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Abstract: Texturing is an engineering technology that can be used to enable surface functionalization
in the plastics injection molding industry. A texture is defined as the geometrical modification of
the topography by addition of surface features that are characterized by a smaller scale than the
overall surface dimensions. Texturing is added to products to create novel functionalities of plastic
products and tools, which can be exploited to modify interactions with other materials in contact
with the surface. The geometry, dimensions, and positioning on the surface define the function of a
texture and its properties. This work reviews and discuss the wide range of texturing technologies
available in the industry. The advantages and limitations of each technology are presented to support
the development of new surface engineering applications in the plastics manufacturing industry.

Keywords: surface texturing; surface engineering; plastics manufacturing; injection molding;
micro-manufacturing

1. Introduction

The broad range of properties that characterize polymers have made texturing a
significant segment for the plastics industry. The value of a textured plastic part can be
very high thanks to its added functionalities. Consumer products with surface textures
are widespread, offering users a wide array of looks and feels. The texturing of plastic
parts finds applications for both consumer and high-end engineering products. The func-
tionalities introduced by surface texturing range from simple aesthetics (e.g., rigid plastic
packaging) to advanced biomedical applications (e.g., scaffolds for tissue engineering).
More recently, texturing has been used to functionalize injection molds to improve both the
process’s filling and ejection phases.

Texturing plastic parts by replicating a micro- or nano-structured tool has been demon-
strated as a cost-effective solution to generate different patterns on three-dimensional
surfaces. Texture replication requires the consideration of design, material, and processing
factors [1]. However, the extensive industrial polymer processing knowledge has consti-
tuted an excellent basis for developing the technology. The most common technologies
used to replicate micro- and nano-structured technologies include injection molding [2,3],
injection-compression molding [4], hot-embossing [5,6], roll-to-roll [7], and other variants
of these technologies. The understanding of replication during processing requires the
evaluation of polymer properties, processing parameters, and product functionality. Sev-
eral researchers have studied extensively how different parameters affect replication for
different processes.

This review presents the most common texturing technologies available for plastics
manufacturers. The different technologies are discussed and compared to highlight their
advantages and disadvantages. The different texturing techniques exploit diverse types of
energies to generate a specific surface topography. Texturing processes can be classified
as mechanical, thermo-electric, electro-chemical, and additive, depending on the primary
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working principle. The substrate materials allowed by each technology is briefly discussed
for each technology. Each one of these processes can be further divided into processes that
exploit a mask to work on the surface selectively or processes that concentrate the energy
on a small spot of the surface (cf. Figure 1).

Figure 1. Summary and classification of texturing processes.

2. Mechanical Machining
2.1. Micro-Milling

Micro-milling is a mechanical machining process that removes material from the
workpiece, exploiting the energy of the relative of the tool. Micro-milling is defined based
on the cutting tool’s dimensions, which should be smaller than 1 mm. Micro-milling has
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been widely used to create textures on different materials for different applications [8,9].
Micro-milling is typically scaled down from the conventional milling process; however,
many issues must be considered.

Texturing by micro-milling can involve long machining times, depending on the
pattern geometry, dimensions, and properties of the workpiece material. This process can
produce 3D shapes with features as small as few tenths of microns [10]. The most advanced
computer-controlled milling machine provides the precise and simultaneous movement of
many axes, enabling the creation of complicated tool paths for high flexibility to the texture
structure shape. The CNC control allows to machine complex structures with high accuracy
and precision. However, the reduced diameter and the need for mechanical stability during
cutting leads to limitations for the tool length. In general, the small tool dimension limits
the process’s ability to texture areas that are difficult to reach. Micro-milling tools can be
classified into four main types, depending on their cutting-edge shape. These types are
flat-end mill, ball-end mill, tapered ball-end mill, and bull nose mill.

Machining at the micro-scale presents several challenges that cannot be addressed
by traditional milling approaches. Therefore, micro-milling cannot be considered as a
downscaling of the traditional process. A micro-milling process is challenging to control,
and several processing factors have to be considered [11]. The machine, tool, and toolpath
have to be redesigned to promote precise and effective tool–workpiece contact [12]. In
particular, the workpiece properties, the tool geometry, and the tool materials have to be
carefully selected according to the process speeds.

Micro-milling often uses high-speed machining techniques with spindle rotations be-
tween 40,000 and 50,000 rpm and specialized CAM programming that requires specifically
designed machines. Along with a rigid structure, the spindle must be stable to minimize
tool vibration and prevent thermal expansion. Indeed, any vibration at the tooltip deterio-
rates the surface quality and shape accuracy. Vibrations are amplified as the cutting force
increases and as the tool diameter is reduced [13].

When texturing the workpiece surface by micro-milling, the cutter’s size is comparable
to the chip thickness and the material grain size [14]. Downscaling milling technologies
and approaches do not lead to good texture quality and the mechanical resistance of the
micro-milled texture. The presence of large grains on the workpiece material adversely
affects the quality of the process, causes the spring break effect that increases the obtained
surface roughness. The tool shape and the cutting tool’s edge must be considered not only
in regard to the designed features but also to the grain size. Coated tools are commonly
exploited for milling such small features to enhance tool performance. However, the tool
dimensions are usually larger.

The behavior of tools employed in micro-milling is hard to predict as chip clogging
may easily result in a catastrophic failure, and fatigue failure may occur because of the high
spindle speeds. The most common processing issue is burr formation, which is usually
not acceptable, mainly because the deburring of such small features is challenging and
often not feasible. Typically, the burr formation is minimized by selecting the optimal
cutting parameters and tool material and shape. Compared to conventional cutting tools,
micro-tools wear rapidly due to their low rigidity, leading to higher force variation and
earlier tool failure. Due to this rapid tool wear and the higher fluctuation of cutting forces,
the micro-feature part’s dimensional accuracy deteriorates [15]. Tool wear is highly affected
by spindle speed, feed per tooth, cutting depth, lubrication, and workpiece material [14].

2.2. Diamond Tool Micro-Milling

Diamond tools are used for micro-milling applications that demand high accuracy.
The process can generate a surface roughness of only a few nanometers and features as
small as some microns. All the advantages of having multiple degrees of freedom during
machining are shared with conventional micro-milling for a wide variety of machinable 3D
structures [16]. Diamond tools have highly desirable properties, such as low friction, high
wear resistance, and maintaining a sharp cutting edge. Single crystal diamonds can be used
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for selected applications, but they are typically replaced by polycrystalline diamond (PCD)
tools (also known as compacts). The presence of randomly oriented crystals hinders crack
propagation and improves the tool toughness. The shape and sharpness of the tool have
to be correctly designed to reduce the diamonds’ brittle behavior. Tool wear may occur
through microchipping due to thermal stresses and oxidation and through transformation
to carbon caused by the heat generated during cutting [17]. The tool’s alignment to the
workpiece and machine axis is of vital importance to the dimensional accuracy and tool life.
A deviation of only a few micrometers can lead to deformed structures and early tool wear.
Therefore, the generation of an optimized tool path is crucial for diamond tool milling.

2.3. Ultrasonic-Assisted Machining

Ultrasonic-assisted machining is used for texturing by applying high-frequency vibra-
tion to either the workpiece or the cutting tool. The tool can be a turning tool, a milling
cutter, or a grinding wheel [18]. The vibration wave is characterized by frequencies higher
than 20 kHz and amplitudes between 1–101 µm [19]. The integration of ultrasonic vibration
with a conventional machining process allows the generation of different topographies than
a non-vibrating process. The relative tool–workpiece vibration induces micro-scale modifi-
cation to the machining toolpath, resulting in more complex textures on the workpiece’s
surface.

The ultrasonic vibration can be integrated with processes such as grinding, milling,
turning, and cutting. In general, the vibrating device is attached to the cutting tool allowing
ease of installation and control. Two types of vibration modes can be applied to the tool to
machine different textures. The Longitudinal Vibration (LV) mode is the vibration along
the direction of the depth-of-cut. In the LV mode, the conventional machining process is
transformed into an intermittent cutting operation, enabling micro-dimples realization
(Figure 2a). The Orthogonal Vibration (OV) mode makes the tool vibrate in the plane
orthogonal to the depth-of-cut, controlling the cutting tool’s micro-path along the surface.
Compared to the LV mode, a one-dimensional vibration, the OV mode allows tool vibration
along two different directions (Figure 2b). An elliptical vibration can be generated to
achieve more complex textures by modulating the amplitudes and the frequencies of the
oscillations along the two dimensions. The two modes can be applied together to make a
three-dimensional vibration (Figure 2c) [20].

Figure 2. Different vibrational modes for the ultrasonic assisted turning process. (a) longitudinal
vibration (LV); (b) orthogonal vibration (OV); (c) LV and OV applied together.

The vibrating device is realized using one or more piezoelectric plates assembled
between cylindrical ultrasound horns. The high-frequency sinusoidal voltage excites the
piezoelectric, which expands and contracts, generating a vibration of the tool. Different
types of vibrating devices are realized using multiple piezoelectric plates of different shapes.
For axis-symmetric tools, a one-dimensional vibrator can be built with one plate to achieve
an LV mode. The OV mode can be obtained by stacking different plates. By feeding
the different vibrators with selected electrical signals, it is possible to generate different
vibration modes. For example, a circular or elliptical vibration can be obtained by selecting
the amplitudes of the signals. The two vibrators can be connected in series, so that the
cutting tool gains three vibrational degrees of freedom.

