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Machine learning-based scoring system to predict in-hospital outcomes in 

patients hospitalized with COVID-19  

 

Abbreviated title: Risk score to predict in-hospital outcomes in patients with COVID-19 

Tweet: A new machine learning-based risk score to predict in-hospital outcomes in patients 

hospitalized with COVID-19. The CCF risk score, based on 11 simple variables, can help predict 

outcomes, with an online calculator available 
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Highlights:  

 Using machine learning techniques, the CCF risk score was developed to predict in-hospital outcomes in COVID-19 
 All hospitalized COVID-19 patients from a nationwide multicentre observational study were included  

 The CCF risk score aimed to estimate the risk of transfer to an intensive care unit or in-hospital death 
 Eleven clinical and biological variables were selected with good calibration and discrimination. 
 The CCF risk score performed significantly better than the usual critical care risk scores. 
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Summary 

Background. – The evolution of patients hospitalized with coronavirus disease 2019 (COVID-19) is still 

hard to predict, even after several months of dealing with the pandemic. 

Aims. – To develop and validate a score to predict outcomes in patients hospitalized with COVID-19. 

Methods. – All consecutive adults hospitalized for COVID-19 from February to April 2020 were 

included in a nationwide observational study. Primary composite outcome was transfer to an intensive 

care unit from an emergency department or conventional ward, or in-hospital death. A score that 

estimates the risk of experiencing the primary outcome was constructed from a derivation cohort using 

stacked LASSO (Least Absolute Shrinkage and Selection Operator), and was tested in a validation 

cohort. 

Results. – Among 2873 patients analysed (57.9% men; 66.6 ± 17.0 years), the primary outcome 

occurred in 838 (29.2%) patients: 551 (19.2%) were transferred to an intensive care unit; and 287 

(10.0%) died in-hospital without transfer to an intensive care unit. Using stacked LASSO, we identified 

11 variables independently associated with the primary outcome in multivariable analysis in the 

derivation cohort (n = 2313), including demographics (sex), triage vitals (body temperature, dyspnoea, 

respiratory rate, fraction of inspired oxygen, blood oxygen saturation) and biological variables (pH, 

platelets, C-reactive protein, aspartate aminotransferase, estimated glomerular filtration rate). The 

Critical COVID-19 France (CCF) risk score was then developed, and displayed accurate calibration 

and discrimination in the derivation cohort, with C-statistics of 0.78 (95% confidence interval 0.75–

0.80). The CCF risk score performed significantly better (i.e. higher C-statistics) than the usual critical 

care risk scores. 

Conclusions. – The CCF risk score was built using data collected routinely at hospital admission to 

predict outcomes in patients with COVID-19. This score holds promise to improve early triage of 

patients and allocation of healthcare resources. 

  

KEYWORDS 

COVID-19;  

SARS-CoV-2;  

Risk score;  

Prediction;  
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Prognosis 

 

 Abbreviations: CCF, Critical COVID-19 France; CI, confidence interval; COVID-19, coronavirus 

disease 2019; CURB-65, confusion, blood urea > 42.8 mg/dL, respiratory rate > 30 breaths/min, 

blood pressure < 90/60 mmHg, age > 65 years; ICU, intensive care unit; IQR, interquartile range; 

LASSO, Least Absolute Shrinkage and Selection Operator; PREDICO, prediction of severe respiratory 

failure in hospitalized patients with SARS-CoV-2 infection; qSOFA, quick SOFA; SARS-CoV-2: severe 

acute respiratory syndrome coronavirus 2; SOFA, Sepsis-related Organ Failure Assessment. 
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Background 

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2), has become a pandemic, leading to a public health crisis of unprecedented 

magnitude [1-3]. The COVID-19 clinical spectrum varies considerably, ranging from asymptomatic 

carriers to acute respiratory distress syndrome associated with high fatality rates. Among hospitalized 

patients with COVID-19, more than 15% require admission to an intensive care unit (ICU), resulting in 

a considerable need for intensive care beds and ventilators [4]. Whereas the main clinical 

characteristics and profiles of patients have been described in large cohorts from China [3, 5], Europe 

[6] and the USA [7-9], the clinical course of most hospitalized patients remains hard to predict, even 

after several months of dealing with the disease. The early identification of patients at risk of 

developing a severe form of COVID-19 is a major issue, to help clinicians in early triage to optimize 

the management of patient flow and the allocation of healthcare resources [10, 11].  

