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Abstract: The Kairos wristband offers on-demand heart rate variability (HRV) assessment
through its “Spot Check” feature, enabling standardized recordings for clinical, research,
or self-tracking purposes, but its validity is untested. Therefore, we compared the Kairos
wristband to electrocardiography (ECG) for resting HRV assessment in young adults,
and investigated the influence of skin pigmentation (M-index) on measurement accuracy.
Simultaneous 3 min Kairos and ECG samples were obtained in the supine (n = 32) and
seated (n = 30) position. Comparisons included resting heart rate (RHR) and time domain
(root-mean square of successive differences [RMSSD], standard deviation of normal RR
intervals [SDNN]), frequency domain (low [LF] and high frequency [HF]), and non-linear
(standard deviation 1 [SD1] and SD2) HRV metrics. RHR showed excellent agreement
whereas HF, LF, and SD2 showed poor agreement. For the remaining metrics, SDNN
showed the strongest absolute and relative agreement, followed by SD1 and RMSSD.
However, most HRV metrics exhibited heteroscedasticity or proportional bias, with greater
error and underestimation at higher HRV values. M-index was unrelated to method
difference scores, except for seated SD2 (p = 0.01). The Kairos wristband can be used to
measure RHR, but HRV assessment should be limited to SDNN for global variability and
SD1 or RMSSD for cardiac–parasympathetic activity. However, these metrics should be
interpreted within the level of agreement identified in this study, and with consideration of
the observed trend of diminished accuracy with higher HRV values.

Keywords: wearable technology; m-health; cardiovascular; device validation; autonomic
nervous system

1. Introduction
The autonomic nervous system (ANS) influences cardiac function through sympathetic

and parasympathetic innervation. As an effector organ involved in homeostatic regulation,
cardiac activity is modulated by the ANS on a beat-by-beat basis, quantified as heart
rate variability (HRV) [1]. Serial tracking of resting heart rate (RHR) and HRV reflects
changes in cardiac ANS control, and has important health and performance implications.
For example, serial self-tracking in cardiac patients using a valid chest-strap monitoring
system revealed distinct day-to-day trends that preceded a cardiac event, in contrast to
event-free patients, suggesting potential implications for early medical intervention [2]. In
athletic contexts, serial self-tracking with a valid chest-strap monitoring system or finger
photoplethysmography (PPG) device revealed adverse changes in ANS status preceding
illness and overtraining, and following a concussion, emphasizing the potential for early
detection, prevention efforts, and ongoing monitoring of status [3–5]. Finally, in the general
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adult population, HRV data collected from self-tracking devices has been linked to physical
activity patterns and various cardiometabolic risk factors, suggesting its potential as a
behavior modification tool for improving health outcomes [6,7].

Wearable devices, such as wristbands and smartwatches, have drastically increased
the popularity of self-tracking by making HR monitoring more accessible. For example,
one-third of American adults utilize wearable technology capable of tracking heart rate
via PPG [8]. Moreover, American College of Sports Medicine (ACSM) survey findings
have consistently reported wearable technology as the top health and fitness trend in
recent years [9]. Despite increasingly wide-spread usage, third-party validation studies are
limited, and may not exist yet for newer products. Previous research into the accuracy of
commercial wristbands have produced mixed findings [10]. Furthermore, studies [11–14]
that exported inter-pulse interval data from the wristband for external processing and
HRV calculation do not test the accuracy of the wristbands smartphone application. This
limits the findings given that most users will rely on values computed by the wearable
device system. Additionally, many studies have neglected to examine whether accuracy is
impacted by skin tone. Darker skin has been associated with greater PPG error in recent
investigations due to differences in light absorption and photon scattering density and
detection at varying wavelengths [15,16]. Thus, further validation studies are needed that
assess the internal processing and computing of HRV by the wearable device system, and
that address inter-individual differences in skin tone or pigmentation.

In 2023, a biosensor company named Biostrap introduced the Kairos wristband to the
market. Unlike many other consumer wristband products, Kairos and the accompanying
Vital Science smartphone application enable users to perform on-demand RHR and HRV
measurements via their “Spot Check” feature. The Spot Check involves a 3-min sampling
period under static, resting conditions, after which a report is automatically generated
and emailed to the user. This report includes numerous time domain, frequency domain,
and non-linear HRV metrics, significantly enhancing the functionality of the device. As
a result, it allows for standardized HRV measurements that are applicable in various
athletic, clinical, and research settings. To date, the accuracy of the Kairos “Spot Check”
feature has not undergone third-party investigation. Therefore, we aimed to (1) compare
the Kairos wristband with gold standard electrocardiography (ECG) for HRV assessment,
and (2) investigate how skin pigmentation may impact the accuracy of the wristband’s
HRV estimations.