The dimension and characteristics of the texture generated by ultrasonic-assisted
machining depend on the tool geometry, on the combination of vibration mode, and on the
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feed path. In this process, the geometry of the texture is easier to control when the shape
of the tool is simple. For example, diverse textures can be achieved by diamond grinding
when controlling the tool vibration. However, the irregular geometrical shapes of grinding
wheels do not allow control over the generated topography. The tool–workpiece interaction
resulting from this process is too complicated, and the tool’s wear is difficult to predict.
General guidelines such as increasing the tool hardness and decreasing the depth of cut are
helpful to limit the high wear driven by the high-frequency tool–workpiece contact.

2.4. Abrasive Jet Machining

Abrasive jet machining exploits abrasive particles’ kinetic energy to remove material
from the workpiece creating a texture. Typically, aluminum oxide, silicon carbide, or glass
beads, are used as abrasive particles. The particle size greatly affects the Material Removal
Rate (MRR) by controlling the kinetic energy [21]. Typical particle sizes range from 0.25
to 60 µm. The abrasive particles are controlled using a fluid, usually air (for Abrasive
Air Jet Machining, AAJM) or water (Abrasive Water Jet Machining, AWJM). The fluid is
compressed or pumped, propelling the abrasive particles through a nozzle. The abrasive
feeder supplies the required abrasive particles (Figure 3). The fluid–abrasive mixture
(called slurry when using water) is accelerated by flowing through the nozzle and strikes
the workpiece surface, chipping and eroding microparticles [8]. The fluid also cools the
workpiece down, removes the stagnant abrasive, and clears the debris from the working
area.

Figure 3. Schematics of the abrasive jet machining setup.

Depending on the desired geometry, roughness, and integrity of the machined features,
many variations of Abrasive Jet Machining (AJM) have been developed. The higher jet
viscosity in AWJM leads to many advantages over AAJM, such as better roughness, higher
accuracy, more homogeneous cooling, and the better cleaning of the workpiece.

Dispersing ferromagnetic particles in the slurry further enhances the jet’s viscosity and
stability in Magnetorheological Polishing (MRP). The jet, stabilized by magnets, is 20 times
more stable than the conventional slurry jet. This process is implemented for geometries
that are difficult to reach with the jet. Cryogenic-assisted abrasive jet machining is exploited
when machining low-hardness materials. The Material Removal Rate (MRR) of the process
is enhanced by heating the workpiece in thermally assisted abrasive jet machining.

These processes are applied for micro mold-die texturing applications with fea-
ture dimensions down to 10 µm-wide trenches [22] or textures with pockets as big as
50 microns [23]. The texturing process is conducted by masking the workpiece surface with
an erosion-resistant material. The mask itself defines the machinable size since the material
needs to withstand the erosion, and thus needs sufficient strength. Moreover, machining
smaller features require smaller abrasive particles that have less kinetic energy due to
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the low mass, resulting in a different material removal mechanism (i.e., plastic removal
mechanism). These conditions lead to lousy selectivity between the mask and the substrate,
making it difficult to machine 100 µm channels with an aspect ratio deeper than 2.5 [21].

3. Electrochemical Etching

Etching uses energy (i.e., chemical, electrical, thermal) to remove material from the
workpiece’s surface, creating a texture. In an etching process, the workpiece is not affected
by any mechanical contact. The texture is generated by masking selected areas and by
etching the unmasked portions of the surface. Different etching processes have been devel-
oped depending on the type of energy being used and the masking technique. Chemical,
electrical, ion, or combination of these energies can break the bonds of thin layers of the
exposed portion of a metal surface. The masking material should resist the etching unless
the energy could be focused only on selected areas. The substrate material should be
selected accordingly to the characteristics of the etching method, as some technologies are
limited to certain subset materials.

The resolution of the features that compose the texture depends strongly on the method
used to mask the surface. Depending on the printing method, texturing can also be applied
to surfaces with irregular shapes. Additionally, few restrictions are related to the shape and
distribution of the features that compose the surface texture [24].

3.1. Chemical Etching

Chemical etching, also known as wet etching or liquid etching, exploits chemical
energy for material removal. The etchant solution is selected according to the material
whose surface is being textured. The mask is attached to the surface, defining the geometry
of the texture. A chemical etching process involves the following steps (Figure 4):

1. Workpiece preparation and cleaning with an alkaline solution and water. Chem-
ical cleaning ensures proper adhesion of the maskant layer on the metal surface.
The solvent selection for the chemical cleaning depends on the maskant kind, the
workpiece material, the workpiece surface finish, and the required texture depth. A
proper surface cleaning prevents the debonding of the mask, which will result in stray
etching.

2. Masking of the workpiece to selectively cover specific areas of the surface. Different
masking techniques are available depending on the workpiece’s dimension, the
characteristic texture dimension, the required accuracy, and the etching depth. Cut
and peel off consists of applying an even coating and peeling off the marked areas.
Photochemical masking exploits a photoresist coating that is selectively developed
to mask and free certain areas and jet printing techniques, to name a few. As the
texture features dimensions shrink down to the microscale, photochemical masking
techniques are preferred (Zhang et al., 2016). This process guarantees a high texture
shape accuracy without being substantially affected by the pattern complexity. The
maskant material has to bond tightly to the workpiece surface and has to be resistant
to the etchant.

3. Immersion of the workpiece in the etchant bath. Besides the workpiece and maskant
materials, the etchant selection is usually driven by process factors, such as surface
finish and material removal rate and etchant availability, cost, and sustainability.

4. Etching of the unmasked areas. The etchant bath can be agitated and heated to increase
the material removal rate and uniformity. The material removal rate is typically low
and develops in two directions, downward—depth of cut—and laterally—undercut—
from the exposed surface (Figure 5). The ratio between the undercut and the depth
of cut is known as the “etch factor.” The etch parameter’s control is challenging and
requires a deep understanding of the process phenomena, especially when etching
texture with small features.

5. Workpiece chemical rinsing to remove the mask layer and etchant residues. At the
end of the process, the etchant is cleaned, and the mask has to be removed.
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6. Final workpiece rinsing. Finally, as the mask is removed, a final rinsing step with
clear water is carried out to remove any chemical used for etching or mask removal.

Figure 4. Process steps for a typical chemical etching process.

Figure 5. Bi-directional material removal, downward—depth of cut—and laterally—undercut—from
the exposed surface.

3.2. Electro-Chemical Machining

In Electro-Chemical Machining (ECM), the electrical energy is used to induce a chem-
ical reaction on the workpiece’s surface. The process exploits the principle of Faraday’s
laws of electrolysis. ECM follows a procedure similar to a chemical etching process, but the
chemical bath is substituted by an electrolytic cell. A small electric DC (Direct Current) po-
tential (5–25 V) is applied between the tool (cathode) and the workpiece (anode) immersed
in an electrolyte. The electrolyte usually consists of acid or basic salts diluted in a water
solution. The electric current generates the transfer of ions between the electrodes and the
workpiece. The metal surface (anode) is textured by removing atoms, which are released
into the solution as hydroxyl ions, thus forming metal hydroxides. These hydroxides, insol-
uble in water, quickly precipitate. The electrolyte solution is flown between the tool and
the workpiece to remove the reaction products, allowing higher texturing rates. Electrolyte
properties, such as pH, temperature, purity, and hydroxide concentration, are kept uniform
using filters and large settling tanks [19].

Surface texturing is realized by masking the workpiece with a non-conductive material
(Figure 6a). This process is also known as Through Mask Electrochemical Machining
(TMEM). Alternatively, the texture can be etched on the workpiece surface using a pre-
patterned cathode. This process is also known as Maskless Electro Chemical Machining
(MECM). The MRR (material removal rate) is mainly affected by the current density; hence
a smaller distance between the workpiece and the tool results in a higher MRR (Figure 6b).
Avoiding the masking step in MECM makes setup and processing easier. However, the
pre-patterned electrode requires a higher investment. When many parts have to be textured
with the same topography, MECM is preferred even because the cathode is not affected by
wear and can accurately machine the same texture over time [8].
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Figure 6. (a) Through mask electrochemical machining (b) maskless electro chemical machining
(c) jet ECMM.

In general, the machined textures’ accuracy is a function of tool or mask design, process
parameters such as voltage and electrolyte purity, material clearness (hard spots, inclusions,
and sand present some practical difficulties), and complexity of the desired structure shape.
The ECM process allows texturing at the microscale for both TMEM and MECM. TMEM
is at least a two-step process, requiring accurate surface masking. Depending on the
masking technology, free-form surfaces can be accurately masked and textured. Structures
with characteristic dimensions below the micron are possible. Masking often determines
the major costs of the texturing process. Avoiding the masking step, MECM results in
a faster and less expensive process. However, there are substantial limitations on the
workpiece surface shape, which are typically flat or cylindrical. Process variations have
been developed to enhance surface finish or achieve a higher aspect ratio (i.e., the ratio
between the depth and the width of a dimple). For instance, ultrasonic vibration-assisted
ECMM (Electro Chemical Micro Machining) and jet ECMM (Figure 6c) are established
variants that enhance the capabilities of conventional ECM [25].

The absence of direct contact between the tool and the workpiece, and the minimum
heat generated by the electrochemical reaction, results in a workpiece surface without
any thermal stress. The process can be automated, leading to processing efficiency and
competitive machining time.

