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Abstract
Purpose: Prostate cancer primarily arises from the glandular epithelium. Histomophometric
techniques have been used to assess the glandular epithelium in automated detection and clas-
sification pipelines; however, they are often rigid in their implementation, and their performance
suffers on large datasets where variation in staining, imaging, and preparation is difficult to con-
trol. The purpose of this study is to quantify performance of a pixelwise segmentation algorithm
that was trained using different combinations of weak and strong stroma, epithelium, and lumen
labels in a prostate histology dataset.
Approach: We have combined weakly labeled datasets generated using simple morphometric
techniques and high-quality labeled datasets from human observers in prostate biopsy cores to
train a convolutional neural network for use in whole mount prostate labeling pipelines. With
trained networks, we characterize pixelwise segmentation of stromal, epithelium, and lumen
(SEL) regions on both biopsy core and whole-mount H&E-stained tissue.
Results: We provide evidence that by simply training a deep learning algorithm on weakly
labeled data generated from rigid morphometric methods, we can improve the robustness of
classification over the morphometric methods used to train the classifier.
Conclusions:We show that not only does our approach of combining weak and strong labels for
training the CNN improve qualitative SEL labeling within tissue but also the deep learning gen-
erated labels are superior for cancer classification in a higher-order algorithm over the morpho-
metrically derived labels it was trained on.
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1 Introduction

It is estimated that one in seven men will develop prostate cancer (PCa) in their lifetime and that
PCa itself accounts for one in five new cancer diagnoses.1 Invasive removal of prostate tissue is
currently required to confirm cancer diagnosis and drive treatment. From these samples, path-
ologists use the well-characterized Gleason criteria2,3 to interpret histomorphometric features and
grade the tissues,4 which can then be used to assign a grade group (GG).5 While these grading
criteria have been shown to hold great prognostic value, they are inherently subjective, relying on
a pathologist’s interpretation.6

In the histological analysis of prostates, it can be useful to divide the tissue into three major
components: stroma (connective muscular tissue), epithelium, and lumen (SEL). Identifying
these features using quantitative histomorphometry (QH) requires either manual or automatic
segmentation. SEL segmentation itself, which if not a requisite, is a stepping-stone for the more
complex problem of automated cancer classification and grading using QH. In PCa, cancerous
growth commonly occurs within glands, whose structure is delineated and characterized by an
epithelial border that normally surrounds a luminal space. Substantial effort has already been
invested in segmenting epithelium and stroma in a host of tissues (e.g., breast, colorectal, and
prostate) using both hand-engineered features7,8 and approaches using deep learning.9–11

In the interest of cost, time, and resources, methods that segment stroma and epithelium using
common general stains (such as H&E) are of particular utility. Recently, Bulten et al. reported the
use of both a fully convolutional network (FCN)12 and U-net13 to address this problem. They report
impressive accuracies of 0.89 and 0.90 for the U-Net and FCN methods, respectively, on the two-
class problem (stroma and epithelium). However, they lament “We suspect that most of the errors
are, first of all, caused by a lack of training examples and not due to a limitation of the models.”

The performance of machine learning methods is highly dependent on the training data
provided14,15 and, subsequently, the ground-truth annotations. Methods have been developed
to address these issues that both expand the dataset through data augmentation16 (e.g., image
translation, rotation, flipping), as well as expanding the number of examples of ground-truth
annotations with weak supervision.17,18 Weak supervision is a broad category of methods that
may rely on heuristics but ultimately assumes noisy ground truth labels.

It is the goal of this study to compare the segmentation of stroma, epithelium, and lumen when
using different combinations and sources of strong and weak labels. Further, we assess the
segmentation of whole-mount prostate samples using a deep learning framework trained on biopsy
cores from a separate institution. First, this study compares the accuracy of SEL segmentation when
a similar training dataset, with both manually (strong) and computationally (weak) derived anno-
tations, is provided to the deep convolution encoder–decoder network, SegNet.19 Second, we dem-
onstrate that in our dataset, labels generated from a deep learning framework trained using weak
morphological segmentation are more accurate than the labels used to train the network. Third, we
demonstrate the utility of this biopsy-trained algorithm by applying it to whole-mount prostate
histology processed and digitized at a separate institution. Finally, we demonstrate an improvement
in the discrimination of benign regions (atrophy and HGPIN) and cancerous (Gleason pattern 3+)
regions using the proposed training methods for a convolutional neural network when compared to
the rigid morphological methods used, in part, to train the deep learning method.