So far, few specific risk scores assessing the in-hospital evolution of COVID-19 have been 

developed [12, 13]. Clinicians have been compelled to base their decisions on clinical experience 

acquired during the pandemic, and on other existing critical care scores. However, few data exist 

regarding the validity of these usual critical care scores in the context of COVID-19 [14]. Thus, a 

robust and specific COVID-19 score would help clinicians to make rapid decisions in daily practice.  

Using data collected routinely at hospital admission, we aimed to identify initial predictors for 

developing a severe form of COVID-19 during hospitalization, and to construct a specific risk score 

through a nationwide multicentre observational study.  

 

Methods 

Study settings and population 

The Critical COVID-19 France (CCF) study is a French nationwide observational multicentre study, 

including all consecutive adult patients admitted to hospital (24 centres) with a diagnosis of SARS-

CoV-2 infection between 26 February and 20 April 2020 (ClinicalTrials.gov identifier: NCT04344327). 

In accordance with the World Health Organization criteria, SARS-CoV-2 infection was defined as a 

positive result on real-time reverse transcription polymerase chain reaction of nasal and pharyngeal 

swabs or lower respiratory tract aspirates, or typical imaging characteristics on chest computed 
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tomography with a compatible clinical presentation [15]. Patients admitted directly to an ICU were not 

considered. 

The CCF study was declared to and authorized by the French data protection committee 

(Commission Nationale Informatique et Liberté [CNIL]; authorization n°2207326v0), and was 

conducted in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and 

its later amendments. The authors had full access to and take full responsibility for the integrity of the 

data. A complete list of the CCF investigators is provided in Appendix A. Participating centres and 

number of patients enrolled per centre are detailed in Table A.1. 

  

Data collection 

All data were collected by local investigators in an electronic case-report form via REDCap software 

(Research Electronic Data Capture; Vanderbilt University, Nashville, TN, USA), hosted by a secured 

server from the French Institute of Health and Medical Research at the Paris Cardiovascular Research 

Centre. Patient baseline information included demographic characteristics, co-existing medical 

conditions and chronic medications. Exhaustive data, including clinical variables, blood test results and 

chest computed tomography scan characteristics (when performed) were recorded at admission. 

Chest computed tomography scan results were assessed by a senior radiologist at the centre’s local 

workstation, according to European guidelines [16]. The degree of scanographic lesions was based on 

visual assessment of parenchymal involvement, and was categorized as limited (< 25%), moderate 

(25–50%) or severe (> 50%). Only computed tomography scans performed during the first 24 hours 

were considered. Glomerular filtration rate was calculated using the Modification of Diet in Renal 

Disease Study equation. 

  

Outcomes 

The primary outcome was a composite of transfer to ICU or in-hospital death. Transfer to ICU was 

carried out from the emergency department or a conventional hospitalization ward. Data on 

pharmacological therapies, mode of respiratory support, complications and associated diagnoses 

during hospital stay were also reported. All medical interventions (including pharmacological agents to 

treat SARS-CoV-2) were left at the discretion of the referring medical team. Date of final follow-up for 

patients still hospitalized was 21 April 2020. 
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Statistical analysis 

This report was prepared in compliance with the STROBE checklist for observational studies [17] and 

the TRIPOD statement for developing and validating a prediction model [18]. Categorical data are 

reported as counts and percentages. Continuous data are reported as means ± standard deviations 

for normally distributed data, and as medians (interquartile ranges [IQRs]) for non-normally distributed 

data. Comparisons used the 2 test or Fisher’s exact test for categorical variables, and Student’s t test 

or the Mann-Whitney-Wilcoxon test, as appropriate, for continuous variables. After exclusion of five 

patients with missing outcomes, the population was split into a derivation cohort (70% of the cohort, n 

= 2313) and a validation cohort (30% of the cohort, n = 560). The split was performed randomly 

between the different centres. Thus, the validation cohort included four centres representing the 

heterogeneity of the epidemic in France (one in the North, South and East of France, the most 

affected regions, and one in Paris). The rest of the participating centres constituted the derivation 

cohort (70% of the total population). The amount of available data for each variable is presented in 

Table 1. Missing data were handled using multiple random forest imputation by chained equations 

(mice R package) before multivariable analysis. Variables with < 30% missing data were imputed. Ten 

unique imputed datasets were built for each cohort (derivation and validation), then penalized 

regression using LASSO (Least Absolute Shrinkage and Selection Operator) was used to identify 

predictors of severe SARS-CoV-2 [19]. As a result of multiple imputed datasets, the Stacked Adaptive 

