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Abstract

A model of multicellular systems with several types of cells is developed from the phase field model. The model is presented
as a set of partial differential equations of the field variables, each of which expresses the shape of one cell. The dynamics of
each cell is based on the criteria for minimizing the surface area and retaining a certain volume. The effects of cell adhesion
and excluded volume are also taken into account. The proposed model can be used to find the position of the membrane
and/or the cortex of each cell without the need to adopt extra variables. This model is suitable for numerical simulations of a
system having a large number of cells. The two-dimensional results of cell division, cell adhesion, rearrangement of a cell
cluster, chemotaxis, and cell sorting as well as the three-dimensional results of cell clusters on the substrate are presented.
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Introduction

In order to investigate the structural patterns of cellular systems,

several cell models have been reported, including the vertex

dynamics model [1,2], the center dynamics model [3,4], and the

cellular Potts model [5,6]. Both the vertex dynamics model and

the center dynamics model express cell patterns using polygons. In

the vertex dynamics model, a cell or a cluster of cells is represented

by a polygon formed by linking several vertices. Each vertex is

driven by forces acting on it. This model has been adopted for

morphogenesis in Xenopus notochords as well as cell deformation

and rearrangement by applying mechanical forces [1,7]. In the

center dynamics model, a node represents a cluster of cells and

receives forces from its neighboring nodes. Cell aggregation,

locomotion, rearrangement, and morphogenesis in vertebrate limb

buds have been investigated using this model [3,4,8–10]. Although

the mechanical processes during tissue developments can be well

investigated, artificial treatments are required for numerical

simulations in these models based on polygons. For example, in

the vertex dynamics model, cell rearrangement is realized by

manually exchanging two vertices that approach each other [1]. In

the center dynamics model, in order to express the cell division, it

is necessary to add a new node in the vicinity of the existing node

[4,10].

In contrast, the cellular Potts model represents each cell as a

cluster of grid points under the constraint of constant volume.

Thus, the artificial treatments mentioned above are not required

for simulations in this model. We can investigate the

deformation of an individual cell in a multicellular system using

this model, considering the effects of excluded volumes and

adhesions of the cells. This model successfully described several

biological behaviors [11]. For example, numerical calculations

with regard to cell sorting, biofilm formation, and chemotactic

movement have been performed [5,6,12,13]. However, running

the simulations requires fluctuations, and the forces between

cells are not expressed directly in this model.

Therefore, we consider a new type of a model for

multicellular systems, which is based on the phase field model.

The effects of cell adhesion and excluded volume are taken into

account. In the proposed model, the free energy is described in

terms of a vector variable, the number of components of which

is equivalent to the total number of cells in the system. The

shape of one cell is expressed by one component of the vector

variable. The time evolutions are described by a set of partial

differential equations that are obtained by taking the functional

derivative of the free energy. Thus, fluctuations are not required

for numerical simulations. In addition, by adopting auxiliary

variables that are used for calculation of the interactions

between the cells, a program that consumes little computational

memory can be designed. That is to say, the proposed model

can be used to describe a system containing a large number of

cells. The proposed model differs from previous models of

multicellular systems in that the position of the cell membrane

and/or cortex can also be expressed without the need to adopt

extra variables because the phase boundary interface is treated

as a diffuse interface of finite width using the phase field

method.

The phase field model has been applied to a wide range of

problems, such as crystal growth [14–18]. Very recently, the cell

shape of the fish keratocyte has been modeled using this method,

where the membrane bending force and the surface tension of the

cell were considered [19]. However, to our knowledge, this is the

first report applying the phase field method to the multicellular

system.
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Results and Discussion

Model Equation
We consider a multicellular system containing several types of

cells and allow changes in the size and adhesive strength of each

cell type. As a first step, we express the shape of one cell using the

phase field method.