2 Materials and Methods

2.1 Patient Population

The histology from two patient groups was digitally analyzed for this interinstitutional study.
Patients (N1 ¼ 145) from the University of Wisconsin (UW, group 1) underwent biopsy for
suspected PCa, although all samples included in this study showed no presence of PCa.
Each patient had cores acquired as part of the standard biopsy protocol. Patients from the
Medical College of Wisconsin (MCW, group 2) undergoing a radical prostatectomy were
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prospectively recruited to participate in this study (N2 ¼ 26). A summary of patient demo-
graphics and diagnoses is shown in Table 1. Data collected from group 1 were approved under
the University of Wisconsin Madison’s Institutional Review Board (IRB) and data collected for
group 2 were approved under the MCW’s IRB.

2.2 Histological Preparation and Digitization

2.2.1 Biopsy cores

Tissues obtained from biopsy procedures in patients from group 1 were paraffin embedded,
sliced at 5 μm thickness, and hematoxylin and eosin (H&E) stained at UW as part of standard
of care. Each slide was digitized, and images were transferred electronically to MCW for further
analysis.

2.2.2 Whole mount prostate histology

In addition to the prostate biopsy cores, 32 previously reported20,21 whole mount prostate slides
(H&E stained—sectioned at 5 μm) (group 2) were digitized at 0.33 μm per pixel using an
Olympus VS120 automated microscope. Each digital slide was then annotated by a urological
fellowship trained pathologist (KAI) using the Gleason pattern classification system. This
resulted in the manual annotation of regions containing the benign abnormalities of atrophy and
HGPIN (n ¼ 32) and cancer (Gleason 3+, n ¼ 30). For purposes of this study, the definition of
annotated region describes all pixels that the pathologist labeled in a single tissue slide. These
annotated regions may include connected and nonconnected pixels. Segmentation in this paper
refers to computationally derived labels.

2.2.3 Ground truth segmentation

Pixelwise image segmentation was performed on the biopsy core images to label SEL associated
foreground pixels in two ways (Fig. 1). The whole mount prostate slides did not have SEL
ground truth annotations.

2.2.4 Biopsy core group assignment

The segmented biopsy cores were then separated into training and testing group subsets. This
resulted in computer-generated (MG) and human-generated (HG) labeled datasets each contain-
ing 140 and 10 training images, respectively. The test set used for all trained classifiers consisted
of the same six images that were randomly selected from the dataset.

Table 1 Demographic information for training and testing datasets.

Subject demographics

Metric Group 1 Group 2

Patients (#) 145 26

Samples (#) 146 32

Age (years) 61� 4.9 61� 5.61

PSA (ng/mL) 6.45� 2.4 8� 6.02

Grade — —

Atrophy + HGPIN — 4

Gleason 3+ — 19
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2.2.5 Human-generated annotation

The HG ground truth annotation was performed on a subset of 16 randomly selected images
(32 total cores) from the full 146 image dataset. Each of the 16 core images was SEL segmented
by a trained human observer (H.F.) using a Microsoft Surface tablet computer and a stylus
(Microsoft Corp., Seattle, Washington).

2.2.6 Computer/morphologically generated segmentation

The MG ground truth segmentation was created using a custom intensity-based morphological
algorithm written in MATLAB, using the Image Processing Toolbox (Mathworks Inc. Natick,
Massachusetts) as previously reported.21 In short, following contrast enhancement each biopsy
core was located and masked. Intensity thresholds were then applied to the images to separate
SEL into three separate masks. To correct potential noise, spurious small regions surrounded by
pixels of another segmentation were removed from the lumen and epithelium masks. This MG
segmentation was applied to 146 biopsy images (∼292 cores total). The algorithm performed
segmentations in less than a second per sample.

2.2.7 Class label summary

With ground truth labels assigned for each image in training and testing dataset, image areas
containing background were excluded. The class percent breakdown for pixels in each split is
given in Table 2. All trained classifiers were tested against the HG strong labels.