Elastic Net algorithm was used [20], in which regression coefficients are assumed to be equal across 

imputed datasets; the datasets are stacked, and the penalized regression is performed in such a way 

that the same betas (coefficients) are selected at each value of lambda (shrinkage parameter) across 

each imputed dataset. Table A.2 shows the amount of missing data for each variable included in the 

final multivariable analysis. Prediction performance was evaluated using discrimination and calibration 

metrics by means of non-parametric bootstrap inference [21]. The C-statistic and its 95% confidence 

interval (CI) were estimated by a bootstrapping procedure (2000 replicates in each imputed datasets) 

in the derivation and validation cohorts. Model calibration was first assessed visually, then by a 

computational method with calibration curves and calibration slopes. Details regarding multiple 

imputation, stacked LASSO and bootstrap inference are provided in Appendix B.  
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Sensitivity analyses were conducted in different subgroups: in the complete cases i.e. excluding 

patients with missing data; and in patients with positive polymerase chain reaction results.  

Discrimination of the CCF risk score was compared with five usual critical care risk scores 

(PREDICO [prediction of severe respiratory failure in hospitalized patients with SARS-CoV-2 infection], 

SOFA [Sepsis-related Organ Failure Assessment], qSOFA [quick SOFA], CURB-65 [confusion, blood 

urea > 42.8 mg/dL, respiratory rate > 30 breaths/min, blood pressure < 90/60 mmHg, age > 65 years] 

and MEWS [Modified Early Warning Score]), whose C-statistics in the derivation and validation cohort 

are detailed in Table A.3. 

A two-tailed P < 0.05 was considered statistically significant. All data were analysed using R 

software, version 3.6.3 (R Project for Statistical Computing, Vienna, Austria). 

  

Results  

Overall population 

Among 2878 consecutive adults admitted for SARS-CoV-2 infection across 24 French hospitals 

between 26 February and 20 April 2020, 2873 patients were analysed (57.9% men; mean age 66.6 ± 

17.0 years). Patients’ baseline characteristics are presented in Table 1. Overall, the primary outcome 

occurred in 838 (29.2%) patients after a median delay of 3.0 (IQR 1.0–6.0) days: 551 (19.2%) were 

transferred to an ICU; and 287 (10.0%) died without transfer to an ICU (Fig. 1). Median delay before 

transfer to ICU was 2.0 (IQR 1.0–4.0) days, and before death without transfer to ICU was 6.5 (IQR 

3.3–10) days. A total of 362 (12.6%) patients died during hospitalization. Mechanical ventilation was 

used in 370 (12.9%) patients, non-invasive ventilation support in 81 (2.8%) patients and high-flow 

oxygen therapy in 153 (5.3%) patients. Median length of hospitalization among the 1991 patients 

discharged alive was 8.0 (IQR 5.0–12.0) days. As of 21 April 2020, 513 (17.9%) patients were still 

hospitalized, including 264 patients initially transferred to an ICU and 249 patients not admitted to an 

ICU. Pharmacological treatments for COVID-19 included antibiotics in 2137 (74.4%) patients, 

corticosteroids in 214 (7.5%), immunomodulatory agents in 33 (1.2%) and immunoglobulin therapy in 

two (0.1%). 

  

Prediction model construction 
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Characteristics of patients in the derivation (n = 2313) and validation (n = 560) cohorts were mostly 

similar (Table 1). Univariate analyses of factors associated with the primary outcome in the derivation 

cohort are presented in Table 2. Eleven variables, including demographics (sex), triage vitals (body 

temperature, dyspnoea, respiratory rate, fraction of inspired oxygen, blood oxygen saturation) and 

biological variables (pH, platelets, C-reactive protein, aspartate aminotransferase, estimated 

glomerular filtration rate [Modification of Diet in Renal Disease Study equation]) were included in the 

final model.  

 

Prediction model performance  

The CCF risk-stratification score was calculated for each patient, according to the beta-regression 

coefficients estimated from the stacked LASSO multivariable model. Based on this score, an online 

ready-to-use interface was built for clinicians to give an early estimate of a patient’s individual 

probability of developing a severe form of COVID-19 during hospitalization 

(https://criticalcovidfrance.shinyapps.io/criticalcovidfrance/). The performance of the model in the 

derivation and validation cohorts is displayed in Fig. 2. The corresponding C statistics were 0.78 (95% 

CI 0.75–0.80) in the derivation cohort and 0.75 (95% CI 0.70–0.79) in the validation cohort. Calibration 

plots (Fig. 2) showed good agreement between the CCF risk score-predicted probability and the 

observed probability of developing severe COVID-19. Calibration slope (ideally 1) and intercept 

(ideally 0) pooled among imputed datasets were, respectively, 1.13 and –0.05 in the derivation set, 

and 1.25 and –0.06 in the validation set. The CCF risk score showed significantly better discrimination 

compared with usual critical care risk scores specifically developed during the coronavirus pandemic 

(4C [Coronavirus Clinical Characterisation Consortium], PREDICO and qCSI [quick Covid Severity 

Index] scores compared with CCF risk score C-statistics: P < 0.001) or non-specific severity scores 

(SOFA, CURB-65 and ROX [Respiratory Rate and Oxygenation] index scores compared with CCF risk 

score C-statistics: P < 0.001) (Fig. 3). 