The phase field model is based on the following Ginzburg-

Landau free energy:

E½u�~
ð
V

D0

2
D+uD2zW (u)

� �
dr, ð1Þ

where V denotes the area of the system, and the coefficient D0 is a

positive constant. The variable u(r,t) is an order parameter

referred to as the phase field, where r is the position, and t is the

time. The function W (u) is given as

W (u)~
1

4
u2(1{u)2zw1h(u)zw0(1{h(u)), ð2Þ

where the function h(u) is defined as

h(u)~u2(3{2u): ð3Þ

Equation 2 describes a double-well potential which has local

minimums at u~0 and u~1 under the condition

Dw0{w1Dv1=12: As shown in Figure 1, the depths of the wells

are controlled by the constants w1 and w0 which correspond the

free energy densities for the phases described by u~1 and u~0,
respectively.

By taking the functional derivative of Equation 1 with respect to

u, the time evolution of u is derived as follows:

t
Lu

Lt
~{

dE

du

~D0+2uzu(1{u) u{
1

2
z�ff

� �
,

ð4Þ

where t is a positive constant and �ff ~6(w0{w1): Equation 4

guarantees the monotonic decrease in the free energy. Equation 4

is referred to as the Allen–Cahn equation in the field of materials

science and is known for having a smooth front solution

connecting the regions u~1 and u~0: The Allen–Cahn equation

can easily be solved in one dimension as

u~f1{ tanh½(x{Vt)=(2
ffiffiffiffiffiffiffiffiffi
2D0

p
)�g=2, where the front velocity

V~
ffiffiffiffiffiffiffiffiffi
2D0

p �ff =t: This means that the front moves such that the

region of u~1 (u~0) expands if �ff w0 (�ff v0), i.e., w0ww1

(w0vw1):
In order to describe a cell shape by the variable u, the constraint

of the constant volume of u should be included in Equation 4.

When the volume of the region in which u~1 is denoted by the

function v(u), it is easy to consider this constraint by replacing the

constant �ff in Equation 4 with the following function f0(u):

f0(u)~a0(V0{v(u)), ð5Þ

as

t
Lu

Lt
~D0+2uzu(1{u) u{

1

2
zf0(u)

� �
, ð6Þ

where the coefficients a0 and V0 are positive constants. As

discussed in the above paragraph, it is obvious that Equation 6

expresses the region of u~1 expands (shrinks) until v(u)~V0

when f0(u)w0 (f0(u)v0), i.e., v(u)vV0 (v(u)wV0):
By choosing the form of the function v(u) as

v(u)~

ð
V

h(u)dr, ð7Þ

we also obtain the free energy form for Equation 6 as follows:

E½u�~
ð
V

D0

2
D+uD2z

1

4
u2(1{u)2

� �
drz

a0

12
(V0{v(u))2: ð8Þ

Note that Equation 7 can be regarded as the volume of the region

in which u~1 because h(1)~1 and h(0)~0: Therefore, the last

term of Equation 8, which is newly added, expresses the constraint

of the constant volume of u since it has a minimum at v(u)~V0:
As shown in Figure 2, the region of u~1 takes the form of a

circle in two dimensions and a sphere in three dimensions in the

steady state. Thus, the shape of the cell in the simplest case can

be described by a single-order parameter u, such that u§ucell in

the region with the cell (vucell in the region not taken up by the

cell) with a constant ucell[(0,1): Based on the fact that u has an

interface with a thickness on the order of
ffiffiffiffiffiffi
D0

p
, the cell cortex

can also be expressed as a function of u, e.g., u(1{u) (see

Figure 2C).

In order to describe the multicellular system, a vector variable

u(r,t)~(u1(r,t), � � � ,uM (r,t)) is considered, where M is the total

number of cells in the system. The component um(r,t)
(m~1, � � � ,M) describes the shape of the m-th cell. We also use

the variable s(r,t) to represent the shape of substances interacting

Figure 1. Shape of the double-well potential W(u). The parameters are set as w1ww0~0, w1~w0~0, and w1vw0~0 in Panels A, B, C,
respectively.
doi:10.1371/journal.pone.0033501.g001
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with the cells, such as the wall, the substrate, and the extracellular

matrix.