2. Materials and Methods
2.1. Experimental Design

We used a cross-sectional study design to evaluate the accuracy of the Kairos wristband
(Biostrap USA, LLC, Austin, TX, USA) for RHR and HRV assessment compared to gold-
standard ECG. Data collection occurred in a single session within a controlled laboratory
environment. All participants completed simultaneous 3 min recordings via Kairos and
ECG in both supine and seated positions to assess RHR and HRV under different postural
conditions. Each 3 min recording was preceded by at least 1 min for stabilization. Wrist
skin pigmentation was subsequently quantified to assess its potential association with
Kairos measurement error.

2.2. Participants

A racially diverse sample of apparently healthy young men and women (n = 40) were
recruited for this study. To participate, individuals needed to be between the ages of 18 and
39 years and free from known cardiovascular, metabolic, and neurological disorders. In
addition, individuals were required to have no tattoos or scarring of the skin at the site of
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wristband placement. Prior to data collection, prospective participants were informed of
the risks and benefits of the study, and were given the opportunity to ask questions before
signing a consent form. The experimental protocol was granted ethical approval by the
Georgia Southern University Institutional Review Board (Protocol H23179).

2.3. Electrocardiography

All participants abstained from food and fluid ingestion for ≥2 h prior to testing [17].
Data collection procedures were carried out in a climate controlled laboratory (21 ◦C, 40%
humidity) with ambient lighting. Height and mass were measured with a wall-mounted
stadiometer and calibrated digital scale, respectively. Criterion HRV was derived from
wireless ECG recordings (MP 160, Biopac Systems Inc., Coletta, CA, USA). Disposable
Ag-AgCl electrodes were placed on the skin of the trunk in a modified lead II configuration.
Sampling frequency was set at 1000 Hz. Real-time cardiac cycles were displayed on a
laptop computer with AcqKnowledge 5.0 software (Biopac Systems Inc., Coletta, CA, USA),
which was used to mark the ECG at start and finish times of simultaneous 3 min recordings
with the wristband. Kubios HRV Scientific software (Version 4.1.0, University of Kuopio,
Kuopio, Finland) was used to manually detect ECG abnormalities and compute HRV
parameters. Since filtering and correction procedures can confound the agreement between
devices, we only included ECG samples with a clear signal and 0 ectopic beats. Thus,
included samples contained 100% normal beats from sinus origin, requiring no R-R interval
filtering. Prior to HRV analysis, R-R intervals were detrended using the smoothness priors
method [18] to maintain consistency with Kairos procedures. Time domain (resting heart
rate [RHR], root-mean square of successive differences [RMSSD], standard deviation of
normal R-R intervals [SDNN]), frequency domain (high frequency [HF], low frequency
[LF] spectral power using a fast Fourier transformation), and non-linear (standard devi-
ation of points perpendicular to the line of identity in the Poincaré plot [SD1], standard
deviation of points along the line of identity in the Poincaré plot [SD2]) HRV parameters
were computed and recorded for analysis. These are the same parameters computed by
the Kairos system. In general, RMSSD, HF, and SD1 represent cardiac–parasympathetic
modulation, SDNN reflects global variability with influence from parasympathetic and
sympathetic modulation, and LF and SD2 reflect baroreflex activity [19]. Reduced HRV pa-
rameters are observed in or precede various clinical conditions, and can provide prognostic
information. For example, lower time domain markers such as RMSSD and SDNN precede
hypertension [20], time and frequency (HF, LF) domain parameters precede diabetes [21],
and reduced parasympathetic parameters (RMSSD, HF) predict accelerated cognitive de-
cline [22]. Additionally, among cardiac and cancer patients, those with higher HRV tend
to show longer survival [23,24]. Although non-linear parameters (SD1, SD2) are less fre-
quently utilized, their strong correlation with time and frequency domain parameters
suggests they provide similar insights [25,26].