  

Sensitivity analyses 

Two sensitivity analyses were performed to test the robustness and generalizability of the model (Fig. 

A.1). The CCF risk score demonstrated good performance when analyses were restricted to patients 

with no missing data (n = 1105; C-statistic 0.74, 95% CI 0.71–0.77) and in patients with positive 

https://criticalcovidfrance.shinyapps.io/criticalcovidfrance/
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polymerase chain reaction results (n = 2591; C-statistic 0.77, 95% CI 0.75–0.79). Different patient 

profiles with corresponding estimated probabilities of developing a severe form of COVID-19 during 

hospitalization are provided in Table A.4. 

 

Discussion 

Using data from a multicentre observational study of 2873 patients who were hospitalized for COVID-

19 across 24 French centres, we developed a risk-stratification score for the early identification of 

patients at risk of becoming critically ill during hospitalization. This multivariable CCF risk score 

combines clinical, biological and imaging data collected routinely at hospital admission, and displays 

good performance.  

As of 2022, France is one of the most burdened countries in the world, with more than 21 million 

cases and 130,000 deaths related to SARS-CoV-2 infection [22]. Whereas the first case series from 

China [3, 5], Europe [6,23] and the USA [8, 9, 24] reported the main characteristics and profiles of 

patients hospitalized with COVID-19, epidemiological data in France remain scarce. The 

characteristics of our French population confirmed that most patients were middle-aged or elderly 

men, and that cardiovascular co-morbidities were highly prevalent [25, 26]. Thirty percent of patients 

presented a severe form of COVID-19 in our study, defined as death or transfer to ICU. The overall 

mortality rate observed (12.6%) is, however, difficult to compare with other published series, given the 

heterogeneity among healthcare systems, the populations studied and early (but needed) reports of 

experiences while a significant proportion of patients are still hospitalized [6, 9, 23]. The same applies 

to the ICU transfer rate, estimated at 19.2% in our study. Regional, national and international 

disparities in the availability of critical care beds make comparison with other cohorts difficult. 

Various factors were associated with the primary outcome, including co-morbidities, 

cardiovascular risk factors, treatment before hospitalization and clinical and paraclinical variables. 

Whereas co-morbidities, especially cardiac diseases, have been consistently associated with poorer 

outcomes [7, 23], after multiple adjustments, prediction of severe COVID-19 forms in our study was 

mainly captured by clinical status, and biological and chest computed tomography findings at 

admission. These findings highlight multiple facets of COVID-19 that combine inflammation, sepsis-

like profile and rapidly progressive respiratory failure. The degree of individual systemic inflammatory 

response syndrome seems to drive patient prognosis to a greater extent than underlying conditions. 
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This abnormal and amplified inflammatory or immune response is targeted by different classes of 

adjunctive therapies for COVID-19, such as anticytokines, immunomodulatory agents or 

corticosteroids, with preliminary results published from uncontrolled or non-comparative studies and 

on-going randomized trials [27]. Some factors already identified as prognostic factors in the literature, 

such as age, obesity and diabetes, were not included in the final risk score [28-30]. Inherently, 

machine-learning variable selection technique only retains variables with the highest impact on 

prognosis [19]. Thus, age may not have been retained in the final model because its impact is 

outweighed by other factors. Some studies have shown that the sex of the patients exerted greater 

influence than their age, with survival of elderly women sometimes better than that of middle-aged 

men with more co-morbidities [26, 28, 31]. Regarding diabetes and obesity, it is possible that the 

increased risk conferred by these co-morbidities is related to an inflammatory response profile to 

SARS-CoV-2 [30, 32]. This inflammatory excess risk is reflected in the score by the platelet level and 

C-reactive protein. Thus, the inclusion of multimodal variables in the score is a good reflection of the 

multifaceted aspect of COVID-19. 