Fig. 1 Preparation of training and testing dataset from prostate needle biopsies. (a) Examples
are given of a representative sample from the prostate biopsy dataset. Grid pattern denotes
256 × 256 pixel blocks that the images would later be divided up into. Top row gives the original
true color (RGB) image from the original scan. Second row shows virtual stain separation of
image with the red and green color channels representing separate stain intensities (eosin and
hematoxylin, respectively). Third row displays labels from the human observer ground truth data-
set (white, epithelium; mid-gray, stroma; dark-gray, lumen). Fourth row displays labels from the
computer generated, morphologically derived ground truth dataset (white, epithelium; mid-gray,
stroma; dark-gray, lumen). (b) Top: Magnified example of a 256 × 256 pixel training image
with paired virtual stain separation and HG-labeled ground truth. HG dataset included 16 total
images, split into training (10 images) and testing (6 images). Bottom: Magnified example of a
256 × 256 pixel training image with paired virtual stain separation and morphologically generated
(MG) labeled ground truth. MG dataset included 146 total images, split into training (140 images)
and testing (6 images).
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2.2.8 Histology tiling

The deep learning algorithms required 256 × 256 pixel images for training and testing. Custom
Matlab code was therefore developed to divide the resulting images into tiles constrained to
include SEL segmentations. This resulted in the MG training dataset containing 6042 unique,
nonoverlapping, tiles that included at least one pixel with a labeled class. Data augmentation of
90-deg rotations and mirroring was performed to increase the training dataset to 42,294 images.
The HG dataset likewise contained 531 unique, nonoverlapping tiles that included at least one
pixel with a labeled class. Using data augmentation, this dataset was expanded to 3717 images.
The HG dataset consisted entirely of a subset of the MG dataset, with the only difference being
the source of the ground truth labels.

2.3 Digital Histology Preprocessing

2.3.1 Biopsy cores

For training purposes, all images in the training and testing datasets were color deconvolved and
virtually stain separated using an automated method described by Macenko et al.22 Using this
method, color basis vectors were solved for each individual image, and the Eosin and hema-
toxylin stain intensities were separated into different channels. The combined training dataset
was constructed with three channel images corresponding to eosin, hematoxylin, and residual.

2.3.2 Whole mount prostate histology

To further improve robustness and decrease variation between slides stained and digitized at
separate institutions, the whole mount samples from MCW were color normalized to a reference
biopsy core from UW using the automated method describe by Khan et al.23 implemented in
MATLAB (MathWorks Inc., Natick, Massachusetts). Resulting color normalized images were
then color deconvolved as described above Ref. 22 to be consistent with the training dataset.

2.3.3 Convolutional neural network design and training: Arm1, Arm2, and Arm3

The deep learning encoder–decoder SegNet19 was used to perform pixelwise segmentation of the
images. To initialize SegNet, a transfer learning approach was employed using pretrained
weights and design associated with the MATLAB implementation of VGG16-trained
SegNet.19,24 Implementation and training of SegNet were split into three separate Arms (Fig. 2).
Three separate training phases comprised each Arm. Phase 1 was considered a “rough-in” phase
characterized by a high learning rate (0.1) and low number of epochs (30). Phase 2 was con-
sidered a “plateau” phase, which was comprised by lower learning rate (1e-3) and higher number
of epochs (1000+). Phase 3 was considered the “fine-tune” phase, where learning rate was
dropped further (1e-5) and a small number of epochs were performed (∼30). The number of
epochs was chosen based on plateauing of training loss and accuracy. The three different arms,
or trained classifiers, were distinguished by the training dataset used in each phase. This training
and dataset schedule are provided in Fig. 2. Regardless of arm, phase, or label source, the

Table 2 Class makeup of training/testing dataset splits. This table describes the percent makeup
of each of the three classes (stroma, epithelium, and lumen) used to train and test the classifiers.

Stroma (%) Epithelium (%) Lumen (%)

MG training set ∼60 ∼20 ∼20

HG training set ∼75 ∼21 ∼4

MG test set ∼64 ∼26 ∼10

HG test set ∼70 ∼24 ∼6
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six-image test dataset was held out for all training. A fully trained network was able to generate
probability masks per class, followed by the final layer, which performed the formal pixelwise
segmentation.

