-register the MRI head surface (and there-

fore the MRI data) to the participant’s head coordinate space. Typically this involves manually

identifying the anatomical landmarks on the MRI head surface, using these values to perform

an initial transformation, and then applying an iterative closest points algorithm [ICP: 17] to

assist in refining the transformation until the distance between the MEG headshape and the

MRI head surface has been minimized (Fig 2). This can be accomplished using template MRIs,

but MEG data can be localized with higher confidence when the individual participant’s own

structural MRI is used for their co-registration. Numerous toolkits are available to assist the

analysist in co-registration, including but not limited to MNE-python [18], SPM [19], Fieldtrip

[20], BrainStorm [21], and NUTMEG [22].

Importantly, although both automated and manual approaches to co-registration are avail-

able, the consistency of the two approaches has not been systematically evaluated. One com-

mon approach to evaluating the consistency of two methods is to compute their inter-method

reliability. Inter-method reliability, computationally identical to inter-rater reliability, is a

means of assessing the chance-corrected agreement between two different methods. This can

be computed using a ratio of the variance of interest divided by the total variance; that is, the

intra-class correlation (ICC) [23]. The goal of the present study was to evaluate the inter-

method reliability of manual and automated co-registration using the MNE-python

toolbox [18].

Method

As part of an ongoing study, resting MEG and T1-weighted MRI data were collected from 90

participants (mean age = 35.20 years (SD = 10.04), 42.2% female, 50% Hispanic). MRI data

were collected on a Siemens 3T Trio Tim system (Siemens Healthcare, Erlangen, Germany)

using a 32-channel head coil. Paper tape was placed across each participant’s forehead to

reduce motion. Structural images were collected with magnetization-prepared 180˚ radiofre-

quency pulses and rapid gradient-echo sequence (MPRAGE; TE = 1.64, 3.5, 5.36, 7.22, and

Fig 2. Example headshape points, landmarks, and HPI coils on head surface after co-registration.

https://doi.org/10.1371/journal.pone.0232100.g002
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9.08 ms; TR = 2.53 s; FA = 7˚; number of excitations = 1; slice thickness = 1 mm; FOV = 256

mm; resolution = 256×256). Standard preprocessing was conducted using the Freesurfer

image analysis suite [15], which is documented and freely available for download online

(http://surfer.nmr.mgh.harvard.edu/). However, generation of the head surface file used in co-

registration relies only upon the existence of a T1 image [24], not on any specific preprocessing

package.

MEG data were collected in a magnetically and electrically shielded room (VAC Series

Ak3B, Vacuumschmelze GmbH) using an Elekta Neuromag whole-cortex 306-channel MEG

array (Elekta Oy, Helsinki, Finland). Before positioning the participant in the MEG, four coils

were affixed to the participant’s head—two on the forehead and one behind each ear. Addi-

tional positioning data was collected using a head position device (Polhemus Fastrak). Between

83 and 229 points were collected for each subject (median = 143, IQR 122–157). Participants

were instructed to keep their eyes open and focused on a fixation cross back-projected onto a

screen during the scan. MEG data were sampled at a rate of 1000 Hz, with a bandpass filter of

0.10 to 330 Hz. Head position was monitored continuously throughout the MEG session. Five

minutes of raw single-trial data were collected and stored. Data from two MEG measurement

sessions were examined.

An experienced technician had previously manually co-registered each MEG scan to its

corresponding MRI using MNE [16] following the general steps described in the Introduction.

Automated co-registration in MNE-python follows the same general sequence described for

manual co-registration. The MNE toolboxes include standard landmark coordinates (nasion,

preauricular points) defined on the MNI305 head [25]. The automated co-registration is per-

formed by 1) transforming these coordinates from the MNI305 head to each participant’s MRI

coordinate space, 2) performing an initial fit to the MRI head surface using only these land-

marks, 3) applying several initial iterations of the iterative closest points (ICP) algorithm, 4)

eliminating outlier head points (i.e., those> 5 mm away from the head surface), and 5) apply-

ing the ICP algorithm again. The final affine transformation was then saved and the co-regis-

tration errors (i.e., the median distance between each MEG headshape point and the nearest

point on the MRI head surface) preserved. Errors for manual co-registrations were obtained

by applying the affine transformations from the manual co-registration to the MEG headshape

and computing the distance between each MEG headshape point and the nearest point on the