This unprecedented viral pandemic has imposed considerable resource and healthcare system 

reorganization in most countries throughout the world. At the first peak of the epidemic, the USA’s 

projected needs reached approximately 17,000 ICU beds and 20,000 invasive ventilators, far beyond 

current availabilities [33]. Our integrative risk score, which includes variables readily available at 

admission, may represent a valuable tool in routine clinical practice, to improve early triage, optimize 

the management of patient flow and adequately readjust allocation of resources [34]. The CCF risk 

score may also help to predict the severity of symptoms and optimize patient selection in clinical trials 

[35].  

Few specific risk scores assessing the in-hospital evolution of COVID-19 have been published so 

far [12, 13]. One of these was derived from a Chinese cohort, integrating 10 variables among 72 

potential predictive variables at admission [13]; it included chest radiographic variables, which are less 

informative than the computed tomography scan that is primarily performed in Europe. Chest 

radiography is not sensitive enough for the detection of ground glass opacities, which are the main 

imaging features of COVID-19 pneumonia [36]. As recommended in European guidelines, chest 

radiography should not be used as the first-line technique, and should be restricted to the follow-up of 

patients admitted to an ICU or patients too fragile to be sent for computed tomography [16]. Moreover, 
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our score provides complementary information, with possible ethnic or geographical disparities in 

populations in Europe or the USA. 

Finally, we now face cycles of acceleration, suppression and re-emergence of the pandemic, with 

fast and unpredictable emergence of new SARS-CoV-2 variants [37, 38]. This risk score may be a 

useful tool in our arsenal to fight COVID-19 in case of new wave(s) or aggressive variants.  

This study has some limitations. First, data collection was retrospective. However, the relatively 

short time between each patient’s hospitalization and the gathering of their data (median 14 days, IQR 

9–19 days) allowed investigators to easily recover a large amount of data of interest. The mean 

burden of missing data on variables selected in the final multivariable model was only 7.2%. Although 

multiple imputations were used to develop the risk-stratification score, sensitivity analyses depicted 

good performance, even in the non-imputed dataset. Second, our risk score was derived from 

variables collected at admission, to help early triage of patients. Consequently, this approach does not 

consider the evolution of these items or other events that occurred during hospitalization that may 

further improve prognostication. Third, our score was developed from a multicentre cohort, and, in the 

first wave of COVID-19, this potentially implies local disparities regarding the criteria for transfer to 

critical care and the critical care capacity of each centre. Last, while the pandemic has continued to 

evolve and shift, our score was constructed and validated on the first wave of patients hospitalized for 

COVID-19. We now have improved primary prevention and in-hospital care with proven effective 

treatments (i.e. corticoids) and specific vaccines that were not available at the time of the study [39, 

40]. Besides, current variants, such as the Omicron variant, have been shown to be less likely to result 

in death or ICU admission [41, 42]. Still, the in-hospital death rate remains stable, even with recent 

variants Omicron BA.1 or BA.2, because hospitalized patients are older or have severe co-morbidities 

[43, 44]. Our death rate is consistent with recent rates described in the USA and Europe [45, 46]. 

Furthermore, risk factors associated with severe forms of COVID-19 still seem to be associated with 

outcomes in patients infected with recent SARS-CoV-2 variants [43]. Thus, despite its early 

development, the CCF risk score remains of value to improve the efficiency of patient triage upon 

admission to hospital. 

 

Conclusions 
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Using data from a nationwide multicentre observational study of patients hospitalized for COVID-19 

during the first wave, we identified independent predictors of a severe form of COVID-19, including 

clinical, biological and imaging variables collected routinely at admission. An accurate integrative 

machine learning-based risk score was developed and validated to optimize early triage of patients.  
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Figure legends 

  

Figure 1. Flow chart for the Critical COVID-19 France study. ICU: intensive care unit; SARS-CoV-2: 

severe acute respiratory syndrome coronavirus 2.  

 

Figure 2. Calibration curves in the derivation and validation cohorts.  

 

Figure 3. Receiver operating characteristic curve comparison between the Critical COVID-19 France 

(CCF) risk score (model) and usual critical care scores in the overall cohort. The area under the 

receiver operating characteristic curve (AUROC) of the CCF score (model) was higher than those of 

the SOFA (Sepsis-related Organ Failure Assessment) score (P < 0.001), the CURB-65 (confusion, 

blood urea > 42.8 mg/dL, respiratory rate > 30 breaths/min, blood pressure < 90/60 mmHg, age > 65 

years) score (P < 0.001), the ROX (Respiratory Rate and Oxygenation) index (P < 0.001), the 4C 

(Coronavirus Clinical Characterisation Consortium) score (P < 0.001), the PREDICO (prediction of 

severe respiratory failure in hospitalized patients with SARS-CoV-2 infection) score (P < 0.001) and 

the qCSI (quick Covid Severity Index) (P < 0.001). 