3.3. Electric Discharge Machining

Electric Discharge Machining (EDM) is used to texture metal surfaces exploiting
electrical energy to etch the workpiece. A high potential is induced between the tool and
the workpiece to generate a spark. Whenever sparking takes place between two electrodes,
a small amount of material is removed from both sides. Multiple sparks are used to machine
the material generating the texture. In the EDM process, texturing is achieved either using a
pre-textured tool electrode or moving a flat electrode along the workpiece surface. The high
potential is created by a capacitor charged from a direct current source. As the capacitor’s
relaxation circuit (known as RC circuit) reaches the breakdown voltage, sparking takes place
at the point of least electrical resistance, which typically is the smallest inter-electrode gap
(IEG). The tool and the workpiece are submerged in a dielectric promoting the localization
of the spark energy, flushing the debris away, and cooling the electrodes.

The localized heat generated by the spark removes the material on the workpiece and
the tool. The dielectric fluid and the debris remove the heat. The thermoelectric process is
characterized by a short cycle time (the charge–discharge time is a few microseconds) and a
frequency as high as thousands of sparks per second [26]. The high energy concentrated in
a small area dramatically increases the local temperature causing melting and vaporization
of the material from both the electrodes. The generated heat vaporizes the dielectric present
in the interested area, increasing the local temperature (from 800 up to 20,000 ◦C) and
pressure (i.e., hundreds of atm). The high pressure prevents the electrode from vaporizing.
As the pulse is over, the pressure drops, and the superheated electrode material vaporizes.
The heat-affected zone is formed directly under the machined surface because of the high
temperatures reached during the process. The dielectric fluid increases the dielectric
strength, allowing the system to remain non-conductive until the breakdown voltage is
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reached. Moreover, it promotes minimum ionization time once the breakdown voltage is
reached (i.e., ignition delay time) and allows for deionization after the spark has occurred.

The material removal forms a crater on the spark’s area, exposing a new smallest IEG
to the upcoming spark. The sequence of multiple sparks results in the desired machined
texture, determined from tool geometry and processing considerations. The amount
of material eroded by every spark and the resulting surface finish both depend on the
spark energy, duration, and frequency. The volume of material removed per discharge is
typically in the range of 10−6–10−4 mm3. Typical MRR for the process is between 2 and
400 mm3/min, depending on geometrical and machining parameters. In general, higher
currents lead to larger craters, thus higher MRR but coarser surface finish (Figure 7a).
Conversely, higher frequencies divide the energy into many sparks, improving the surface
finish (Figure 7b) [27].

Figure 7. (a) Effect of current during sparking on surface finish, and (b) effect of frequency during
sparking on surface finish.

The material removal happens on both the tool and the workpiece. However, a good
selection of the tool material and the process parameters can limit the tool wear. The
choice of tool material is usually driven by properties such as machinability, low wear rate,
excellent electric properties, heat conductivity, cost, and availability [28]. Graphite and
copper electrodes are widely adopted because they are easy to machine by micro-milling.

The texture accuracy is related to the tool geometry and its wear, which are affected
by machining. For this reason, different tools and process parameters are used for the
roughing and the finishing phase, allowing a reduction of tool wear. The geometry of
the finishing tool has to match the required texture shape. Particular attention should be
directed to corners, where the electric field is stronger, leading to an undesired rounding
effect [29].

Flushing removes heat and debris from the IEG, thus avoiding damaging arcs in the
gap. Various techniques have been developed to clear the gap between the electrodes,
such as jet flushing, through flushing electrodes, alternating flushing, and ultrasonic tool
vibration. The dielectric fluid bath is circulated using filters and coolers to remove debris
and heat. Ineffective flushing causes low MRR, reduced geometrical accuracy, and worst
surface finish.

The smaller the texture generated using EDM, the higher accuracy is required for
process control. More stable pulse generators (e.g., relaxation type generators) are employed
to achieve precise energy output at a short pulse duration. The smaller energies involved
and an accurate gap control system allow a substantial reduction in IEG, lowering the
breakdown voltage and enabling better dimensional accuracy for the micro-machined
features. Moreover, for micro-scale features, tungsten is used for the tool, for its high
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melting point and tensile strength. However, copper and tungsten carbide were also
successfully used.

The minimum size for an EDM-machined texture is in the range of units of microme-
ters. However, to reach such accuracy and resolution, the tools and the setup should be
appropriately designed and manufactured. Moreover, the smaller the texture, the lower
the MRR [29].

4. Thermoelectric Engraving
4.1. Laser Texturing

Laser texturing exploits electromagnetic energy to melt and vaporize the material on
the surface, creating a texture. The LASER (Light Amplification by Stimulated Emission of
Radiation) source generates a monochromatic and coherent light beam (i.e., light waves
with the same wavelength and phase). The laser beam typically shows low divergence (i.e.,
it can travel for long distances), thus allowing relatively long optical paths. The Laser light
properties allow light focusing on small spots with high irradiance, which is decisive for
engraving operations.

The wavelength of commonly used laser systems is between 0.2 and 11 µm (Ruby
= 0.7 µm, Nd:YAG = 1.0 µm, CO = 2.7 µm, CO2 = 10.6 µm, and Ti:Sapphire = 0.78 µm).
Depending on the gain medium being used, two types of lasers can be found: solid-state
lasers and gas lasers. Typically, gas lasers can reach higher powers. Indeed, industrial
lasers can also be divided into continuous-wave lasers and pulsed lasers. Continuous-wave
lasers are used for welding or surface hardening, which requires an uninterrupted supply
of energy for a full thermal process. Pulsed lasers are preferable for machining purposes
because the controlled pulse energy can enhance the MRR containing the extension of the
Heat-Affected Zone (HAZ). Shorter pulse durations lead to smaller HAZ, but typically
lasers with short pulse duration are substantially more expensive. The successful formation
of a texture requires the evaluation of the interactions between the substrate material and
the laser. Laser processes are mostly established for conventional mold materials, such
as steel and aluminum. However, the texturing processes for a specific material require
application-specific optimization of the process parameters [30].

4.1.1. Laser Writing

Laser writing uses the entire laser beam spot size to ablate and texture the surface of
the workpiece. The light irradiation is focused on the metal surface, melting and vaporizing
the metal in controlled areas. The heat generated by the laser beam creates a Heat-Affected
Zone (HAZ), which could have micro-cracks or nano-bubbles, depending on the processing
parameters. The minimum texture size that can be machined depends on the laser beam
divergence, which is a function of the laser light quality. For some applications, a laser
spot diameter—and consequently feature dimensions—of some tens of micrometers can
be machined [31]. In a laser writing process, either the laser source or the workpiece can
be moved using a CNC system to texture a complex surface. Typically, the industrial
machining systems combine beam control and workpiece control to maximize the texturing
area and the accessibility of the laser beam into the workpiece surfaces. Indeed, for complex
three-dimensional geometries, texturing might not be possible for areas that are not optically
accessible, or for areas on which the laser beam cannot be properly focused.

Fiber laser systems exploit a glass fiber to deliver the laser light from the resonant cham-
ber to the optical head. This laser allows for smaller and more compact laser equipment,
which guarantees increased flexibility for moving the optical head around the workpiece.
When using a fiber laser, the workpiece is set in the moving stage to increase the machining
degrees of freedom. The laser beam’s high stability and flexible configuration allow textur-
ing of complex geometries with good accuracy and precision. High-aspect ratio dimples
(i.e., blind holes) are the most common texture machined by laser writing. However, many
different textures can be produced, with the main limitation being the minimum laser spot
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size. The texturing speed is limited by the need to ablate individual features using the laser
beam directly.

4.1.2. Through Mask Laser Texturing

Through mask laser texturing guarantees higher productivity than direct writing by
interposing a mask between the laser beam and the focus region. Along the laser path, the
irradiance (power per unit area) or the fluence (energy for units of area) is weaker than
in the focus area; thus, the mask is not damaged by the laser. The beam is homogenized
before hitting the mask to flatten the laser beam’s Gaussian energy profile, allowing for
homogenous texturing (Figure 8). The laser beam’s low divergence allows for the accurate
projection of the shapes of the mask onto the workpiece surface. Texturing is obtained by
the selective irradiation of the workpiece surface, which results in selective ablation [32].

Figure 8. Working principle of through mask laser texturing.

Patterns characterized by various shapes can be engraved with this technique. How-
ever, limitations on the minimum size achievable should be taken into consideration.
Indeed, the minimum size of the structures has to be higher than the laser light wavelength
to avoid diffraction effects. In general, features as big as few microns can be machined
using through mask laser texturing.

4.1.3. Ultrafast Laser Texturing

Ultrafast texturing is a recent development in laser technologies, which has many
peculiarities and allows machining of different textures. Ultrafast lasers are pulsed lasers
characterized by a duration as small as units of femtoseconds and frequency ranging
between one to several hundreds of kHz. Ultrafast laser systems are characterized by low
power characteristics (i.e., units of Watts); however, the use of high power light pulses
allows for the high values of energy being focused on the workpiece surface. In general,
pulse powers exceed the gigawatts range (Figure 9a).

Figure 9. (a) Pulsing power typical shape and (b) the representation of the ultrafast texturing process.