2.3.4 Combination of trained classifiers: mArm

To incorporate benefits observed from each individually trained classifier, a combination of the
classifiers (mArm) was used to analyze regional SEL segmentation in whole mount prostate
samples. Pixels classified by any arm as epithelium were labeled as such in the mArm segmen-
tation. Remaining pixels, if labeled as lumen in any arm, were labeled as lumen in mArm. Any
pixels marked as tissue, yet not labeled as epithelium or lumen, were then classified as stroma.
This strategy was used to weight epithelium most important due to its relevance in PCa Gleason
pattern classification. While this may have introduced bias for SEL classification into the result-
ing mArm classifier, the mArm classifier’s intended use is for benign/cancerous detection pipe-
line, not strictly SEL classification.

2.4 Experimental Endpoints

2.4.1 Experiment 1: pixelwise probability maps

Probability maps generated for each class within each arm and compared classwise to the human
SEL-labeled test dataset. Receiver operating characteristic (ROC) curves were generated for each
class and arm for each test image in the dataset. The area-under-the-curve (AUC) of each ROC
curve was averaged per condition and used to compare arms.

2.4.2 Experiment 2: dice and BF-score comparisons for trained models

The classification layer of the trained network was used to generate SEL labels for each of the
test images. The dice coefficient and BF score were then calculated for each arm’s classification
on each of the test images in comparison to the human-labeled ground truth. Larger dice coef-
ficients indicate greater overlap, and BF scores are larger when boundaries of class annotations
are similar.

Fig. 2 Training and test schedule for SEL segmentation algorithm. Using the datasets identified in
Fig. 1, training and testing scheduling are outlines above. The three arms represent the training of
the same segmentation architecture with differing training data provided. Arm 1 represents the
segmentation algorithm trained only with morphologically generated (MG) ground truth. Arm 2
represents the segmentation algorithm trained only with HG ground truth. Arm 3 represents seg-
mentation algorithm trained initially with MG and fine-tuned with HG. Training of the three arms is
split into three different “phases” using associated training data. Performance of all three Arms is
compared using only the HG dataset as it represents the “stronger” ground truth. Comparisons
were also made between the MG ground truth and HG ground truth.
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2.4.3 Experiment 3: comparison of SEL segmentation-based Gleason pattern
recognition

It has previously been shown that the density of SEL differs between Gleason patterns. To deter-
mine whether mArm SEL classification constituted a clinically relevant and meaningful
improvement over conventional methods and to assess our method in a generalized test case,
we compared the accuracy of benign versus cancerous pattern classification using SEL features
derived from mArm and MG, using pathologist annotations as a ground-truth. Specifically, we
implemented a commonly used machine learning algorithm, support vector machines (SVM),
trained to differentiate the pathologist annotations in a region based on its SEL signature (per-
centage make-up). To test the clinical relevance, we used a repeated k-fold cross validation
method in a “paired” fashion. Within these datasets, each observation was a slide averaged
SEL signature derived from mArm or MG, within pattern regions of interest. The accuracy was
then calculated for each SVM training/test instance and compared between MG and mArm.

3 Results

3.1 Experiment 1: Pixelwise Probability Maps

Probability masks pertaining to each of the three classes (SEL) were assessed after being gen-
erated by each of the three trained classifiers (Arm 1, Arm 2, and Arm 3). A representative
sample of a biopsy core in full color (top left) and associated HG ground truth labels are shown
in Fig. 3 (top). Probability maps for each class from the three trained classifiers are presented to
the right. Qualitatively, the probability masks pertaining to Arm 1 (MG-generated ground truth
labels) show the greatest confidence in all classes, evident in the hard boundaries present,
whereas the probability maps generated by Arms 2 and 3 remain softer. This results in a heavy
overlap between probability maps generated for lumen and epithelium.

The ROC curves for each of the six test images were plotted by arm and class and shown in
Fig. 3(b). Progressive improvement is generally seen for each subsequent Arm (stroma: Arm 1
0.8831� 0.029, Arm 2 0.9203� 0.024, Arm 3 0.9378� 0.022; epithelium: Arm 1 0.9083�
0.024, Arm 2 0.9195� 0.016, Arm 3 0.9432� 0.011; lumen: Arm 1 0.8623� 0.099, Arm 2
0.7915� 0.059, Arm 3 0.9229� 0.087). Significant differences were found between both arms
and classes by two-way ANOVA (p < 0.01). Significant differences were found by post-hoc
Holm Sidak method when comparing both Arms 1 and 2 to Arm 3 (p < 0.01). This suggests
that a viable strategy is to first learn coarse features using noisier samples, then subsequently fine
tune with high quality labels. As demonstration of classifier robustness, an example of the biopsy
trained Arm 3 network applied to a whole mount prostatectomy sample is shown in Fig. 3 (bot-
tom). A region of high-grade cancer was identified by a pathologist in the lower right quadrant.
This is clearly delineated by the patch of increased epithelium probability and decreased lumen
probability.