MRI head surface. Visual inspection was used to assure the quality of the fit. The inter-method

reliability of co-registration error for manual and automated co-registration was compared

using the intraclass correlation (ICC model 3,1: 23).To evaluate the relationship between par-

ticipant preparation procedures and co-registration error, we computed the correlation

between co-registration error terms and the number of headshape points collected during par-

ticipant preparation. To assess the comparability of the head transformation matrices pro-

duced by each method, we converted each affine transformation matrix to mm of translation

in the x, y, and z directions, and degrees of rotation around the x, y, and z axes (i.e., pitch, roll,

and yaw), and computed the inter-method reliability for each parameter. Finally, to evaluate

whether the automated technique could be applied to anonymized, “de-faced” data, we re-ran

the automated co-registration procedure using MRIs that had been de-faced with PyDeface

[26].

The methods described above generate a 3D rendering of each participant’s head and face

from their structural MRI. While initial studies of such renderings observed relatively low

accuracy when matching renderings to facial photographs [27, 28], more recent work has indi-

cated that facial recognition software can accurately match renderings to facial photographs

with high confidence when sufficient high-quality facial photographs are available [29]. This is

a point of ethical concern, as any dataset containing images comparable to facial photographs
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could result in a loss of privacy to affected research participants if data are shared. This would

also lead to a violation of research regulations, such as the HIPAA Privacy Rule in the U.S.

[30]. For studies such as ours that are protected by a Certificate of Confidentiality under the U.

S. 21st Century Cures Act [31], identifying information cannot be shared without participant

consent, by force of law. The standard practice is to remove these direct identifiers from data-

sets [32]. Large U.S. federally-funded studies such as the Human Connectome Project share

only de-faced structural MRIs, and for MEG data, also remove the participant’s head shape

[33]. As participants in the present study did not consent to data sharing, we have adopted this

approach and share only de-identified data, including de-faced structural MRIs and coded co-

registration error data for participants, at http://dx.doi.org/10.35092/yhjc.11991546.

Results

Median co-registration error for manual co-registration was 1.37 mm (IQR 1.17–1.63), and

for automatic co-registration 1.58 mm (IQR 1.23–2.05) (Fig 3). The mean difference in co-reg-

istration error between manual and automated co-registration was approximately 0.313 mm

(SD 0.555 mm). Co-registration error between the two methods was correlated at r = 0.541

(p< .001), which corresponds to a Cohen’s d of 1.29, a “large” effect size [34]. The association

between co-registration error and the number of headshape points was not significant for

either the manual (r = 0.143, p = .058) or the automated (r = 0.025, p = 0.745) co-registration

procedure. The inter-method reliability for the co-registration error between the two co-regis-

tration approaches was ICC = 0.472, which is in the “fair” range [35]. After excluding auto-

mated co-registration results with unacceptably high error (i.e., > 2.0 mm), inter-method

reliability improved only slightly to ICC = 0.491, also in the “fair” range [35]. Inter-method

Fig 3. Violin plot of co-registration error for manual (left) and automated (right) approaches.

https://doi.org/10.1371/journal.pone.0232100.g003
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reliability of all translation and rotation parameters was in the good to excellent range (i.e., all

ICC > 0.74; see Table 1).

Median co-registration error for automatic co-registration with de-faced MRIs was 2.01

mm (IQR 1.71–2.32). The difference in co-registration error between manual co-registration

with original MRIs and automated co-registration with de-faced MRIs was approximately

0.619 mm (SD 0.577 mm). The inter-method reliability for manual co-registration with origi-

nal MRIs and automated co-registration with de-faced MRIs was ICC = 0.045, which is in the

“poor” range [14].

Discussion

In our data, both manual and automated co-registration yielded generally acceptable results.

The co-registration error obtained for both processes in the present study is also consistent

with that of other studies. For instance, a study using bite bars to reduce motion found a mean

co-registration error of 1.16 mm [5], while a study using a 3D scanner found mean error of 2.2

mm [7], and one using a 3D camera (Kinect) observed a mean error of 1.62 mm [6]. Despite

the ready availability of co-registration error metrics, reporting of these metrics in MEG stud-

ies has not yet become standard practice [36, 37].

The inter-method reliability results, in the “fair” range for co-registration error and the

“good” to “excellent” range for translation and rotation parameters, suggests that the outputs

of the manual and automated co-registration processes applied in this study are similar. That

is, despite the extensive training and time requirements of manual co-registration, the results

of the manual and automated co-registration procedures were in agreement, for both co-regis-

tration error and for the translations and rotations that were applied to align the MEG head-

shape points and MRI head surface. However, based on the results of the present study,

automated co-registration using de-faced MRIs should be viewed with some caution.