2.4. Wristband

The Kairos wristband was fitted around the left wrist of the participant (Figure 1)
according to manufacturer specifications. An iPhone 13 (Apple Inc. Cupertino, CA, USA)
was paired with the wristband via Bluetooth. The wristband collects raw PPG data using a
high-sensitivity complementary metal-oxide-semiconductor optical sensor with two green
and one infrared light emitting diodes. The accompanying Vital Science mobile application
(Version 1.1.26, Biostrap USA LLC, Austin, TX, USA) was used to perform 3-min recordings
using the “Spot Check” feature. Supine recordings were performed on a comfortable
examination table with the wrist in a pronated position. Seated recordings were performed
in a back-supported chair with hands resting in a pronated position on their lap. Seated
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HRV measurements are common for at-home and remote assessments [27] but the upright
position may affect the accuracy of PPG devices [28]. A stabilization period of at least 1 min
preceded each recording [29]. Participants were instructed to remain quiet, still, and to
breathe naturally during measurements. Once a Spot Check was completed, PPG data were
automatically transmitted to cloud servers by the Vital Science application for processing
and calculation of HRV parameters. Results were provided in a PDF report, which was
automatically emailed to the registered user. Only samples with adequate signal quality, as
indicated on the PDF report, were included in the analysis.
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Figure 1. Photograph of a participant wearing the Biostrap Kairos wristband while resting in the
supine position.

2.5. Skin Pigmentation

Following HRV data collection, the melanin index (M-index) was quantified using
reflectance spectrophotometry (DermaSpectrometer; Cortex Technology, Hadsund, Den-
mark). Measurements were taken on the dorsal aspect of the wrist, corresponding to the
PPG sampling site. This assessment location was chosen to evaluate the interaction be-
tween skin pigmentation and the accuracy of HRV estimation from the wristband. Higher
M-index values indicate greater melanin content and thus darker-appearing skin.

2.6. Statistical Analysis

To compare the Kairos-derived HRV metrics with ECG-derived HRV metrics, Bland–
Altman analyses were conducted. Prerequisites for a traditional Bland–Altman analysis
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include: (1) the assumption of normality in method difference scores, (2) independence
between observed differences and averages (i.e., absence of proportional bias), and (3) con-
stant scatter of difference scores across method averages (scedasticity) [30,31]. The assump-
tion of normality was assessed with normal probability plots, Shapiro–Wilk testing, and
skewness indices with a focus on evaluating the presence of skewed distributions [31].
When method difference scores followed a normal distribution, proportional bias was
assessed by determining the statistical significance of the slope coefficient in an ordinary
least squares (OLS) regression of difference scores against the method averages. In contrast,
when difference scores were non-normal, proportional bias was evaluated using the statis-
tical significance of the slope coefficient from a quantile (median) regression of difference
scores on method averages. Depending on normality, systematic bias was reported as the
mean ± standard deviation or median (interquartile range) when no proportional bias
was present, or as an equation using the respective regression coefficients when propor-
tional bias was detected. Scedasticity was assessed by regressing the absolute residuals
from the proportional bias assessment model on method averages. Statistically significant
slope coefficients were used to indicate heteroscedasticity. When proportional bias was
present without heteroscedasticity, the limits of agreement were computed as 1.96 times
the standard error of the estimate from the proportional bias regression model [31]. If
heteroscedasticity was identified, regardless of proportional bias, V-shaped limits of agree-
ment were calculated by multiplying the regression coefficients from the absolute residuals
(from the OLS or median proportional bias model) by 2.46 [30,31]. Relative agreement
between methods was quantified with Lin’s concordance correlation coefficient (CCC) [32],
where values of <0.90, <0.95, <0.99, and ≥ 0.99 were qualitatively interpreted as poor, mod-
erate, substantial, and near perfect, respectively [33]. Absolute agreement was determined
using the mean absolute error (MAE) and mean absolute percent error (MAPE). A MAPE
<10% was considered good absolute agreement, while a MAPE >10% was considered
poor absolute agreement [34]. Finally, associations were quantified between M-index and
method difference scores (Kairos-derived HRV metrics − ECG-derived HRV metrics) with
Spearman correlations to assess the impact of skin pigmentation on wristband accuracy.
Correlation coefficients were interpreted as trivial (<0.1), small (<0.3), moderate (<0.5),
large (<0.7), very large (<0.9), and near perfect (>0.9) [35]. p values <0.05 were considered
statistically significant. Analyses were conducted using SPSS (Version 27, IBM Corp., Ar-
monk, NY, USA), JMP Pro (Version 16, SAS Institute Inc., Cary, NC, USA), and Excel 2013
(Microsoft Corp., Redmond, WA, USA).