3.2 Experiment 2: Dice and BF-Score Comparisons for Trained Models

The final three-class segmented output for each Arm was compared via Dice coefficient25 and BF
score26 to the HG ground-truth. Significant differences were found between both region and
classification by a two-way ANOVA (p < 0.001). An example image from the test set is pre-
sented in Figs. 4(a)–4(f), chosen to illustrate the potential inaccuracy of the MG segmentation.
The top of the figure indicates that a more robust segmentation is reached with a DL algorithm
compared to the conventional MG approach. Dice coefficients associated with the stroma class
did not differ between any of the models or the standard comparison. Significant differences
were found by post-hoc Holm Sidak method between lumen classification for each comparison
(each p < 0.001) except for Arm 1 to Arm 3 (p ¼ 0.472). Significant differences were found
for epithelium classification in Arm 1 versus Arm 2 (p < 0.001) and standard versus arm 1
(p ¼ 0.016). Notably, Arm 2 failed to classify lumen, reflected in the overlap of the epithelium
and lumen probabilities shown in Fig. 3(a).
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The bottom bar charts further illustrate this point with the decrease in variability seen when
comparing the Arms to the original MG method. No significant difference was found between
the Dice mean for class “stroma” between the standard and Arm 1, variance within the Arm 1
stroma class was found to be significantly decreased compared to standard (Bartlett test:

Fig. 3 Application of morphological operations and combined SEL segmentation algorithms on
pathologist annotated whole mount prostate. (a) Original color example of prostate core from test
set (right, top) with (right bottom) stroma (dark gray), epithelium (white), and lumen labels (light
gray). Accompanying probability maps generated for each class (column) and from each arm of
CNN training (row). Note that with increased number of training samples: Arm1, the probabilities
are stronger, whereas Arms 2 and 3 show softer probabilities. In addition, fewer training examples
(Arm 2) lead to lower overall probabilities for lumen segmentation with large overlap of epithelium
probabilities. This contributes to lack of lumen classification seen in segmentation (Fig. 4).
(b) Individual ROC curves generated for each class using probability maps solved for the test set.
Each plot shows the ROC curve generated from each of the six test set images. The AUCs pre-
sented represent the mean from the six test images and the corresponding standard deviation.
Significant differences were found between both arms and classes by two-way ANOVA (p < 0.01).
Significant differences were found by post-hoc Holm Sidak method when comparing both Arms 1
and 2 to Arm 3 (p < 0.01). (c) With training performed solely on prostate biopsy cores collected,
stained, and imaged at a different institution, probability maps generated for whole mount prostate
slides show qualitatively good performance. Note increased probability of epithelium in bottom
right corner associated with cancerous tissue.
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p < 0.001). This suggests that while the MG class labels may have been more noisy, deep learn-
ing may have distilled features pertinent to the HG ground truth thereby improving robustness of
the classifier.

3.3 Experiment 3: Comparison of SEL Segmentation-Based Gleason Pattern
Recognition

To further demonstrate the benefit gained from trained SEL classification, the three experimental
arms were combined (mArm) and applied to whole mount prostates and compared against the
morphologically generated labels. To compensate for staining differences and provide the best
method comparison, the whole mount prostates were first normalized as per the Khan method.23

Figures 5(a) and 5(b) show a comparison of the mArm labeling and MG labeling for a pros-
tate that was determined by pathologist to contain examples of atrophy, HGPIN, and Gleason 3
to 5 regions. Figure 5(c) show pathologist’s annotated regions with mArm-generated SEL labels.
These regions are a visual depiction of the regional SEL “signatures” derived from mArm and
MG methods [Fig. 5(d)]. Similar to results found in experiment 1, when regional standard devi-
ations were compared between the two methods, mArm labeling was found to be less variable
than MG labeling (p ¼ 0.002; paired student’s t-test).