It is worth noting that the MRI scans included in the present study appear to have been rela-

tively artifact-free. Data from participants with common sources of susceptibility artifact such

as braces, permanent retainers, other dental work, and certain hair products [38] would likely

result in distortions of the head surface generated from the T1-weighted MRI, requiring

greater attention and the potential for manual intervention during co-registration.

Conclusion

Until devices capable of collecting simultaneous MRI and MEG data become commercially

available [39], co-registration will remain a limiting factor in the localization accuracy of MEG

data [10–14]. Because reporting of co-registration error is not yet a best practice for MEG [36],

adoption has been slow. The implementation of procedures to estimate co-registration error

in analysis packages such as MNE-python [18] may help to accelerate this. Our results suggest

that in many cases a simple automated processes performed using freely-available and open-

Table 1. Descriptive statistics and inter-method reliability results for translation and rotation.

Translation median in mm (IQR) Rotation median in degrees (IQR)

x y z Pitch Roll Yaw

Manual -1.861 (-4.604–0.085) -4.842 (-9.938–1.378) -72.997 (-78.808–68.277) 15.244 (9.273–19.887) 1.394 (-0.341–3.718) -0.955 (-2.496–0.886)

Automated -1.549 (-3.543–0.514) -5.962 (-10.424–2.062) -67.514 (-71.163–63.607) 13.260 (8.011–18.450) 1.026 (-0.668–2.687) -0.265 (-2.135–1.276)

ICC 0.903 0.922 0.833 0.874 0.748 0.896

ICC = Intra-class correlation (model 3,1).

https://doi.org/10.1371/journal.pone.0232100.t001
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source software can co-register MEG and MRI data with results similar to those achieved by

manual co-registration, avoiding the time and training requirements of manual procedures.

Ethical approval and informed consent statement

All study protocols were approved by the University of New Mexico Institutional Review

Board (http://irb.unm.edu). All procedures were carried out in accordance with the relevant

guidelines and regulations. Documented informed consent was obtained from all participants.

Documented consent for the publication of the photograph presented in Fig 1 and the render-

ing presented in Fig 2 was obtained from the individual pictured, who was not a participant in

this research study.
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16. Hämäläinen M. MNE [Internet]. 2001. Available from: http://www.nmr.mgh.harvard.edu/martinos/

userInfo/data/MNE_register/index.php

17. Besl PJ, McKay HD. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell.

1992 Feb; 14(2):239–56.

18. Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, Brodbeck C, et al. MNE software for pro-

cessing MEG and EEG data. NeuroImage. 2014; 86:446–60. https://doi.org/10.1016/j.neuroimage.

2013.10.027 PMID: 24161808

19. FRISTON K, ASHBURNER J, KIEBEL S, NICHOLS T, PENNY W, editors. Statistical Parametric Map-

ping: The Analysis of Functional Brain Images [Internet]. London: Academic Press; 2007. Available

from: http://www.sciencedirect.com/science/article/pii/B9780123725608500000

20. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open Source Software for Advanced Analy-

sis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell Neurosci. 2011; 2011:1–9.

https://doi.org/10.1155/2011/720971

21. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: A User-Friendly Application for

MEG/EEG Analysis. Comput Intell Neurosci. 2011; 2011:1–13. https://doi.org/10.1155/2011/720971

22. Dalal S, Zumer J, Agrawal V, Hild K, Sekihara K, Nagarajan S. NUTMEG: A Neuromagnetic Source

Reconstruction Toolbox. Neurol Clin Neurophysiol NCN. 2004 Nov 30; 2004:52. PMID: 16012626

23. Shrout P, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull. 1979;

86:420–8. https://doi.org/10.1037//0033-2909.86.2.420 PMID: 18839484

24. Greve DN, Kaufman, Zeke. Freesurfer mkheadsurf [Internet]. FreeSurfer; 2016 [cited 2019 Nov 21].

Available from: https://github.com/freesurfer/freesurfer/blob/stable6/scripts/mkheadsurf

25. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM. 3D statistical neuroanatomical models

from 305 MRI volumes. In: 1993 IEEE Conference Record Nuclear Science Symposium and Medical

Imaging Conference. 1993. p. 1813–7 vol.3.