3. Results
For supine analyses, five ECG samples were excluded due to ≥ 1 ectopic beats (e.g.,

premature atrial or ventricular contractions) and six Kairos samples were excluded due to
poor signal quality. For seated analyses, six ECG samples were excluded due to ≥ 1 ectopic
beats and ten Kairos samples were excluded due to poor signal quality. At least one ECG
sample qualified for inclusion (0 ectopic beats) from all but four participants. The final
sample sizes were n = 32 and n = 30 for supine and seated comparisons, respectively.
Descriptive characteristics of the sample are presented in Table 1.

Summary and agreement statistics for the between-device (Kairos versus ECG) com-
parison of RHR and time domain parameters are reported in Table 2 (supine) and Table 3
(seated), and corresponding Bland–Altman plots are displayed in Figure 2. No significant
mean biases were observed for supine and seated RHR, along with near perfect relative
agreement, good absolute agreement, no heteroscedasticity or proportional bias, and tight
95% LOA (±<1.5 bpm).
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Table 1. Descriptive characteristics reported as mean ± standard deviation or median (inter-
quartile range).

Descriptor Supine Comparison (n = 32) Seated Comparison (n = 30)

Male/Female 13/19 12/18
Age (years) 21.7 ± 3.3 21.4 ± 3.0
Height (cm) 169.1 ± 10.5 169.5 ± 9.5
Mass (kg) 76.3 ± 15.3 75.0 ± 13.3
Melanin Index (au) 35.3 (16.6) 34.9 (16.6)

Table 2. Variable mean ± standard deviation or median (inter-quartile range) and method comparison
statistics for supine values.

Metric Device Mean ± SD or
Median (IQR) β Bias LOA (95%) MAE MAPE% CCC

RHR (bpm) Wristband 71.1 ± 9.5 −0.266 0.0 ± 0.7 −1.3–1.3 0.3 ± 0.6 0.5 ± 0.9 0.99ECG 71.1 ± 9.7

RMSSD (ms) Wristband 53.3 ± 22.3 −0.762 *** 9.95–0.23 * A
Bias ± 2.46 *

(−0.16 + 0.073 * A) 5.1 ± 6.5 8.0 ± 7.2 0.95ECG 56.3 ± 28.2

SDNN (ms) Wristband 54.0 ± 23.4 −0.241 0.4 ± 4.7
Bias ± 2.46 *

(−0.35 + 0.06 * A) 3.0 ± 3.6 5.8 ± 6.4 0.98ECG 53.5 ± 24.5

HF (ms2)
Wristband 606.5 (1038.0) −0.839 *** 81.3–0.540 * A

Bias ± 2.46 *
(36.5 + 0.14 * A) 482.8 ± 536.6 30.2 ± 16.5 0.72ECG 957.0 (1521.1)

LF (ms2)
Wristband 497.0 (519.3) −0.954 *** 16.1–0.56 * A

Bias ± 2.46 *
(97.4 + 0.09 * A) 703.2 ± 1121.8 42.7 ± 21.9 0.74ECG 749.6 (1221.4)

SD1 (ms) Wristband 39.7 ± 17.4 −0.580 ** 5.17–0.14 * A
Bias ± 2.46 *

(−0.86 + 0.87 * A) 2.8 ± 3.4 7.2 ± 7.5 0.97ECG 39.9 ± 20.0

SD2 (ms) Wristband 79.8 ± 30.8
0.078 16.2 ± 15.6 *** −14.3–46.7 16.2 ± 15.6 33.5 ± 33.9 0.76ECG 63.6 ± 29.6

RHR = resting heart rate; RMSSD = root-mean square of successive differences; SDNN = standard deviation
of normal R-R intervals; HF = high frequency; LF = low frequency; SD1 = standard deviation of points per-
pendicular to the line of identity in the Poincaré plot; SD2 = standard deviation of points along the line of
identity in the Poincaré plot; ECG = electrocardiography; SD = standard deviation; IQR = inter-quartile range;
CCC = concordance correlation coefficient; β = beta coefficient; LOA = limits of agreement; A = average value of
two methods; Italics typeface = median systematic bias from quartile regression. * indicates p < 0.05. ** indicates
p < 0.001. *** indicates p < 0.0001.

For supine RMSSD, the Kairos wristband exhibited a negative proportional bias
and heteroscedasticity, indicating increasing underestimation and greater error at higher
RMSSD compared to ECG-derived values. This resulted in V-shaped LOA with a steeper
decline for the lower limit line. Relative agreement was substantial, and absolute agreement
was good. In the seated position, the Kairos wristband exhibited a negative proportional
bias, with increasing underestimation at higher RMSSD values, but no heteroscedasticity.
This resulted in parallel but declining LOA. Relative agreement remained substantial,
whereas absolute agreement was poor.