The extremely powerful pulses have a complex interaction with the workpiece sur-
face that results in various types of textures [33]. The textures obtained using this laser
texturing approach are commonly referred to as Laser-Induced Periodic Surface Structures
(LIPSS) [33]. The high power ablates the material, which absorbs most of the energy de-
livered to the surface, limiting the HAZ dimension. Indeed, a thin layer (approximately 1
micron) of the bulk material is affected by the texturing process.
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Ultrafast laser texturing exploits the complex interaction between the light pulse and
the workpiece surface to machine textures with features that can be much smaller than the
laser spot size and even smaller than the laser light wavelength [34]. The laser pulsing on
the workpiece leaves a fingerprint of its nature in the form of a texture (Figure 9b). The
generated textured is typically characterized by ripple-like structures, which geometry
and regularity is typically characterized using a combination of Atomic Force Microscope
(AFM) and Scanning Electron Microscope (SEM) [35]. The ablation mechanism involves
the interference between the laser wavelength and the surface-associated wave. Ultrafast
texturing is a complex phenomenon that occurs for a narrow range of laser fluence. The
ablation threshold is specific for each material and should be controlled and identified
for the designed optical setup [36]. The texturing process is affected by the characteristics
of the beam and the process parameters. The textures’ main characteristics that can be
controlled are features dimensions, shape, pitch distance, directionality, and regularity. The
typical sizes of the structures range from several tens of nanometers to hundreds of microns.
The structures’ size is strongly linked to the energy delivered to the surface (i.e., fluence)
and the light wavelength. In particular, shorter wavelengths typically lead to smaller
textures. For LIPSS structures, the pitch and directionality of the pattern are controlled
by the polarization and the wavelength of the laser beam [37]. Good homogeneity of the
texture can be obtained by optimizing the surface scanning parameters [38].

4.1.4. Direct Laser Interface Patterning (DLIP)

Direct Laser Interference Patterning (DLIP) exploits two or more laser beams to create
an interference pattern on the workpiece surface, which ablates the workpiece surface,
creating a texture. The development of small optical heads offers the possibility to process
planar surfaces and complex three-dimensional products. The primary beam is split into
two or more beams using beam splitters. Each generated beam is then sized and shaped to
achieve the desired intensity (Figure 10). DLIP does not require focusing on the workpiece
since the energy is sharpened in the desired areas by the interference field. The number of
the interfering laser beams and their intercepting angle determine the shape and the spatial
period of the intensity distribution pattern on the workpiece. The interference field results
in high-temperature gradients, which ablate the material, producing a surface pattern.

Figure 10. Schematic diagram of the DLIP process setup.

DLIP can produce tiny textures, which can have the size of the laser beam wavelength.
A large variety of pattern geometries can be engraved by tailoring the interference pattern
as a function of the number of beams and their properties (e.g., polarization, intensity).
With the use of ultrafast laser, hierarchical patterns can be machined with high control
over the pitch. Hierarchical patterns are textures that present two or more patterns one
over the other. The laser beam interference field machines the structures with the bigger
pitch. Patterns with smaller pitch are obtained exploiting the phenomena discussed for the
ultrafast laser patterning [39].

4.2. High-Energy Beam Machining

High-energy beam machining exploits different beam energies to melt and vaporize
the workpiece with high accuracy and precision. The technologies described in this section
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are considered advanced manufacturing technologies and are implemented for high-end
applications requiring high machining accuracy at the submicron scale. The MRR of these
technologies is very low, and the equipment cost is high. However, high-energy beams can
be used to texture hard materials at a submicron scale [25]. The techniques differ by the
beam medium exploited: electrons or ions. Since the machining process needs to be in a
high vacuum environment, the workpiece dimensions are typically limited to the vacuum
chamber’s size.

4.2.1. Electron Beam Machining

Electron Beam Machining (EBM) is a machining process that exploits high-velocity
electrons to melt and vaporize the metallic workpiece surface. The electron gun utilizes
high voltages from 50 to 200 kV to accelerate the particles to 50–80% of light’s speed. The
process requires a high-vacuum environment to avoid any interaction with the electron
beam. The electron beam is generated from the cathode and is energized by passing through
the anode. The beam is then shaped and focused by the diaphragm, the magnetic lens,
and the deflection coils. When the beam hits the workpiece, high temperatures are reached
on the surface, and the material melts and vaporizes. The high vacuum pump system
continuously evacuates the generated debris. The electron beam can be accurately focused
onto the workpiece surface, allowing to machine feature down to tens of nanometers. The
MRR of this process is very low, up to 1 mm3/min [19].

4.2.2. Focused Ion-Beam Machining

The Focused Ion-Beam Machining (FIBM) process exploits ions as the beam medium.
The process functions are similar to the EBM process. The ions are typically extracted
from a gallium (Ga) source using extraction electrodes [40]. The condenser lenses and the
objective lens shape and focus the beam on the workpiece surface. The selection of the
beam diameter and the probe current is mechanically ensured by the ion current selection
apertures and measured by the Faraday cup. The beam astigmatism is corrected using the
stigmation octupoles. Ultimately, the objective lenses focus the ions on a small and precise
spot on the surface. The beam current profile on the workpiece determines the machining
accuracy and precision [41]—generally, the smaller the beam diameter, the tighter the
resolution. However, the beam spot size is limited by the chromatic aberration resulting
from the ion source’s energy spread. The ion beam can be focused on tiny spots, down
to 10 nm. The MRR can be enhanced by tilting the ion beam to the surface. The effect of
changing the incidence angle is a higher momentum transfer between the ions and the
workpiece surface atoms, resulting in more ejected particles. As anticipated, the MRR is
low—down to 0.1 mm3/min—and can be more economical for hardened steels [42].

5. Additive Manufacturing
5.1. Lithography

Lithography-based processes exploit masks to create a texture on a photosensitive
material by selective irradiation. The resist material (often an organic polymer) is deposited
over a substrate (usually silicon) and then irradiated (step 1, Figure 11) using a mask
with the desired pattern. The irradiated photosensitive material changes its properties
(Step 2, Figure 11). Depending on the deposited material’s chemical nature, it can either
be destroyed or hardened by irradiation. The irradiation causes crosslinking for negative
resists and bond breaking for positive resists. The unexposed (for negative resists) or the
exposed (for positive ones) areas are removed with this mechanism. The photoresist that is
not cured is removed using a solvent (Step 3, Figure 11). A developer and a suitable solvent
are finally utilized to develop the resist pattern [43]. Depending on the pattern’s required
resolution, different lithography processes can be completed using varying irradiation
sources (UV light, X-rays, ions, or electrons). The resist pattern is then used as a mask. The
etching of the substrate’s exposed areas, or through metal deposition of a new layer, creates
a textured surface. The lithography process was initially developed for the electronics
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industry. However, it has recently been adopted for more applications, such as the texturing
of plastics manufacturing tools.

Figure 11. Working principle for lithography techniques.

The lithography process’s resolution is mainly affected by the incident irradiation and
can vary from 100 to 102 nanometers. For example, for optical lithography (photolithog-
raphy) applications, the resolution is linked to the light wavelength and is limited by the
diffraction limit of the light (i.e., about half of the wavelength). For this reason, light sources
with shorter wavelengths, from UV light to X-rays, were used to improve accuracy. The
resolution of UV lithography (i.e., several hundreds of nanometers) can be enhanced to
nearly a hundred of nanometers using Deep Ultraviolet Lithography (DUV lithography),
or to a few tens of nanometers with X-ray lithography [44]. However, expensive optics and
resist materials are required when using shorter wavelengths, leading to higher processing
costs. Despite the high investment costs for a photolithography facility (reported to be
around $30 MLN), it is a well-established technique for large-scale production due to its
high throughput. New optical systems are being developed to achieve sub-wavelength
patterning resolution.

Other techniques were developed to overcome the resolution limitations of optical
lithography using electron irradiation (Electron Beam Lithography, EBL), or ion irradiation
(Focused Ion Beam Lithography, FIB). The resolution of these technologies can be as low
as 101 nanometers; however, the throughput is limited. Compared to UV lithography,
the pattern can be directly machined on the surface workpiece without a mask. The low
performance of EBL and FIB limits their application for large-scale production. However,
they are still used for the nanofabrication of plastic injection molding tools, which might
require tiny features [45].

5.2. LIGA

The LIGA process (German acronym for Lithographie, Galvanoformung, Abformung,
which can be translated as Lithography, Electroplating, and Molding) is a process used for
the manufacturing of textured substrates. The technique allows the fabrication of high-
aspect-ratio (up to 100:1) nano-features. The process was developed at the now-called IMT
(Institute for Microstructure Technology) in the late 1980s. The process consists of several
steps (Figure 12), namely (1) surface irradiation, (2) the development of a pattern through
X-ray lithography, (3) electroplating the pattern to obtain a metal (for example, nickel)
nano-structured mold tool, and (4) molding through the embossing or injection molding
of a thermoplastic resin (5) to mass-manufacture textured parts (6). The dimensional
resolution of the process is mainly linked to the X-ray lithography process. High values
of the aspect ratio for the structures are achieved by introducing a working mask [46].
Fabricating the working mask is more expensive because it introduces several more steps
to the process. The working mask is made by lithography and gold electroplating. The
high thickness (e.g., 25 µm) of the electroplated gold layer enhances the X-ray absorption
of the mask, allowing the development of high aspect ratio microstructures (HARMs). The
textures generated using LIGA are characterized by high parallelism of the side walls,
which, combined with the aspect ratio, can lead to ejection problems when molding [4].
However, it is possible to add draft angles to the structures’ sidewalls using oblique X-ray
exposures of the photoresists. Draft angles of 3◦ were successfully manufactured [47]. It
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should be mentioned that this technique has the undesirable effect of reducing the nickel’s
strength and hardness by a factor of approximately 2. Alloys with higher temperature
properties are introduced when using this technique to substitute nickel [47].

Figure 12. LIGA technique working principle and manufacturing steps.