In order to translate the impact of our observed improvement in SEL classification into the
clinical application of cancer detection, we next used a supervised learning technique for the

Fig. 4 Evaluation of test set using individually trained SEL classification algorithms. (a) Using a
biopsy sample that showed poor performance with the morphologically generated (MG) labeling,
the fully trained segmentation algorithms (Arms 1 to 3) are compared to the MG ground truth and
the HG ground truth. Background and foreground image regions were premasked for comparison.
In all labeled images, stroma is labeled yellow, epithelium is labeled light blue, lumen is labeled
dark blue. Note that the MG ground truth example shows noisy labeling compared to HG ground
truth. Arm 1 shows a good balance between lumen and epithelium labeled, although many glands
are left with incomplete epithelium label. Arm 2 shows good epithelium labeling; however, lumen
label is almost completely missing. Arm 3 shows good balance between both models (Arm 1 and
Arm 2). (B) Dice and BF Score comparison between the ground truth datasets (MG and HG).
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Fig. 5 Application of morphological operations and combined SEL segmentation algorithms on
pathologist annotated whole mount prostate. (a) By combining all three classifiers (arms 1, 2, and
3)—mArm—pixels from whole mount prostate images were labeled as either SEL. A comparison
of the mArm labeling and MG labeling is shown for a prostate that was determined to contain
examples of atrophy, HGPIN, and Gleason 3 to 5 regions. (b) Pathologist annotated regions
corresponding to each of the regional labels are shown with associated SEL mArm labeling.
(c) An example classification of a magnified region within a whole mount slide. Stroma, yellow;
epithelium, blue; lumen, pink. Notice improved epithelial segmentation with mArm method over
MG method. (d) Using 32 pixel wise annotated whole mount prostate sections; SEL regional sig-
natures were generated for both mArm andMG labeling methods. Each signature is defined by the
regional percent makeup of SEL, which all sum to one. Mean and standard error are plotted. Using
a paired Student’s t-test, the set of standard deviations from assessed mArm regions was found to
be significantly less than (p ¼ 0.002) the set of standard deviations from the same regions
assessed by MG. (e) An SVM was trained to separate benign (atrophy and HGPIN lesions) from
cancerous (G3+ lesions) using the three-feature SEL signatures generated from the mArm and
MG classifier. Three-fold cross validation with five repetitions was performed, the accuracy of
mArm SEL labels was found to be 86.49� 5.13% for the mArm features versus 77.14�
8.11% (μ� σ) for the MG features, supporting use of SEL labels as features for future classification
methods (p ¼ 0.002). (f) Individual train/test cohort data showing difference in accuracy plotted
between each paired SVM.
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classification of benign (atrophy and HGPIN) versus cancerous (Gleason scores 3+) on prede-
fined regions of whole-mount prostates. We then compared the supervised learning method
using two datasets: the SEL classification from the new method presented here and the
morphological SEL classification. Region signatures, or observations, were generated using all
pixels of a given label (e.g., G3) in a single whole-mount prostate. These signatures described the
percent contribution of SEL for a given region.

In order to control for potentially confounding effects of the training dataset, we used a paired
repeated k-fold cross validation approach using three folds and five iterations. This was paired
because each of the classifiers was trained on the same set of observations with the only differ-
ence being the origin of the labels (mArm or MG). The 62 observations of benign and Gleason 3
+ pattern regions were subclassified as benign (atrophy and HGPIN | n ¼ 32) versus cancer
(Gleason 3 ¼ þjn ¼ 30) and repeated for five iterations of randomly sampled cohorts for train-
ing/testing (66/33 split). Two separate SVMs were trained for each pair of labels (mArm and
MG) within the randomly sampled datasets. The resultant comparative groups, therefore, con-
sisted of identical images each with two sets of SEL scores, one from the new method and one
from the morphological SEL classification. The accuracy resulting from these groups was then
compared. Average ROCs were generated for all train/test cohorts of the SVMs and plotted in
Fig. 5(e). Using a nonparametric Mann–Whitney U-test across all paired train/test splits, mArm
accuracy was shown to be significantly higher at 86.49� 5.13% versus the MG accuracy
of 77.14� 8.11% (μ� σ) (p ¼ 0.002). Corresponding delta accuracies between mArm and
MG within the paired datasets are shown in Fig. 5(f).