For supine SDNN, the Kairos wristband exhibited heteroscedasticity without a pro-
portional bias, resulting in V-shaped LOA. This indicates greater error at higher SDNN
compared to ECG-derived values. Relative agreement was substantial, and absolute agree-
ment was good. For seated SDNN, the Kairos wristband exhibited a negative proportional
bias, with increasing underestimation at higher SDNN compared to ECG-derived values,
but no heteroscedasticity. This resulted in parallel but declining LOA. Relative agreement
was near perfect, and absolute agreement was good.
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Summary and agreement statistics for the between-device comparison of frequency
domain parameters are reported in Table 2 (supine) and Table 3 (seated), and corresponding
Bland–Altman plots are displayed in Figure 3. For HF and LF, irrespective of position, the
method difference scores deviated from normality and the Kairos wristband exhibited a
negative proportional bias and heteroscedasticity, indicating increasing underestimation
and greater error at higher HF and LF compared to ECG-derived values. This resulted
in V-shaped LOA with a steeper decline for the lower limit line. Relative and absolute
agreement were all poor.

Summary and agreement statistics for the between-device comparison of non-linear
parameters are reported in Table 2 (supine) and Table 3 (seated), and corresponding Bland–
Altman plots are displayed in Figure 4. For supine SD1, the Kairos wristband exhibited a
negative proportional bias and heteroscedasticity, indicating increasing underestimation
and greater error at higher SD1 compared to ECG-derived values. This resulted in V-shaped
LOA with a steeper decline for the lower limit line. Relative agreement was substantial,
and absolute agreement was good. In the seated position, the Kairos wristband exhibited a
negative proportional bias, with increasing underestimation at higher SD1 compared to
ECG-derived values, but no heteroscedasticity. This resulted in parallel but declining LOA.
Relative agreement remained substantial, whereas absolute agreement was poor.

A significant mean bias was observed for supine SD2 without heteroscedasticity or
a proportional bias, indicating that the Kairos wristband systematically underestimated
ECG-derived values. In addition, 95% LOA were wide (±30.5 ms), and relative and
absolute agreement were poor. In the seated position, the Kairos wristband exhibited
heteroscedasticity without a proportional bias, resulting in V-shaped LOA. This indicates
greater error at higher SD2 compared to ECG-derived values. Relative and absolute
agreement were poor.

A positive association that was moderate in magnitude was observed between seated
method difference scores for SD2 (Kairos-derived SD2 – ECG-derived SD2) and M-index
(p < 0.05, Figure 5). All other associations were non-significant (p > 0.05, Table 4).

Table 3. Variable mean ± standard deviation or median (inter-quartile range) and method comparison
statistics for seated values.

Metric Device Mean ± SD or
Median (IQR) β Bias LOA (95%) MAE MAPE% CCC

RHR (bpm) Wristband 75.9 ± 9.7
0.085 0.1 ± 0.6 −1.3–1.3 0.5 ± 0.4 0.6 ± 0.5 0.99ECG 75.8 ± 9.7

RMSSD (ms) Wristband 46.3 ± 24.6 −0.646 *** 9.95–0.23 * A Bias ± 1.96 * 6.10 5.2 ± 5.9 14.4 ± 18.3 0.96ECG 45.1 ± 29.7

SDNN (ms) Wristband 52.5 ± 26.0 −0.515 * 3.34–0.07 * A Bias ± 1.96 * 3.52 2.9 ± 2.8 6.1 ± 6.4 0.99ECG 53.2 ± 28.1

HF (ms2)
Wristband 494.0 (710.3) −0.967 *** 208.9–(0.70 * A)

Bias ± 2.46 *
(103.6 + 0.07 * A) 483.9 ± 878.5 41.4 ± 47.6 0.70ECG 609.1 (1092.6)

LF (ms2)
Wristband 542.5 (1006.5) −0.926 *** 209.3–(0.80 * A)

Bias ± 2.46 *
(226.1 + 0.10 * A) 791.8 ± 1461.1 34.1 ± 19.4 0.65ECG 698.5 (1084.8)

SD1 (ms) Wristband 34.2 ± 19.1 −0.400 * 5.50–0.10 * A Bias ± 1.96 * 4.64 3.5 ± 4.1 15.9 ± 22.7 0.96ECG 32.0 ± 21.0