5.3. Maskless Additive Manufacturing

Additive Manufacturing (AM) technologies are used to texture plastic manufacturing
tools. AM of metals exploits the thermal energy, delivered by a laser beam, to locally melt a
metallic powder. The two leading AM technologies for manufacturing textured surfaces
are Selective Laser Melting (SLM) and Direct Energy Deposition (DED). Both processes
melt the powder onto a substrate to form the AM part layer by layer. The two methods
differ due to the powder depositing mechanism. SLM is a sequenced process: the powder
is firstly spread over the surface (Step 1, Figure 13a); secondly, the layer is printed by
scanning the newly formed powder surface (Step 2, Figure 13a), then the substrate steps
down to allow the subsequent powder layer deposition (Step 3, Figure 13a). At the end of
the process, the fresh powder is removed [48]. Conversely, DED exploits a constant powder
funnel sprayed on the workpiece surface (Figure 13b). During printing, the laser selectively
melts the powder provided by the nozzle.

Figure 13. Working principles for (a) Selective Laser Melting (SLM) and (b) Direct Energy Deposition
(DED).
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The most commonly used material for these AM technologies is stainless steel (AISI
316 L) [49]. The powder particle size is typically in the micrometers range. In general, the
smaller the particle is, the finer the surface finish will be. However, the use of fine powder
leads to worse melting behavior, resulting in structural defects, such as pores and voids.

The microstructures achieved by powder melting typically show low tribological and
mechanical properties due to defects and voids. A thermo-chemical method can be used
to enhance the structural properties of the texture. By plasma nitriding of 316L stainless
steel S-phase and CrN, a compound layer can be formed on the surface. Plasma nitriding
does not only change the surface chemistry of the material, but it also creates a hard
ceramic-based nitride layer on the surface, called the compound layer. While the steel
lattice is modified, surface textures geometries are minimally affected by the treatment.
However, treated textures show higher surface roughness. The compound layer of nitrided
samples can show high shear resistance, sometimes doubling the hardness with respect to
the untreated textured tool [50].

Micrometer and sub-micrometer textures with unique geometries can be obtained us-
ing AM technologies. SLM can achieve finer texture geometries, down to about 100 µm [49].
As the pattern dimension reduces, finer particles have to be used, and the powder evac-
uation at the end of the process may become complicated. DED can be used to create
texture on complex geometries, by direct deposition and sintering of the particles. A careful
process parameter optimization must be conducted to improve the structure accuracy and
mechanical resistance while containing the printing time. Laser power, powder flow rate,
and printing patterns are the key parameters that need optimization. By reading the current
melt temperature, laser heads equipped with adaptive process control (APC) can actively
tailor the laser power to uniformly build the structures. The APC consists of a CCD camera
to monitor the melt temperature for a close-loop feedback system on the laser power [51].

5.4. 3D Printed Soft Tooling

The commercial metal printing processes presented above are characterized by resolu-
tion limitations for texturing applications. When considering polymer-based 3D printing
technologies, they can be split into two groups: (1) print methods which share resolution
limits with metal counterparts and (2) processes with acceptable resolution, but insufficient
material properties [52]. Selective laser sintering (SLS) and multi-jet fusion (MJF) are exam-
ples of polymer-based additive manufacturing technologies characterized by resolution
limitations similar to Electron Beam Melting and Direct Metal Laser Sintering. Indeed,
surface roughness can be challenging as typical particle sizes range from 15–150 µm [53].
Resolution challenges also limit the utilization of fused deposition modeling (FDM) for
texturing. In fact, the print stratification effects and minimum resolution are both a function
of the filament diameter deposited by the printer, often limited to a minimum resolution of
100 µm [54]. Moreover, the filament deposition leaves voids between passes, which yields
compression strength below the requirements for injection mold tooling.

For systems which do exhibit acceptable process resolution, resin properties are often
the challenge when considering molding applications. VAT photopolymerization processes
show promise in terms of resolution with laser-based Stereolitography (SLA) systems
and Digital Light Processing (DLP)-based SLA systems reporting minimum features of
76 [55] and 35 µm [56], respectively. For SLA processes, engineering resins have been
developed, and some materials have heat deflection temperature (HDT) and flexural
modulus properties suitable for molding applications. Zhang et al. demonstrated the
production of a mold insert with micro features using a high-temperature resin in a DLP
process, achieving successful replication for about 80 cycles [57].

6. Advantages and Limitations

Many techniques have been developed to address the texturing needs of a large
variety of stakeholders. Mechanical machining, electro-chemical etching, thermo-electric,
and additive processes have been applied in different fields due to their unique advantages.
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The selection of the most appropriate texturing process depends on the application and
requires combining different engineering skills in materials, manufacturing processes,
product design, quality control, and more. The texturing of a plastic product affects the
customer perception, and thus changes its market value. The successful manufacturing of
a textured product requires a deep understanding of the different texturing technologies.
In this section, the comparison of the advantages and disadvantages is presented to allow
engineers and designers to select the most appropriate and effective technology.

6.1. Geometric Texture Parameters

The most critical parameter to consider when selecting a texturing technology is the
dimensions of the surface features. Different scale features within the texture result in a
wide range of diverse functionalities. Depending on the desired product properties, texture
dimensions can range from millimeters (10−3 m) to nanometers (10−9 m). The successful
manufacturing of textures at different scales requires considering different technologies.
In fact, not all texturing technologies can be used to manufacture a specific scale texture.
However, each technology is characterized by its dimensional range.

Textures are also categorized as random and patterns. The former refers to surface
features that are not regularly disposed over the product surface. The latter defines textures
that have specific features orientation, location, and reciprocal distance. The ability to
generate an accurate pattern rather than random structures is a specific characteristic of the
different texturing technologies. The characterization methods for the two types are also
different. The topography of random textures is well characterized using surface roughness
values. Instead, regular patterns require more accurate and broad characterization, which
might require the quality analysis of individual features. In general, patterns tend to be
bigger than random textures because of the need for regularity and the more stringent
quality criteria.

Different geometrical parameters can be defined to describe a texture [1]. The most
important are:

• The spatial pitch of the pattern, i.e., the distance between consecutive features.
• The features’ cross-section geometry, such as their diameter or width.
• The feature height or depth, i.e., the distance from the substrate to the top or bottom

of the features.
• The aspect ratio, i.e., the ratio between the feature height or depth and its width.

Among all dimensional parameters, the aspect ratio of the texture is the most sig-
nificant when considering the manufacturing of a textured plastic product. For most
applications, aspect ratio correlates with surface functionality, thus being crucial for se-
lecting and comparing texturing technologies. The aspect ratio is one of the most critical
texturing characteristics and constitutes a manufacturing constraint in applying the specific
texturing technology to a broader range of applications [1].

The feature geometries can be divided into two main categories: finite and infinite
geometries. Finite geometries are defined by distinct features that all have dimensions
in the same order of magnitude. Examples are distinct pillars, holes, bumps, and more
(Figure 14a). Infinite geometries are texture features characterized by a dimension being
substantially larger than the others (Figure 14b).

Figure 14. Schematic of (a) finite geometries pattern and (b) infinite geometries pattern.
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Some texturing technologies can allow the manufacturing of hierarchical surface
features. Hierarchical textures are characterized by overlapping two textures, one on the
other (Figure 15) [58]. This type of texture allows different product functionalities due to
the presence of features at different scales. Typically, the larger and smaller features have
dimensions in different orders of magnitude.

Figure 15. Schematic of (a) a texture with structures of the same order of magnitude and (b) of a
hierarchical texture.

The functionality of a textured surface is inherently linked to its quality. Quality
criteria for textures include features, shape, dimensional, and positioning accuracy. Shape
accuracy is typically limited by the presence of burrs, undercuts, and recasts. Even if such
defects do not compromise the texture, they increase the “noise” on the surface. The “noise”
is usually only qualitatively addressed, since the standard surface roughness parameters
(e.g., Ra or Sa) are not affected by the noise level.

6.2. Process Texturing Capabilities

The ideal texturing technology should accurately manufacture the desired surface
features onto a large 3D free-form surface, for any material, in a reduced number of steps
and at a low cost. Such texturing technology does not exist, and the appropriate technology
must be identified among the many available. However, the definition of the ideal texturing
method allows the outlining of a texturing process’s capabilities. In general, four main
classes of requirements can be identified:

1. Texture scale—the overall dimension of the desired features has to be defined in
agreement with the different texturing technologies’ capabilities and limitations;

2. Geometrical flexibility—the texturing technology property of generating features on
surfaces with different complexity, from planar to three-dimensional to free-form
needs to be considered;

3. Process–property relation—the ability to create specific texture features on the selected
material needs to be evaluated. Then, the damage produced during processing should
be considered;

4. Economics—different texturing technologies are characterized by significantly differ-
ent costs but they also offer different possibilities.

6.3. Achievable Shapes and Dimensions

The main parameter that has to be considered when selecting the texturing technology
for a specific application is the texture dimensions. Most texturing technologies are capable
of generating surface features within a particular dimensional range. For example, aesthetic
functionalities are typically realized with millimeter range features (e.g., using chemical-
etching), while functional textures are in the micrometer range (e.g., using LIGA). Thus,
the application would require selecting different texturing technologies and consideration
of different processing-related issues. The texturing technology is also defined as the
shape of the designed features, controlled mainly by the presence or absence of a mask
in the process. Through-mask processes are used to accurately control the features’ cross-
section, while the height/depth is controlled by removing the unmasked material. This
approach results in vertical sidewalls, which have no draft angles. For this reason, these
structures are commonly referred to as 2.5-dimensional. The main characteristic of this type
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of structure is its aspect ratio [59]. Conversely, maskless processes allow the generation of
fully three-dimensional textures.