4 Discussion

Using histological preparations of prostate tissue from multiple institutions, we have described
a practical method for using transfer learning combined with both high-quality (human
annotation) and low-quality (heuristically generated) ground truth labels to train a semantic seg-
mentation algorithm. In addition, we have presented a well characterized and robust pixelwise
classification method for labeling H&E-stained prostate tissue into SEL classes. Finally, we have
shown demonstrable improvement in the classification of benign versus cancerous regions in the
context of whole-mount prostate tissue using region of interest signatures generated from our
improved methods, against the morphological model used in training.

Segmentation algorithms based on morphological heuristics have a long history in image
processing pipelines.27 They have been used to varying degrees of success, with the simplest
of algorithms often designed around hard coded intensity values for one-off applications. While
this may have limited their application to the niche cases they were designed for, our study
provides evidence that implementation of deep learning frameworks using one of these previ-
ously described operations may add robustness for segmentation tasks.

Within this study, we have demonstrated two forms of this increased robustness. First is
separating the lumen into a separate class. While it is a trivial task to classify nontissue regions
of a slide as lumen, this method is not robust against tissue artifacts such as tearing. However, we
see improved segmentation performance of the lumen in the combined method (Arm3) when
comparing all methods to human annotations. In addition, using training data obtained solely
through the morphological operations that generated the clearly mislabeled image in Fig. 4(b),
a deep learning architecture distills the salient features and returns an algorithm that much more
closely matches the human observer annotations. This is further demonstrated in our final experi-
ment, which shows improved benign versus cancer discrimination using the refined features
compared to the original morphological features.

Observation-hungry machine learning methods show tremendous promise in image analysis
and interpretation in rad-path applications.21 These algorithms are in large part hampered only by
limitations in available training data. We sought practical ways to bridge this gap of annotated
data by examining the use of weakly supervised data in a histological dataset. The benefit of this
method is that heuristic algorithms may be used to generate larger training datasets. A small
dataset from a classically trained observer can then serve as a fine-tuning step in training and
final test dataset. This study provides evidence, or at a minimum impetus, for applying “naïve
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observer” heuristic algorithms alongside the valuable subject matter expert when training deep
learning methods.

While our proposed training approach is targeted at mitigating the decreased availability of
high-quality human labels, we recognize that a shortcoming of this study is our modest dataset.
Fittingly, in the third experiment of our study we encountered the same problem that our study
was designed to address – scarcity of strongly labeled data. Our dataset lacked ground truth SEL
labels for our whole-mount slides. As a surrogate for direct SEL labels, we applied our trained
algorithm to the more clinically relevant question of discriminating between benign and cancer-
ous regions in whole mount tissue. We do not claim that the 62 regions presented in experiment
three of this paper form a near-perfect representation of the true distribution of PCa histology or
that unguided use of tissue signatures will solve PCa segmentation. However, the demonstrated
improvement in cancer classification using features from mArm does suggest that our proposed
labeling enhances a signal that is relevant to cancer classification over the previous morphologi-
cal method. In addition, we believe this further emphasizes the need for approaches that circum-
vent limited amounts of labeled data.

We envision several use cases and future studies for our characterized algorithm. Most
directly, we could see the algorithm being incorporated in-line with a region proposal algorithm,
or as a “second opinion” in a computer-aided diagnostic workflow where a trained observer
annotates suspicious regions. In addition, this algorithm could be used in the generation of higher
level, human interpretable, metrics such as epithelial thickness and tortuosity that may more
closely capture the patterns of Gleason’s original criteria. While these future studies may still
rely on a pathologist’s annotated ground truth, we see it as an important piece in the way forward
to fully automated cancer detection algorithms.

In conclusion, this study provides a robust algorithm for SEL segmentation in bright field
H&E-stained prostate histology. We demonstrated a practical application of weak supervision to
bolster a smaller dataset of high-quality domain expert annotation for repurposing a pretrained
deep learning network. The performance of this network improved when fine-tuned with fewer,
and more precious, high quality expert annotated samples. This ultimately demonstrates that
using a small set of human annotated histology, when combined with a much larger dataset
of heuristically derived segmented histology, can improve classification above the same network
trained with either dataset alone. This prompts a revisitation of the field’s bespoke segmentation
algorithms and their adaption to deep learning pipelines.
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