SD2 (ms) Wristband 80.7 ± 36.4
0.150 13.4 ± 11.4 ***

Bias ± 2.46 *
(1.84 + 0.09 * A) 14.6 ± 9.8 25.5 ± 17.9 0.89ECG 67.3 ± 34.8

RHR = resting heart rate; RMSSD = root-mean square of successive differences; SDNN = standard deviation
of normal R-R intervals; HF = high frequency; LF = low frequency; SD1 = standard deviation of points per-
pendicular to the line of identity in the Poincaré plot; SD2 = standard deviation of points along the line of
identity in the Poincaré plot; ECG = electrocardiography; SD = standard deviation; IQR = inter-quartile range;
CCC = concordance correlation coefficient; β = beta coefficient; LOA = limits of agreement; A = average value of
two methods; Italics typeface = median systematic bias from quartile regression. * indicates p < 0.05. *** indicates
p < 0.0001.
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Figure 5. Scatterplot of the association between melanin index and method difference scores (Kairos-
derived value – electrocardiography-derived value) for seated SD2. SD2 = standard deviation of
points along the line of identity in the Poincaré plot; ECG = electrocardiograph.

Table 4. Spearman correlation coefficients between melanin index and method difference scores
(Kairos-derived value/electrocardiography-derived value) for supine and seated comparisons.

Supine Seated
Parameter ρ p ρ p

RHR −0.034 0.854 −0.132 0.486
RMSSD −0.195 0.284 −0.067 0.727
SDNN −0.339 0.058 0.203 0.281
HF 0.057 0.757 −0.214 0.257
LF 0.282 0.118 0.213 0.258
SD1 −0.325 0.070 −0.081 0.670
SD2 0.131 0.474 0.450 0.013 *

RHR = resting heart rate; RMSSD = root-mean square of successive differences; SDNN = standard deviation of
normal R-R intervals; HF = high frequency; LF = low frequency; SD1 = standard deviation of points perpendicular
to the line of identity in the Poincaré plot; SD2 = standard deviation of points along the line of identity in the
Poincaré plot. * indicates p < 0.05.

4. Discussion
This study aimed to (1) evaluate the agreement between the Kairos wristband and

gold standard ECG for determining resting HRV parameters, and (2) examine whether
increased skin pigmentation was associated with greater estimation errors. Regarding
aim 1, excellent agreement was observed for RHR, whereas agreement varied for HRV
metrics and recording positions. In general, time domain parameters and SD1 showed
superior agreement in comparison to the frequency domain parameters and SD2. However,
heteroscedasticity and/or proportional bias was observed for most comparisons. Regarding
aim 2, with the exception of one significant association between M-index and seated SD2
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difference scores, skin pigmentation generally was not associated with greater error from
the Kairos system.

4.1. Agreement for Resting Heart Rate

We observed excellent agreement across all statistical methods of comparison between
Kairos and ECG for RHR. This finding is consistent with other wristband devices such as
the Polar Vantage V2 (supine position) [36], Empatica E4 (seated position) [14], and Apple
Watch Series 9 and Ultra 2 (supine position) [37] during standardized 5 min measurements
compared to ECG or a Polar H10. In all cases, mean bias values were <1 bpm and 95%
LOA were ±~1 bpm. Contrastingly, Fitbit Charge 4 and Samsung Galaxy Watch Active2
demonstrated less precision in estimating supine and seated RHR from 2 min samples
(mean bias [95% LOA] range from 0.3 [−16.6 to 16.6] to 4.8 [−33.7 to 43.3] bpm, CCC range
from 0.20 to 0.61) [38]. Though more research is needed in larger samples and clinical
populations, our findings provide initial support for the use of Kairos in estimating RHR in
healthy young adults.