• Micro-milling technologies are used to machine three-dimensional textures with fea-
tures that may be as small as 10 microns with aspect ratio of 3:4 [10]. The CNC control
guarantees high shape consistency (i.e., the capability to produce the same shape)
across the texture. However, the shape accuracy (i.e., the capability of producing the
desired shape) is affected by the material grain size and the presence of burrs. The
latter is very difficult to remove at the micro-scale. The machining of smaller grain
size steel showed much higher shape accuracies [60]. Process modifications, such as
diamond tool micro-milling or ultrasonic-assisted machining, were introduced to limit
burrs formation.

• In the AJM process, the mask defines the minimum feature dimension, typically in the
order of 100 µm. The mask material has to be tough enough to withstand the erosion
of the abrasive jet. Aspect ratios for this process are usually low (around 0.5). The
shape accuracy can be enhanced by choosing different abrasive particles. The size, the
shape, and the material hardness of the abrasive have a substantial effect on the shape
accuracy [21]. Smaller particles with few sharp edges and relatively low hardness can
produce better textures.

• A large variety of structure shapes can be obtained using µEDM with dimensions
down to tenths of microns. The aspect ratio is mainly constrained by the flushing
efficiency [26] and the maximum values are about 2. Indeed, flushing is increasingly
challenging for a higher aspect ratio, and the adequate electrical conditions for the
spark may not be reached. Flushing can also affect the stability of slender electrodes
when the flushing velocity is increased. The feature shape accuracy is mainly linked
to the spark crater and tool wear, which can be minimized by reducing the spark
energy. Tool wear is avoided in ECMM, resulting in higher texture consistency. The
machinable features and aspect ratios are comparable to µEDM for the conventional
process, and they depend on process parameters like voltage and electrolyte purity.
Ultrasound-assisted ECMM was introduced to push the feature dimensions down to
1 µm and the aspect ratio to 3 [29]. The tool vibration enhances the electrolyte flushing
and heat removal.

• Masked processes, such as TMECM or chemical etching, are used to manufacture
2.5-dimensional textures. The achievable aspect ratio is about 1, but textures with
lower aspect ratios are usually machined with these processes. The electrolyte or the
etchant is flushed over the surface to maintain a homogenous material ablation and
obtain better structure consistency throughout the entire surface. In both processes,
etching can create undesired undercuts by removing material under the mask. Hence,
larger masks are used to consider this effect.

• Laser-based technologies generate different features based on how the beam light is
delivered and focused on the surface. In laser writing, a large variety of features as
small as 20 µm can be obtained, with an aspect ratio up to 3 [31]. The interference
phenomena that characterize ultrafast laser texturing and DLIP result in smaller
feature dimensions, down to 100 nanometers. For these technologies, the texture
dimensions depend on the light properties (i.e., wavelength) and process conditions
(i.e., irradiance and scanning speed). The upper limit on feature size is around 100 µm
for LIPSS obtained using ultrafast laser texturing and 500 µm for DLIP [39]. The
shapes obtained with these technologies are limited due to the tight correlation with
laser light properties, such as polarization and wavelength. Ultrafast laser texturing
and DLIP can be used to generate hierarchical textures. The primary shape defects of
laser-based texturing technologies are recasts around the engraved area and thermal
micro-cracks. As a consequence, texture consistency and shape accuracy are the main
challenges.

• When a mask is used for laser texturing, the minimum feature dimension is constrained
by the diffraction effects when the laser light crosses the mask. Features dimensions
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as small as 5 µm can be engraved with aspect ratios smaller than 0.5. The texture
consistency along the surface is typically high but the shape accuracy is limited by
recast and thermal micro-cracks. High-energy beam techniques are used to generate
three-dimensional structures with small dimensions (i.e., down to 100 nm for FIBM)
with aspect ratio not bigger than 1. The machined features are typically accurate and
precise.

• A wide range of three-dimensional surface features with dimensions as small as
100 µm can be manufactured using additive manufacturing technologies. DED’s
working principle makes the achievable features bigger and less accurate than those
obtained using SLM. SLM offers the possibility of achieving higher aspect ratios (i.e.,
up to 4 for SLM and up to 2 for DED). The minimum feature dimensions and the
shape accuracy are affected by the powder particle dimensions, which are typically
not smaller than a few tens of microns [49]. Typical defects are the bridging between
different surface features, balling, non-evacuated powders, or internal voids.

• Lithographic techniques manufacture 2.5-dimensional features with high aspect ratios,
with dimensions as small as few nanometres. Simple three-dimensional features can
be manufactured using the LIGA technique. However, features cannot be smaller than
500 nm. These techniques result in textures characterized by high consistency and
accuracy.

6.4. Geometrical Flexibility

The texturing of plastic products and manufacturing tools often requires the genera-
tion of surface features on three-dimensional geometries. Textures have been successfully
applied to surfaces of various shapes, from simple flat to hard-to-reach surfaces. The selec-
tion of the most appropriate texturing technology requires understanding the geometrical
flexibility of the different working principles. The most crucial factor to consider is the
need for a mask; mask-assisted processes are more challenging to implement for complex
shapes.

• In mechanical machining technologies, tool movements are CNC controlled along
multiple axes. Thus, the equipment is highly flexible and can be used to texture
complex surfaces. However, milling-based technologies are limited by the length-
to-diameter ratio of the cutting tool [10,15]. Abrasive jet machining is more flexible
when texturing hard-to-approach areas, as the jet can be optimized to travel a longer
distance on the workpiece [21]. However, the generation of regular patterns requires
a mask, limiting the ability to work on complex free-form surfaces. In comparison,
abrasive jet machining can be used to obtain random textures on complex products.

• The use of a mask introduces geometrical limitations for electrochemical etching
processes, such as chemical etching and through mask electro-chemical machining.
Maskless technologies can be used for more complex geometries, such as micro electro-
discharge machining and electrochemical micromachining. These processes can exploit
simple shape tools or pre-patterned ones to texture different workpiece geometries [8].
In this case, the effective flush of the debris from the working area is crucial, which
defines the limits for geometrical complexity.

• Laser-based thermo-electric engraving technologies allow good geometrical flexibility.
Laser writing is the most flexible technology among the four laser-related technologies
considered since the optical head is mounted on a five-axis CNC machine. When
using an ultrafast pulsed laser, issues related to beam handling reduce the flexibility
for ULT and DLIP. These technologies cannot exploit CNC machines because of the
high pulse power. Hence, they use mirror systems to redirect the laser beam to specific
surface locations. However, the need to deliver an unchanged laser beam to the
workpiece surface makes this approach complex and limited. Indeed, ultrafast pulsed
laser technologies exploit the laser beam’s light wave characteristics not just thermal
energy. Similarly, high-energy beam machining techniques (i.e., EBM and FIBM)
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require advanced equipment to handle the beam, limiting the workpiece dimension
and allowing the texturing of 2D surfaces only.

• Lithography and LIGA technologies allow texturing of planar surfaces only. Addi-
tive manufacturing texturing technologies have higher flexibility. For example, DED
nozzles are often mounted on multi-axis CNC machines. However, substantial limita-
tions should be considered for concave geometries’ texturing, due to the dimensions
of the nozzle and the short powder jet length. The SLM process allows texturing
free-form surfaces only when the product and the texture are realized in the same
process. However, the processing times can be very long. Conversely, if SLM is used
to texture an existing product, only planar surfaces are allowed but the texturing time
is significantly shorter.

6.5. Material–Process Relationship

The generation of surface features on the workpiece can lead to material modifications
at the surface. The type and entity of these changes depend on the relationship between the
selected material and the texturing technology being used. Selecting the most appropriate
texturing technology requires understanding the thermal and chemical modifications at the
interface. The effects of texturing on the material properties are discussed considering the
main types of defects, namely mechanical stresses, chemical modifications, the heat-affected
zone, oxidation, porosities, and inclusions.

• Textures obtained with mechanical machining processes are characterized by residual
stresses, affecting the texture strength and wear resistance. The tool contact creates
these defects as a result of the ablation and material removal. Textures can be micro-
milled on a wide range of materials, and the quality is mainly affected by the grain
size. The edge radius of cutting tools can be as small as the grain size, and machining
instabilities can occur. Hence, for high-accuracy applications, materials with finer
grain size are preferred. Similar phenomena are also crucial in abrasive jet machining,
in which the particle size, shape, and hardness, are selected to avoid the inclusion of
particles inside the workpiece.

• Electro-chemical etching techniques result in stress-free textures. However, selecting
the appropriate etchant for a specific substrate material is crucial to avoid chemical
damage to the workpiece surface. The chemical modifications of the exposed surface
are evident even after rinsing, but they are a concern only for a specific application
(e.g., clean room tools). The chemical modifications of the surface are minor with
ECMM. However, if inclusions characterize the metal substrate, those can affect the
resulting properties.

• In the EDM process, the texture is generated by thermal phenomena, such as localized
melting and vaporization. Thermal stresses on a superficial layer characterize textures
obtained with this technology. However, structure and crystallinity can be modified
further down in the workpiece, thus defining the Heat-Affected Zone (HAZ). Thermo-
electric processes are always characterized by the presence of a HAZ on the textured
surface.