 

Central illustration. Critical COVID-19 France, built using machine-learning techniques: 

methods, selected variables and performance. CCF: Critical COVID-19 France; CI: confidence 

interval; COVID-19: coronavirus disease 2019; ICU: intensive care unit; LASSO: Least Absolute 

Shrinkage and Selection Operator.
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Table 1 Baseline characteristics of patients in the overall population, and the derivation and validation cohorts. 

Characteristic  Overall population  Derivation cohort Validation cohort P 

(n = 2873) Number with data (n = 2313)  (n = 560) 

Demographics      

 Age (years) 66.6 ± 17.0 2868 66.9 ± 16.9 65.3 ± 17.2 0.04 

 Male sex 1663 (57.9) 2873 1338 (57.8) 325 (58.0) 0.97 

 Body mass index (kg/m2) 27.8 ± 6.0 2493 27.8 ± 6.1 28.0 ± 6.0 0.52 

Cardiovascular risk factors      

 Smoking 377 (13.4) 2805 290 (12.9) 87 (15.6) 0.33 

 Hypertension 1451 (50.8) 2854 1193 (52.0) 258 (46.2) 0.02 

 Diabetes 676 (23.7) 2855 535 (23.3) 141 (25.3) 0.34 

 Dyslipidaemia 798 (28.0) 2854 669 (29.1) 129 (23.2) 0.006 

Co-existing conditions      

 Chronic kidney disease 403 (14.2) 2831 327 (14.4) 76 (13.7) 0.75 

 Atrial fibrillation 413 (14.5) 2847 333 (14.5) 80 (14.5) 1.00 

 Heart failure 329 (11.6) 2873 258 (11.3) 71 (12.9) 0.34 

 Coronary artery disease 362 (12.6) 2873 307 (13.3) 55 (9.82) 0.03 

 Immunodeficiency 147 (5.12) 2873 118 (5.10) 29 (5.18) 1.00 

Treatment before hospitalization      
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 Anticoagulation 409 (14.2)  2873 341 (14.7) 68 (12.1) 0.13 

 Angiotensin-converting enzyme inhibitor 505 (17.6) 2873 408 (17.6) 97 (17.3) 0.91 

 Angiotensin II receptor blocker 468 (16.3) 2873 379 (16.4) 89 (15.9) 0.83 

Clinical characteristics      

 NYHA functional class  2493   0.88 

  I or II 1216 (48.8)  1014 (48.9) 202 (48.3)  

  III or IV 1277 (51.2)  1061 (51.1) 216 (51.7)  

 Systolic pressure (mmHg) 131 ± 22 2825 132 ± 22 129 ± 21 0.002 

 Diastolic pressure (mmHg) 74 ± 13 2825 74 ± 14 74 ± 13 0.24 

 Respiratory frequency 23 ± 7 2109 23 ± 7 23 ± 7 0.74 

 Temperature (°C) 37.2 ± 1.0 2825 37.2 ± 1.1 37.2 ± 1.0 0.96 

 Blood oxygen saturation (%) 95 ± 3.6 2849 95 ± 3.6 95 ± 3.5  0.01 

 Inspired oxygen (%) 29 ± 12 2778 29 ± 13 28 ± 10 0.66 

 Glasgow Coma Scale score < 15 193 (6.81) 2833 149 (6.54) 44 (7.91) 0.29 

 SIC score ≥ 4 1135 (67.9) 1672 917 (67.4) 218 (69.9) 0.44 

 qSOFA = 1 1295 (61.5) 2105 998 (61.0) 297 (63.2) 0.43 

Laboratory      

 pH 7.45 ± 0.06 2004 7.45 ± 0.06 7.44±0.06 0.001 

 PaO2:FiO2 ratio < 150 176 (9.0)  1956 147 (9.4) 29 (7.3)  0.23 
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 Lactates (mmol/L) 1.4 ± 1.0 1754 1.4 ± 1.0 1.5 ± 1.0 0.06 