The model free energy for the multicellular system is written as

E½u,s�~Ecell ½u�zEint½u�zEs½u,s�, ð9Þ

where Ecell determines the shape of the cell, Eint describes the

interactions between each cell, and Es expresses the interactions

between the cells and substances external to them. The form of

Ecell is obtained by modifying Equation 8 using the vector variable

as follows:

Ecell ½u�~
X

m

ð
V

D(‘m)

2
D+umD2z

1

4
u2

m(1{um)2

� �
dr

z
X

m

a(‘m)

12
(V (‘m){v(um))2,

ð10Þ

where ‘m is the cell type of the m-th cell. The coefficients D(‘),
a(‘), and V (‘) (‘~1, � � �L) are positive constants, where L is

the total number of cell types in the system. As discussed

previously, Equation 10 indicates that the thickness of the cell

interface is on the order of
ffiffiffiffiffiffiffiffiffi
D(‘)

p
and that the speed at which

the volumes of the type-‘ cells approach the target volume V (‘)
is controlled by the value of a(‘). That means a(‘) determines

the cell size growth. Here, Eint can be presented in the

following form:

Eint½u�~
X

m

X
m’=m

b(‘m,‘m’)

12

ð
V

h(um)h(um’)dr

z
X

m

X
m’=m

g(‘m,‘m’)

12

ð
V

+h(um):+h(um’)dr

z
X

m

c(‘m)

12

ð
V

D+h(um)D2dr,

ð11Þ

where b(‘,‘’), g(‘,‘’), and c(‘) (‘,‘’~1, � � �L) are positive

constants. The first term on the right-hand side of Equation 11

represents the effect of the excluded volume by increasing the

energy if the cells overlap, whereas the second term represents

the effect of cell adhesion by decreasing the energy if the cell

cortices overlap. This adhesion term becomes negative in the

region in which cell adhesion occurs. In order to prevent

divergence due to this adhesion term, we introduce the third

term on the right-hand side of Equation 11 with the condition

whereby c(‘)wg(‘,‘): Similarly, the interaction between cells

and substances external to the cells is expressed as follows:

Es½u,s�~
X

m

bs(‘m)

6

ð
V

h(um)h(s)dr

z
X

m

gs(‘m)

6

ð
V

+h(um):+h(s)dr,

ð12Þ

where bs(‘) and gs(‘) (‘~1, � � � ,L) are positive constants.

Taking the functional derivative of Equation 9 with respect to

um, the following time evolution equations are obtained:

tu

Lum

Lt
~D(‘m)+2um

zum(1{um) um{
1

2
zf (um,s,w)

� �

zgint(um,w)zgs(um,s),

ð13Þ

f (um,s,w)~a(‘m)(V (‘m){v(um))

{
X
‘

b(‘m,‘) w‘{h(um)d‘m,‘½ �{bs(‘m)h(s),
ð14Þ

gint(um,w)~
X
‘

g(‘m,‘)um(1{um)+2fw‘{h(um)d‘m,‘g

zc(‘m)um(1{um)+2h(um),

ð15Þ

gs(um,s)~gs(‘m)um(1{um)+2h(s), ð16Þ

Figure 2. Shape of the phase field u. The integral of u over r is set
to be maintained. Panel A: top view. Panels B and C: profiles of u and
u(1{u) at the centerline in Panel A, respectively.
doi:10.1371/journal.pone.0033501.g002
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where tu is a positive constant, and di,j is the Kronecker delta,

which is di,j~1 (di,j~0) if i~j (i=j): The vector variable

w(r,t)~(w1(r,t), � � � ,wL(r,t)) is an auxiliary variable that is defined

as follows:

w‘(r,t)~
X

m

h(um(r,t))d‘m,‘: ð17Þ

As shown in Figure 3, the region occupied by the type-‘ cells can

be identified by w‘:
Note that the interaction terms in Equation 13 are not written

explicitly in terms of the variables um’ (m’~1, � � � ,M=m) but are

instead written in terms of the auxiliary variable w: As discussed in

Methods, the introducing w is very useful for the simulation of a

system having a large number of cells. The components Eint and

Es can also be presented in terms of w, as follows:

Eint½u�~
X
‘

X
‘’

b(‘,‘’)
12

ð
V

w‘w‘’dr

{
X

m

b(‘m,‘m)

12

ð
V

h(um)2dr

z
X
‘

X
‘’

g(‘,‘’)
12

ð
V

+w‘
:+w‘’dr

z
X

m

c(‘m){g(‘m,‘m)

12

ð
V

D+h(um)D2dr,

ð18Þ

Es½u,s�~
X
‘

bs(‘)

6

ð
V

w‘h(s)dr

z
X
‘

gs(‘)

6

ð
V

+w‘
:+h(s)dr:

ð19Þ

We adopted the second term on the right-hand side of Equation

14 and the first term on the right-hand side of Equation 15 to

express the excluded volumes and the cell adhesions, respectively,

because these terms are the simplest among the several

alternatives, which can be written in terms of w both in the time

evolution equation for u and the component Eint.

Numerical Simulation
Figure 4 shows the result of cell divisions in two dimensions. It is

well known that the spindle positioning plays an important role in

the stage of deciding the plane of cell division [20–22]. However,

we consider here the simplest rule for cell division as the first step.

The rule imposed here is that when the volume v(um) of the m-th

cell become larger than v�, where 0vv�vV (‘m), the m-the cell

divides into two cells, m’ and m’’, as

um’~
um

2
1z tanh

v:(r{rm)

Ed

� �
, ð20Þ

um’’~
um

2
1{ tanh

v:(r{rm)

Ed

� �
, ð21Þ

where v~v( cos h, sin h) and Ed is a positive constant. The angle

h is taken randomly. Using this rule, the number of cells increase

in time. Starting with the data in which a circular cell is located at

the center of V, the number of cells become 2,000 at t~5,640: For

simplicity, the number of cell type is one, L~1, and the cell

adhesion is not considered, g(1,1)~c(1)~0: It is noted that the

scale of time t can be determined by comparison with the

experimental data of the cell cycle.

Figure 5 shows the numerical results for two cells of the same

type, i.e., M~2 and ‘1~‘2~L~1, with different adhesion

strengths. The curves in the top row of the graphs indicate the

contour lines of um~0:2 (m~1 and 2), and the | symbols

indicate the positions of the centers of the cells

rm~(
Ð
V rumdr)=(

Ð
V umdr): The variable eg(r,t) is given as follows:

eg(r,t)~
X

m

X
m’=m

g(‘m,‘m’)

6
+h(um(r,t)):+h(um’(r,t)): ð22Þ

The integral over r of eg is identical to the second term on the

right-hand side of Equation 11. The um and eg profiles along the

dotted line in the top row have been plotted in the middle and

bottom rows of the graphs, respectively. Since eg has a non-zero

value only in regions in which cell adherence occurs, eg is an

indicator of locations at which cell adherence occurs. Initially, the

distance between the centers of cells is set to 1.400. After a

sufficiently long simulation time (t~50,000), the two cells move

closer to each other as the value of g(1,1) increases, such that the

distances between the cell centers are 1.574 in the case of Panel A

Figure 3. Schematic diagram of u and w. In Panel A, type-1 (m~1 and 2) and type-2 (m~3 and 4) cells are represented by gray and black circles,
respectively. The contours of w1 and w2 are indicated by curved lines in Panels B and C, respectively.
doi:10.1371/journal.pone.0033501.g003
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with g(1,1)~0:0000, 1.280 in the case of Panel B with