• Laser-based texturing technologies typically show thermal micro-cracks and recasts.
The fast cooling of the melted material over the surface that is not ablated produces
micro-cracks. The condensation of vaporized material over the surface produces the
recasts. Pulsed lasers were introduced to reduce the HAZ and enhance machining
accuracy. Ultrafast pulsed laser processing is defined as a “cold process” because
the HAZ can be neglected. However, surface oxidation can be a problem with these
technologies. The HAZ is also minimal for high-energy beam machining, but EBM
and FIBM are executed in a vacuum environment to avoid oxidation.

• Additive manufacturing texturing can only be carried out with materials that are not
prone to oxidation, such as stainless steel. The oxidizing of the powders ultimately
compromises the texturing process. Residual thermal stresses, micro-cracks, and
internal porosities are the most common defects of this process. Porosities, inclusions,
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and residual stresses are common in the LIGA process because of the electroplating
with nickel.

6.6. Economics

The product market value and the texturing methodology determine the economics
of texturing applications. The impact of texturing on a commercial product value is not
related to the engineering manufacturing aspects. However, the texturing costs can be
associated with the following:

1. Cost of the materials needed to generate the texture (e.g., metal powder for an SLS
process or nickel for LIGA);

2. Cost of the equipment and auxiliary needed for a specific texturing technology;
3. Cost associated with the texture generation (e.g., required to operate an EDM machine

or consumable used in a chemical-etching process);
4. Quality control and characterization costs (e.g., access to advanced microscopy equip-

ment to characterize a directly laser-written texture).

The different texturing technologies have different characteristics, which need to be
analyzed separately. The desired texture eventually determines the comparison of the
economics of different products. However, some major economical parameters for each
technological group are described below:

• Mechanical machining texturing uses specific multi-axis CNC machines with high-
spindle speeds, a rigid structure, and a temperature-controlled environment. Ma-
chining tools typically have a short life due to high machining speeds and small
tool dimensions. Harder tools (e.g., coated or diamond tools) are often exploited to
decrease the tool wear despite the higher cost. Moreover, micro-milling tools are
significantly more expensive (i.e., up to 10 times higher) than conventional ones. The
machining process is characterized by low MMR and so low texturing speed. The
latter depends on the material hardness, texture complexity, and workpiece geometry.
Overall, the costs are mitigated by the short setup time and the near-net-shape that are
typically manufactured. These processes are characterized by high energy efficiency
and a low environmental footprint. The primary ecologic concern is the lubricant,
typically filtered and recirculated by the machine, but it must be correctly disposed of
at the end of life.

• Multiple steps and low MMR characterize electrochemical etching. However, the
economics are mitigated by the ability to create textures on large areas. The need
for chemical solvents makes the operation costs higher, as specific health and safety
procedures need to be implemented. In ECMM, multiple-axis CNC machines are
used, resulting in higher MMR. Moreover, the lack of contact between the tool and
the workpiece reduces the tooling wear and costs. During processing, handling,
and disposal of electrolytes has to be considered. However, it is less hazardous for
operators and the environment compared to chemical etchants. µEDM is a net-shape
texturing technology, but the manufacturing of small and low surface finish textures
requires small spark energy that leads to low MMR. Increased throughput is achieved
with multiple roughing passes before finishing. With this strategy, the depth of the
craters obtained with roughing might limit the achievable surface finish.

• Laser-based texturing is controlled using multiple-axis CNC machines. The equipment
cost is high for ultrafast lasers, especially for femtosecond laser sources which require
moving lenses to create complex optical paths. Texturing speed varies significantly
with specific laser technologies. Masked-laser texturing has higher throughput than
laser writing due to its ability to manufacture larger areas. Ultrafast laser texturing and
DLIP exhibit excellent texturing speed, considering the achievable texture dimensions
(from 10−2 to 102 µm). Laser texturing is an environmentally sound technology that
does not require handling any hazardous substance.

• EBM and FIBM require advanced and costly equipment. High-vacuum chambers are
used to focus high-energy beams on the surface. The expensive setup is also limited
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when considering the size of the workpiece. Moreover, texturing speed is extremely
low, and energy efficiency is poor. The economics of this technology are justified
for high-end products that require unique three-dimensional structures with high
accuracy.

• Lithography techniques are costly because of the multiple steps required for texturing.
Moreover, the equipment and consumables (such as masks) are expensive and handled
by specialty workers. The technology owes its large diffusion to the ease of scale-up
and high throughput. Manufacturing facilities for photolithography require high
investments (about USD 30 million) but allow large-scale manufacturing.

• Powder-based additive manufacturing processes are characterized by high setup,
processing, and material costs. A protective atmosphere must be created within a
CNC machine to avoid oxidation of the powder. Powder handling involves health
safety concerns, thus requiring specific handling tools and storage. In texturing tends
that are slow, however, the design flexibility makes the technology attractive for a few
specific applications.

7. Applications of Texturing in Injection Molding

Texturing finds different applications in injection molding technologies, ranging from
plastic products to mold functionalization. Textures have been used to improve the appear-
ance and functionality of plastic products, allowing significant opportunities for plastic
manufacturers. More recently, the increased availability of texturing technologies has
opened up opportunities for mold surface functionalization. The generation of micro- and
nano-scale features on tool surfaces has improved the filling and ejection in plastic injection
molding. Figure 16 summarizes the field of application and the functionalities of texturing
for injection molding. The texturing technologies presented in this work have been used for
molding applications with different levels of success. While some are well-established (e.g.,
chemical etching or micro EDM), others require more application-specific development in
conjunction with polymer processing considerations.

7.1. Aesthetic Texturing

A plastic product’s aesthetic appearance can be modified by adding textures in the
sub-millimeter on a micro-scale range. Smaller features, not visible to the human eye,
are typically used for other applications. The texture design process is often based on
creativity and marketing. However, the aesthetic surfaces often mimic natural textures like
leather, wood, or animal skins. Other surfaces are textured to create grained, dull, soft,
smooth, structured, or rough-shaded effects that are perceived as elegant cosmetic surface
finishes. These textures change the customer’s perception of a product, thus creating
market value. Examples range from the interior surfaces of different vehicles to PET soda
bottles. However, these surfaces’ applications are limitless and have been successfully
implemented in automotive, electronics, packaging, and more industries [61].

The features’ dimensions and design determine the selection of the most appropriate
texturing technology for aesthetic applications. The most commonly used technology
for aesthetic texturing is chemical etching due to its ability to work with large surfaces.
However, more recently, laser-based technology has also been implemented thanks to its
flexibility and smaller environmental footprint. For example, Brenner et al. used laser to
texture a large and 3D mold used for an automotive application [62].

The successful replication of a textured injection mold requires particular processing
consideration. Specifically, high mold temperatures may be required to replicate the texture
geometry completely. These applications are supported by rapid heat cycle molding
technologies, which allow heating of the mold above the polymer transition temperature
during filling and rapid cooling before ejection [2,63].
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Figure 16. Applications of surface texturing in injection molding and their functionalities.

7.2. Optics Functionalization

Surface texturing finds application in plastic products that require specific optical
properties. Optics applications require replicating mold textures using transparent poly-
mers, allowing the manufacturing of different optical components. Examples of micro-
and nano-textured optical components include lenses, diffractive optical elements, diffrac-
tion gratings, blazed gratings, slanted gratings, diffractive diffusers, optical diffusers, and
beam splitters. The industries implementing textured plastic lenses in their products are
mainly automotive and electronics. In both industries, semiconductors for illumination
and sensing systems led to the development of micro-lenses used as diffractive elements.
The light beam generated by LED (Light Emitting Diode) or OLED (Organic Light Emitting
Diode) is shaped by surface features when passing through the lens. The most common
products are headlights for vehicles or camera lenses for smartphones. More advanced
applications include components for photovoltaic systems, as manufactured by Fritz et al.
using lithography for the insert texturing and hot embossing for replication [64].

The most common type of texture used for this application is micro-scale prisms (i.e.,
depth and width in the order of 102 µm and radius of 101 µm). The surface features must
have a high surface finish and accurate dimensional tolerances. Hence, micro-milling, UV
lithography, and laser writing are the most commonly used texturing technologies. Other
technologies, such as µEDM, are more challenging because of their inherently high surface
roughness [65]. The master tools’ surface structures are generally coated to increase their
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wear resistance and promote the release of the polymer at the end of the replication (Saha
et al., 2016). The textured tools are replicated on a large scale using different manufacturing
processes, such as injection molding, hot embossing, and roll-to-roll.

7.3. Information Scribing

Information scribing is an inexpensive, durable, and secure approach adopted to
trace a product. Branding with appealing logos or artistic textures is widely used for both
consumer and high-end products. By engraving a brand name, serial number, or other
legal marks on a product, a company not only reinforces its brand image but also protects
its name. Counterfeiting can be a challenge to a company’s ability to protect its name and
brand identity. An engraved serial number or a complex geometry on a mold ensures a level
of security for the company [66]. Moreover, engravings report information regarding the
polymer grade, recyclability, and end-of-life strategies. The texturing technologies adopted
for information scribing are mainly laser-based due to their ease of use and flexibility [67].
Information scribing range from letters or logos engraved using laser ablation to nano-scale
structures used for surface coloring to micro-scale counterfeiting features.