4.2. Agreement for Time Domain Heart Rate Variability Parameters

We observed good absolute agreement and substantial, near perfect relative agreement
between the Kairos system and ECG for SDNN. However, a small degree of heteroscedastic-
ity was noted in the supine position, indicating increasing Kairos error with higher SDNN,
whereas proportional bias was noted in the seated position, reflecting increasing Kairos
underestimation at higher SDNN. Thus, the accuracy of Kairos for estimating SDNN dimin-
ishes as SDNN values increase. Nevertheless, Kairos showed stronger agreement for SDNN
compared with previous investigations. For example, in a comparison of the Garmin Venu
2S GPS smartwatch with ECG during Garmin’s “Health Snapshot” feature (2 min resting
measurement), the results showed a higher MAE (9.4 ± 10.1 ms) and MAPE (13.9 ± 13.1%),
along with wide 95% LOA (−31.9 below to 20.3 ms above the mean bias of −5.8 ms) [39].
Consistent with the current study, greater underestimation of the criterion was observed at
higher SDNN values based on the Bland–Altman plot, though proportional bias was not
quantified [39]. Another study showed that the Apple Watch (Series 9 and Ultra 2) showed
a significant mean bias of −8.3 ms and wide 95% LOA (−53.8 to 37.2 ms), along with poor
absolute agreement (MAE = 20.5 ms, MAPE = 28.9%) during 5 min of supine rest [37].
Moreover, the Bland–Altman figure seems to show heteroscedasticity (greater error with
higher SDNN values), though a formal inspection was not conducted [37]. Similarly, the
Empatica E4 wristband exhibited a seemingly higher degree of heteroscedasticity based
on the Bland–Altman plot when compared with ECG for SDNN during seated 5 min
measures [14]. Although the Kairos wristband tended to outperform other consumer-grade
wearables, it shares the common limitation of greater error or underestimation at higher
SDNN values.

Agreement between Kairos and ECG for RMSSD was weaker than for SDNN. While
relative agreement was substantial, absolute agreement was poor, irrespective of position.
Moreover, Kairos exhibited proportional bias and heteroscedasticity in the supine position
(greater underestimation and error at higher values), and proportional bias in the seated
position (greater underestimation at higher values). Relative to the current findings, weaker
RMSSD agreement was observed for the Garmin Venu 2S GPS smartwatch during a 2 min
“Health Snapshot” (MAE = 12.4 ± 9.6 ms, MAPE = 33.0 ± 37.4%, 95% LOA = −33.3 to
30.4 ms, relative agreement via Pearsons r = 0.89, proportional bias not quantified but visibly
present) [39], whereas comparable agreement was observed for the Empatica E4 wristband
(significant mean bias of 6.0 ms but narrow 95% LOA of ±8.7 ms, no heteroscedasticity
or proportional bias, relative agreement via Pearsons r = 0.92) [14]. A comparison study
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of the Polar Vantage V2 versus Polar H10 used log transformed RMSSD and reported a
significant mean bias (p < 0.001), weaker relative agreement (CCC = 0.85), but a smaller
MAPE (5.6 ± 6.1%) compared with the current study [36]. Moreover, although proportional
bias was directionally consistent with the current study, the Polar Vantage V2 overestimated
lower values (trend = −0.70, p < 0.001) [36] rather than underestimating higher values, as
was the case for Kairos.

4.3. Agreement for Frequency Domain Heart Rate Variability Parameters

Very poor agreement was observed between Kairos and ECG for computation of
frequency domain parameters (LF and HF) by every statistical method of comparison
and in both supine and seated positions. This finding agrees with another investigation
in which the Elite HRV smartphone application showed much stronger agreement with
ECG for computing time domain versus frequency domain parameters during 10 min
of supine rest and paced breathing at 0.1 Hz [40]. Similar findings (less precision in
estimating frequency versus time domain) have been reported for the Oura ring [11] and
Apple Watch [12], despite the fact that PPG data were manually processed and filtered by
the researchers. Though good relative agreement (r values ≥ 0.95) was observed for LF
and HF from the Empatica E4 wristband, mean bias values were high (≤91.6 ms2), and
heteroscedasticity was reported for both parameters [14]. Use of frequency domain HRV is
less common in field settings relative to time domain, which may be due to comparatively
greater calculation complexity [41], poorer inter-day reliability [42], higher sensitivity to
the confounding of respiration rate [43] and reduced signal quality [12], less convenient
(i.e., longer) sample duration requirements [1], and less clear physiological interpretation
(specifically for LF) [44]. Moreover, the greater computational demands of frequency
domain, and thus increased need for more processing power and memory, likely increases
battery usage, further deterring their usage by product developers. Collectively, these
reasons may explain why many HRV smartphone applications use RMSSD [36,45–47] or
SDNN [37] as their featured HRV metric. Until stronger agreement for frequency domain
metrics is observed, current and previous findings discourage the use of HF and LF in
wearable device systems.