26. PyDeface [Internet]. poldracklab; 2019 [cited 2019 Dec 15]. Available from: https://github.com/

poldracklab/pydeface

27. Prior FW, Brunsden B, Hildebolt C, Nolan TS, Pringle M, Vaishnavi SN, et al. Facial Recognition From

Volume-Rendered Magnetic Resonance Imaging Data. IEEE Trans Inf Technol Biomed. 2009 Jan; 13

(1):5–9. https://doi.org/10.1109/TITB.2008.2003335 PMID: 19129018

28. Mazura JC, Juluru K, Chen JJ, Morgan TA, John M, Siegel EL. Facial Recognition Software Success

Rates for the Identification of 3D Surface Reconstructed Facial Images: Implications for Patient Privacy

and Security. J Digit Imaging. 2012 Jun 1; 25(3):347–51. https://doi.org/10.1007/s10278-011-9429-3

PMID: 22065158

29. Schwarz CG, Kremers WK, Therneau TM, Sharp RR, Gunter JL, Vemuri P, et al. Identification of Anon-

ymous MRI Research Participants with Face-Recognition Software. N Engl J Med. 2019 Oct 24; 381

(17):1684–6. https://doi.org/10.1056/NEJMc1908881 PMID: 31644852

30. U.S. Department of Health & Human Services, Office for Civil Rights. Summary of the HIPAA Privacy

Rule [Internet]. Available from: https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/

index.html

31. An act to accelerate the discovery, development, and delivery of 21st century cures, and for other pur-

poses. Public Law 114–255 Dec 13, 2016. Available from: https://www.govinfo.gov/app/details/PLAW-

114publ255

32. Hrynaszkiewicz I, Norton ML, Vickers AJ, Altman DG. Preparing raw clinical data for publication: guid-

ance for journal editors, authors, and peer reviewers. BMJ. 2010 Jan 29; 340. Available from: https://

www.bmj.com/content/340/bmj.c181

PLOS ONE MEG coregistration

PLOS ONE | https://doi.org/10.1371/journal.pone.0232100 April 29, 2020 8 / 9

https://doi.org/10.1016/j.neuroimage.2013.07.065
http://www.ncbi.nlm.nih.gov/pubmed/23911673
https://doi.org/10.1016/j.neuroimage.2003.07.031
http://www.ncbi.nlm.nih.gov/pubmed/14683731
https://doi.org/10.1016/j.neuroimage.2010.10.036
http://www.ncbi.nlm.nih.gov/pubmed/20969964
https://doi.org/10.1002/hbm.22057
http://www.ncbi.nlm.nih.gov/pubmed/22438263
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22248573
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/MNE_register/index.php
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/MNE_register/index.php
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.10.027
http://www.ncbi.nlm.nih.gov/pubmed/24161808
http://www.sciencedirect.com/science/article/pii/B9780123725608500000
https://doi.org/10.1155/2011/720971
https://doi.org/10.1155/2011/720971
http://www.ncbi.nlm.nih.gov/pubmed/16012626
https://doi.org/10.1037//0033-2909.86.2.420
http://www.ncbi.nlm.nih.gov/pubmed/18839484
https://github.com/freesurfer/freesurfer/blob/stable6/scripts/mkheadsurf
https://github.com/poldracklab/pydeface
https://github.com/poldracklab/pydeface
https://doi.org/10.1109/TITB.2008.2003335
http://www.ncbi.nlm.nih.gov/pubmed/19129018
https://doi.org/10.1007/s10278-011-9429-3
http://www.ncbi.nlm.nih.gov/pubmed/22065158
https://doi.org/10.1056/NEJMc1908881
http://www.ncbi.nlm.nih.gov/pubmed/31644852
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.govinfo.gov/app/details/PLAW-114publ255
https://www.govinfo.gov/app/details/PLAW-114publ255
https://www.bmj.com/content/340/bmj.c181
https://www.bmj.com/content/340/bmj.c181
https://doi.org/10.1371/journal.pone.0232100


33. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The WU-Minn Human Con-

nectome Project: An overview. NeuroImage. 2013 Oct 15; 80:62–79. https://doi.org/10.1016/j.

neuroimage.2013.05.041 PMID: 23684880

34. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge Academic; 1988.

35. Cicchetti DV, Sparrow SA. Developing criteria for establishing interrater reliability of specific items:

Applications to assessment of adaptive behavior. Am J Ment Defic. 1981; 86:127–37. PMID: 7315877

36. Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, et al. Good practice for conducting

and reporting MEG research. NeuroImage. 2013 Jan 15; 65:349–63. https://doi.org/10.1016/j.

neuroimage.2012.10.001 PMID: 23046981
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