7.4. Structural Colors

Texturing is an effective solution to create light diffraction effects on the surface of
plastic products. Submicron scale patterns diffract the light when their pitch dimension
is close to the visible light wavelength (i.e., 380–740 nm). Depending on the size and
orientation of the structures and the angle of orientation of the incident light, different
shiny shades of colors are visible throughout the entire visible spectrum [33,68]. The
diffraction effect is similar to the one that can be seen on CDs and DVDs, but differently,
as only one color is shown at a specific angle. Homogenous textures with long ripples
are required to show structural colors, and smooth areas may alternate them to increase
the shiny effect [66]. The diffraction effect is mainly obtained with laser-based texturing
technologies, such as ultrafast femtosecond laser ablation.

7.5. Controlled Wetting

Textures with micro- and nano-scale features are used to modify and control a surface’s
wetting properties. The wetting properties of a surface define its interaction with a liquid,
and the contact angle is the most representative indication of the wetting behavior. The
most famous example of the effect of texturing on surface wettability is found in nature on
lotus leaves, which easily repel water. The presence of micro- and nano-scale hierarchical
features modifies the interaction of the surface with liquids.

Adding a texture to a product can lead to hydrophobic behavior [69]. Engineer-
ing applications that exploit this phenomenon include hydrophobic [70], hydrophilic,
icephobic [71], anti-fogging, self-cleaning [72,73], anti-fouling [74], and more functional
surfaces [75]. Oleophobicity (i.e., the ability of a surface to repel oils) and amphiphobicity
(i.e., the surface’s ability to repel both water and oil) can also be controlled and enhanced
using texturing.

Hierarchical textures are commonly exploited to control wetting properties [76]. Two
substantially different scale patterns define the two overlapped textures. The larger one is
typically characterized by features of the order of 101 µm. The smaller textures, realized on
top of the other, are typically smaller than 102 nanometers. For example, Wang et al. used
a picosecond laser to generate different textures on mold steel with super-hydrophobic
properties [34]. Similar surfaces were replicated using injection molding from inserts
textured using EDM [77]. It should be noted that the polymer–texture interaction is also
significant in these applications because the effect of patterning the surface enhances
the polymer’s intrinsic surface properties. Typically, polymers show a low wetting with
water that can be further improved, obtaining a more hydrophobic behavior (i.e., reducing
its surface energy) [59]. Moreover, the polymer’s rheological and thermal properties
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influence the ability to achieve complete replication using a specific polymer processing
technology [63].

Hierarchical textures have been manufactured using different texturing technologies.
The most critical aspects of their manufacturing are related to the submicron scale texture
generation, which needs to fit on the first texture accurately. The use of laser-based
technologies allows excellent flexibility and control over small patterns [78]. High-energy
texturing technologies have also been used, but they are typically carried out in clean-room
environments.

7.6. Biomedical Functionalization

Textured surfaces find several applications in biomedical devices manufactured with
polymers. Surface functionalities have been introduced to modify interactions with bio-
logical substances, such as cells, tissues, fluids, and more. The topography modification
can significantly impact the biological response of the surface. Textured surfaces have
been used to improve the interrelation between implants (e.g., pins, screws, rods, clips,
etc.) and the surrounding tissue [79,80]. Other examples include tissue [81] and cell en-
gineering scaffolds [82], microfluidic devices [83], organ-on-chip [84], and surgical tools.
Texturing technologies are also being used to enable the large-scale manufacturing of
microneedles [85,86].

The application of micro- and nano-structured plastic products for medical devices are
expected to continuously grow, owing it to the wide range of properties that can be obtained
using polymers. Biomedical applications exploit very different texturing technologies, and
the most appropriate is typically selected based on the specific product.

7.7. Controlled Friction

The tribological properties of polymers are often poor, thus limiting their use for
dry contact applications. In the industry, the problem is solved using lubricants (solid
or liquid) or by changing the resin formulation. Surface texturing is an alternative to
these techniques. The surface features reduce the contact area, entrap the wear debris, and
improve surface/lubricant contact [87]. Depending on the lubrication condition and texture
geometry, the tribological effect of a textured surface varies significantly. Thus, it is essential
to design the right texture for a particular application [88]. Common textures used to modify
the friction properties of a surface are micro dimples [89,90], micro stripes [91], micro
grooves, and banded grooves [92]. The accuracy of feature definition, angle sharpness,
edge angle, depth, and pitch all constitute factors that will influence the tribological
properties. Surface wear needs to be considered for textured surfaces. However, it can be
controlled through material selection and pattern design. For example, Aziz et al. used
Fused Deposition Modeling (FDM) 3D printing to modify the tribological behavior of PLA
surfaces [93].

7.8. Tool Surface Functionalization

The tool surface represents the boundary that controls the polymer/tool interactions.
Tool topography can be modified to control polymer replication, achieving significant
processing benefits. Different strategies have been used to achieve that, particularly surface
modification using coatings and surface texturing [94–97]. The most significant benefits of
surface engineering were observed for the filling of the micro- or nano-scale features and
the ejection of the replicated texture from the tool. This section focuses on the effects of
texturing on polymer flow and part ejection from the tool.

7.8.1. Filling

Texturing has been demonstrated as an effective way to improve the filling of thin-
wall injection molding cavities by reducing the required pressure drop [98]. Reducing the
pressure requirement can lead to advantages for plastic product design, processing energy
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requirements, and resin selection. The effect of tool texturing on the polymer flow changes
the rheological and thermal polymer/mold interface interactions.

Submicron scale textures realized using ultrafast pulsed laser have shown an effect
on the onset of the wall slip phenomena (Figure 17). When touching the mold surface, the
polymer macromolecules cannot reach the depth of the texture valleys, thus the absorption
points are less than a flat surface. The viscosity, the molecular mass distribution, and the
polymer chains’ relaxation time play an essential role in the phenomena. A polymer with
high viscosity, narrow molecular mass distribution, and long relaxation time is more likely
to slip [99].

Figure 17. (a) Effect of wall slip on the polymer velocity profile in a thin-wall injection molding
cavity; (b) ripples aligned along the polymer flow to facilitate wall slip.

Micro- and nano-scale texturing can also affect the filling flow by changing the thermal
boundary condition at the polymer/mold interface [63,100]. The air pockets trapped in
the troughs in the texture have low thermal conductivity, thus they delay the heat transfer
to the mold and keep the polymer warmer during filling. However, this effect is relevant
only for thin-wall plastic parts, specifically an experimental threshold of 150 µm was
identified [101,102].

7.8.2. Ejection

The topography highly affects the ejection of the polymer part from the textured tool.
Several strategies have been adopted in the industry to decrease the force required to
separate the polymer from the tool. In particular, the effect of surface roughness has been
widely studied and exploited [103]. The force required to separate a plastic part from the
mold generally increases with a rougher surface. However, highly polished tool surfaces
also lead to high forces due to the vacuum generated at the interface. The optimization
of mold topography through texturing has been demonstrated as an effective solution to
solve demolding issues [104].

The understanding of ejection friction requires the analysis of the adhesion and de-
formation components [105]. The adhesion term is a surface effect related to chemical,
electrostatic, and capillary adhesion. The deformation term is controlled by the mechanical
interlocking generated between the polymer and the texture [106]. Surface engineering
strategies control both components of ejection friction. In particular, mold surface gen-
eration using texturing controls the deformation component, while modification using
coatings controls the adhesion [97].

8. Conclusions

The different texturing technologies reviewed in this work are summarized in Figure 18
as a function of the feature size and texturing speed. The characteristics of the technologies
and the achievable textures can be summarized as follows:
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Figure 18. Feature size and texturing speed capabilities of surface texturing technologies. Multi-step
technologies are indicated with a star (*).

• Chemical etching is the fastest technology and allows texturing of large surfaces.
However, the structures that can be obtained are not very small and not very accurate.
The most significant applications are for the automotive industry, which uses the
technology for interior parts’ aesthetic texturing.

• The smallest texture can be manufactured using either EBM or FIBM. Both technologies
are very accurate but extremely slow, limiting their diffusion to niece applications and
small surfaces. The main applications, still limited to research labs and clean room
environments, are high-end biomedical and electronics.

• Micro-milling is sensitive to the dimensions of the feature. The smaller is the texture,
the slower is the process. Conventional micro-milling allows texturing down to 100 µm,
while smaller textures (i.e., down to 20 µm) can be achieved using the ultrasound-
assisted process. The most significant applications are headlight diffractors, for which
sub-millimeter scale prisms are textured on injection mold surfaces.

• The µEDM texturing technology is susceptible to the required surface finish. Relatively
smooth surfaces can be manufactured using low-spark energy while significantly
decreasing the texturing speed. Texturing injection molds using this technology allows
for overcoming the size limitations of micro-milling.

• The ECMM is faster than µEDM as it exploits the chemical energy to remove the
material. Moreover, the more homogeneous material removal results in a better
surface finish.
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• When considering additive manufacturing technologies, DED is faster than SLM
because the powder is deposited by the nozzle and sintered by the co-axial beam.
However, SLM can manufacture smaller and more accurate texture features.

• DLIP is the fastest laser technology because it exploits the pattern interference to create
features at specific locations on the surface. The functioning principles limit the type
of textures that can be manufactured. However, the Through Mask Laser Texturing
overcomes this limitation when considering textures with bigger feature sizes.

• Direct laser writing is a slow technology because of the direct material ablation, and the
spot size dimension limits the feature size. Smaller textures, with limited geometries,
can be realized using a femtosecond laser.

• The AJM texturing process is used for its high velocity and its cleanliness. However, it
is not very accurate, and the feature definition is typically not high.

• The successful utilization of a texture for injection molding requires the evaluation
of polymer processing aspects that are not discussed in this work; they are, however,
well-established in the literature.
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