 Leukocytes (g/L) 7.3 ± 5.1 2822 7.4 ± 5.4 7.2 ± 3.8 0.42 

 Platelets (g/L) 221 ± 99 2802 218 ± 96 232 ± 112 0.007 

 C-reactive protein (mg/L) 90.2 ± 76.9 2753 90.5 ± 77.1 88.8 ± 76.2 0.64 

 GFR (mL/min/m2) 82 ± 30 2824 82 ± 29 82 ± 30 0.51 

 Aspartate aminotransferase (IU/L) 54 ± 69 2605 55 ± 75 49 ± 37 0.006 

 Alanine aminotransferase (IU/L) 46 ± 75 2610 46 ± 63 49 ± 115 0.60 

 D-dimer (µg/L) 1644 ± 3633 1156 1713 ± 3893 1333 ± 2091 0.05 

 Fibrinogen (g/L) 6.0 ± 1.7 1379 6.0 ± 1.7 6.0 ± 1.7 0.94 

 Ferritin (µg/L) 1092 ± 1880 722 1040 ± 1502 1250 ± 2727 0.33 

 Lactate dehydrogenase (IU/L) 368 ± 333 922 359 ± 348 407 ± 256 0.04 

 Elevated BNP or NT-proBNPa 942 (53.0) 1776 783 (54.0) 159 (48.8) 0.10 

 Troponin elevationb 572 (32.5) 1760 398 (28.8) 174 (46.3) < 0.001 

 Positive SARS-CoV-2 RT-PCR 2591 (91.8) 2823 2107 (92.9) 484 (87.2) < 0.001 

Chest computed tomography      

 Parenchymal involvement  2244   0.16 

  Minimal or moderate (< 50%) 1815 (80.9)  1444 (80.3) 371 (83.4)  

  Severe (> 50%) 429 (19.1)  355 (19.7) 74 (16.6)  
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Data are expressed as mean ± standard deviation or number (%). BNP: B-type natriuretic peptide; FiO2: fraction of inspired oxygen; GFR: glomerular filtration 

rate; NT-proBNP: N-terminal prohormone of B-type natriuretic peptide; NYHA: New York Heart Association; PaO2: partial pressure of oxygen; qSOFA: quick 

Sepsis-related Organ Failure Assessment; RT-PCR: reverse-transcriptase polymerase chain reaction; SARS-CoV-2: severe acute respiratory syndrome 

coronavirus 2; SIC: Sepsis-Induced Coagulopathy. 

a BNP > 50 pg/mL or NT-proBNP > 300 pg/mL. 

b Above each centre’s threshold. 
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Table 2 Univariate analysis (derivation cohort): Association of clinical, biological and imaging factors with primary outcome in univariate logistic regression 

analysis. 

Variables  Presence of primary composite outcome OR (95% CI) P  

Yes (n = 673) No (n = 1567) 

Demographics     

 Age (years) 70 ± 16 66 ± 17 1.02 (1.01–1.02) < 0.001 

 Male 444 (66.3) 894 (54.4) 1.65 (1.37–1.99) < 0.001 

 Body mass index (kg/m2) 28.5 ± 6.4 27.5 ± 5.9 1.03 (1.01–1.04) 0.002 

Cardiovascular risk factors     

 Smoking 95 (14.7) 195 (12.2) 1.25 (0.95–1.62) 0.12 

 Hypertension 395 (59.4) 798 (48.9) 1.53 (1.27–1.83) < 0.001 

 Diabetes 191 (28.7) 344 (21.1) 1.51 (1.23–1.85) < 0.001 

 Dyslipidaemia 229 (34.4) 440 (26.9) 1.42 (1.17–1.73) < 0.001 

Co-existing conditions     

 Chronic kidney disease 146 (22.2) 181 (11.2) 2.27 (1.78–2.89) < 0.001 

 Atrial fibrillation 93 (14.0) 240 (14.7) 0.94 (0.72–1.22) 0.69 

 Heart failure 105 (16.0) 153 (9.46) 1.82 (1.39–2.37) < 0.001 

 Coronary artery disease 110 (16.4) 197 (12.0) 1.44 (1.12–1.85) 0.005 
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 Venous thromboembolic disease 53 (7.91) 128 (7.79) 1.03 (0.73–1.43) 0.35 

Treatment before hospitalization     

 Anticoagulation 100 (14.9)  241 (14.7)  1.02 (0.79–1.31) 0.93 

 Angiotensin-converting enzyme inhibitor 137 (20.4) 271 (16.5) 1.30 (1.03–1.63) 0.03 

 Angiotensin II receptor blocker 123 (18.4) 256 (15.6) 1.22 (0.96–1.54) 0.12 

Clinical characteristics     

 NYHA functional class    < 0.001 

  I or II 209 (34.7) 805 (54.7) Ref.  