4.4. Agreement for Non-Linear Heart Rate Variability Parameters

The observed level of agreement between Kairos and ECG for non-linear HRV var-
ied by metric, with greater precision noted for SD1 versus SD2. Notably, supine SD1
showed substantial relative agreement and good absolute agreement, despite exhibiting
heteroscedasticity and proportional bias. Contrastingly, poor agreement across all statistical
comparisons was observed for SD2, irrespective of position. The reason for this discrepancy
is unclear, but may be related to differences in their calculations and respective sensitiv-
ity to signal quality. For example, SD1 is derived from short-term variability, reflecting
differences in successive inter-beat intervals. Contrastingly, SD2 incorporates both short-
and long-term variability by accounting for differences in successive inter-beat intervals
and the variance of inter-beat intervals. This added complexity may affect its susceptibility
to errors introduced by minor motion artifacts or changes in signal quality. However,
this discrepancy is not consistent with other devices. For instance, relative and absolute
agreement was higher for SD2 versus SD1 in a comparison between Garmin Vivoactive
4 and ECG in a mixed sample of healthy controls and cardiac patients during 30 min
of supine rest [13]. However, PPG signal processing, filtering, and computation of HRV
parameters were conducted by the researchers, not automatically by the wearable device
system. Nevertheless, our finding of fairly good agreement for SD1, particularly in the
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supine position, is noteworthy because it is interchangeable with, and therefore could be
an alternative to, RMSSD [25].

4.5. Effect of Skin Pigmentation on Device Accuracy

In the assessment of method difference scores and skin pigmentation, only one associa-
tion was statistically significant, reflecting a tendency for Kairos to overestimate seated SD2
as M-index increased (Figure 5). However, the overall lack of consistency in slope direc-
tionality, with eight negative and six positive (Table 4), suggests no systematic bias across
skin pigmentation values. Moreover, out of 14 correlation tests, approximately 1 would
be expected to be statistically significant by chance at a significance level of 0.05. Our
findings generally agree with a recent investigation that found no significant systematic
effects of skin tone on the accuracy of six different commercial wristbands [48]. However,
SD2 and LF were not included in the analysis [48]. Meanwhile, a recent meta-analysis of
10 studies reported mixed and inconclusive findings regarding the effect of darker skin
tone on the accuracy of consumer wearable devices [49]. Therefore, further research is
needed to explore whether the effect of skin tone or pigmentation on device accuracy varies
by HRV metric.

4.6. Heteroscedasticity and Proportional Bias

Greater errors with increasing values, reflected in heteroscedasticity or proportional
bias, were observed in 5/7 metrics from supine comparisons and 6/7 metrics from seated
comparisons. This trend suggests that Kairos is less accurate with increasing HRV. We
speculate that this can be explained by the filtering algorithm used by the Kairos system,
which may flag large inter-pulse intervals as abnormal. This could lead to overcorrection
and a subsequent reduction in HRV magnitude, explaining the observed bias in these met-
rics. Other factors involved may include differences in sampling frequency and resolution,
unidentified differences in the Kairos system’s HRV computation methods, and device
compensation for motion artifacts or environmental (e.g., light) interference [50].

4.7. Strengths and Limitations

Strengths of the current study include: comparison of device-computed HRV metrics
for direct evaluation of the Kairos system’s accuracy in real-world settings; strict inclusion
of only normal cardiac cycles to eliminate ectopic beat-driven agreement differences; evalu-
ation of skin pigmentation from a racially diverse sample; assessment in supine and seated
positions; inclusion of various commonly used HRV metrics; and inspection for propor-
tional bias and heteroscedasticity. Limitations include the lack of overnight assessment
to compare nocturnal HRV, inclusion of only healthy young adults, no consideration for
body composition effects, and a relatively small sample of individuals with very high skin
pigmentation. These limitations should be addressed in future research.

5. Conclusions
Our findings indicate that the Kairos device is suitable for measuring supine or seated

RHR in healthy young adults. For HRV assessment, SDNN showed the strongest agreement
with the criterion, followed by SD1 and RMSSD. However, agreement weakened as HRV
increased for each of these metrics, indicating that individuals with higher HRV may receive
less accurate values. This pattern may also imply that increases in HRV, such as those
following an intervention, may not be accurately captured by the device, posing challenges
for longitudinal tracking. Furthermore, frequency-domain metrics (LF and HF) and the non-
linear metric SD2 exhibited poor agreement with the criterion, and should not be used at this
time. With the increasing adoption of wearable technology for patient or athlete monitoring
and clinical research, our findings highlight an emerging pattern among these devices that
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directly impacts practitioners. Specifically, error magnitude and directionality tends to be
non-uniform across the range of HRV values. Thus, when considering which wearable
device to use, we encourage practitioners to seek out validation studies and inspect results
carefully, as proportional bias and heteroscedasticity are frequently underreported. Finally,
these findings may provide direction for future Kairos software updates which could
improve HRV estimation accuracy.
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