  III or IV 394 (65.3) 667 (45.3) 2.27 (1.87–2.77)  

 Heart rate (beats/min) 89 ± 19 86 ± 18 1.01 (1.00–1.01) < 0.001 

 Systolic pressure (mmHg) 131 ± 24 132 ± 22 1.00 (0.99–1.00) 0.34 

 Diastolic pressure (mmHg) 74 ± 14 75 ± 13 0.99 (0.99–1.00) 0.14 

 Respiratory frequency 26 ± 7 22 ± 6 1.08 (1.07–1.10) < 0.001 

 Temperature (°C) 37.4 ± 1.2 37.1 ± 1.0 1.31 (1.20–1.43) < 0.001 

 Blood oxygen saturation (%) 93 ± 4 95 ± 3 0.86 (0.84–0.88) < 0.001 

 FiO2 (%) 35 ± 17 26 ± 9 1.06 (1.05–1.07) < 0.001 

 Glasgow Coma Scale score < 15 68 (10.4) 81 (5.0) 2.19 (1.56–3.07) < 0.001 

 Heart failure signs 58 (8.8) 107 (6.6) 1.36 (0.97–1.90) 0.08 

 SIC score ≥ 4 317 (78.7) 600 (62.7) 2.19 (1.67–2.89) < 0.001 
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 qSOFA = 1 362 (74.6) 636 (55.3) 2.38 (1.88–3.01) < 0.001 

Laboratory     

 pH 7.45 ± 0.07 7.46 ± 0.05 0.02 (0.00–0.14) < 0.001 

 PaO2:FiO2 ratio < 150 104 (18.6)  43 (4.3)  5.08 (3.52–7.44) < 0.001 

 Lactates (mmol/L) 1.6 ± 1.3 1.3 ± 0.7 1.45 (1.26–1.67) < 0.001 

 Leukocytes (g/L) 8.2 ± 6.1 7.0 ± 5.1 1.05 (1.02–1.07) < 0.001 

 Platelets (g/L) 206 ± 96 223 ± 95 1.00 (1.00–1.00) < 0.001 

 C-reactive protein (mg/L) 122 ± 86 78 ± 69 1.01 (1.01–1.01) < 0.001 

 GFR (mL/min/m2) 73 ± 31 85 ± 28 0.99 (0.98–0.99) < 0.001 

 Aspartate aminotransferase (IU/L) 68 ± 93 50 ± 64 1.00 (1.00–1.01) < 0.001 

 Alanine aminotransferase (IU/L) 53 ± 80 43 ± 48 1.00 (1.00–1.00) 0.006 

 D-dimer (µg/L) 2423 ± 5982 1362 ± 2143 1.00 (1.00–1.00) 0.003 

 Fibrinogen (g/L) 6.4 ± 1.6 5.8 ± 1.7 1.23 (1.14–1.33) < 0.001 

 Ferritin (µg/L) 1442 ± 2066 860 ± 1124 1.00 (1.00–1.00) 0.001 

 Lactate dehydrogenase (IU/L) 466 ± 602 314 ± 109 1.01 (1.00–1.01) < 0.001 

 Elevated BNP or NT-proBNPa 306 (63.1) 477(49.4) 1.75 (1.40–2.19) < 0.001 

 Troponin elevationb 180 (39.4) 218 (23.5) 2.11 (1.66–2.69) < 0.001 

 Positive SARS-CoV-2 RT-PCR 626 (95.6)  1481 (91.8) 1.73 (1.15–2.69) 0.008 

Chest computed tomography     
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 Parenchymal involvement    < 0.001 

  Minimal or moderate (< 50%) 329 (64.3) 1115 (86.6) Ref.  

  Severe (> 50%) 183 (35.7) 172 (13.4) 3.60 (2.83–4.59)  

Data are expressed as mean ± standard deviation or number (%). BNP: B-type natriuretic peptide; CI: confidence interval; FiO2: fraction of inspired oxygen; 

GFR: glomerular filtration rate; NT-proBNP: N-terminal prohormone of B-type natriuretic peptide; NYHA: New York Heart Association; OR: odds ratio; PaO2: 

partial pressure of oxygen; qSOFA: quick Sepsis-related Organ Failure Assessment; RT-PCR: reverse-transcriptase polymerase chain reaction; SARS-CoV-

2: severe acute respiratory syndrome coronavirus 2; SIC: Sepsis-Induced Coagulopathy. 

a BNP > 50 pg/mL or NT-proBNP > 300 pg/mL. 

b Above each centre’s threshold. 
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Figure 1 
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Figure 2 
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Figure 3 

 

 

 