g(1,1)~0:0030, and 1.107 in the case of Panel C with

g(1,1)~0:0065:
Figure 6 shows snapshots of three-dimensional simulations at

t~500: The solid substrate is introduced by setting the variable s

as s(r)~(1{ tanh ((z{zf )=Ef ))=2, where zf and Ef are positive

constants. The light gray surfaces are contour plots of um~0:1
(m~1, � � � ,10) and the dark gray surfaces represent contour plots

of s~0:1: We set g(1,1) as 0.0000, 0.0100, and 0.0219 for the

simulations shown in Panels A, B, and C, respectively, where the

other parameters are the same for all cases. If the cell adhesions

are weak, the cells push against each other, and their positions are

determined as shown in Panel A. On the other hand, for the case

in which the cell adhesions are sufficiently strong, the cell positions

are decided by the pulling force between cells, and the surface of

the cell layer becomes flat, as shown in Panel C.

Figure 4. Two-dimensional result of cell division. All cells are set to be of the same type (L~1): Contour plots of um~0:2 (m~1 � � �M) are
indicated by the black curves. The number of cells M is increased by cell divisions: M~1 at t~0, M~2 at t~40, M~550 at t~2,940, and M~2,000
at t~5,640: The other parameters are set as follows: size of the simulation box V~60|60, size of the spatial grid d~0:05, time increment dt~0:01,
tu~1, Du(1)~0:001, V (1)~1, a(1)~1, b(1,1)~1, c(1)~g(1,1)~0, v�~0:93, and d~0:1:
doi:10.1371/journal.pone.0033501.g004

Figure 5. Two-dimensional results of cell adhesions. The case of two cells (M~2) of the same type (L~1) is considered. Numerical
calculations were performed with g(1,1)~0:0000 in Panel A, g(1,1)~0:0030 in Panel B, and g(1,1)~0:0065 in Panel C. The top row shows contour
plots of um~0:2 (m~1,2): The6symbol indicates the centers of cells. The middle and bottom rows show the profiles of um and eg along the dotted
line shown in the top row. The size of the simulation box is V~5|5, and the size of the spatial grid is d~0:05: The time increment is dt~0:01: The
remaining parameters are set as follows: tu~1, D(1)~0:001, V (1)~1, a(1)~1, c(1)~0:01, b(1,1)~1, and bs(1)~gs(1)~0:
doi:10.1371/journal.pone.0033501.g005
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Figure 7 shows the numerical results for cell deformation and

rearrangement. A cell cluster of M~8 and L~2 is sandwiched

between two walls that move at a constant speed. In this calcula-

tion, considering the variable s as an order parameter that corre-

sponds to the walls, the time evolution of s is calculated as s(r,t)~
1{ 1z tanh ((x{xl(t))=Es)ð Þ 1{ tanh ((x{xr(t))=Es)ð Þ=4, where

Es is a positive constant. The locations of the left and right walls are

denoted as xl(t) and xr(t), respectively. Panel A shows the results

for the case in which the adhesion strength between cells of the

same type is stronger than that between cells of different types

(g(1,1)~g(2,2)~0:008 and g(1,2)~0:005), whereas Panel B

shows the results for the opposite case (g(1,1)~g(2,2)~0:005
and g(1,2)~0:008): Light gray, dark gray, and black areas

represent the positions of the type-1 cells, the type-2 cells, and the

walls, respectively. Cells adhering to the walls are stretched by the

moving walls, causing the cells to be deformed and rearranged.

Cells that are rearranged as weakly adhered cells detach first. In

Panel A, the cells detach from the left wall at approximately

t~30,000 and relax to almost their original shape at t~32,000:
The time evolution of the total energy E is plotted in Figure 8. The

solid line shows the results for Panel A of Figure 7, and the dotted

line shows the results for Panel B of Figure 7. There is no

monotonic decrease in total energy because the walls stretch the

cell clusters. Comparison of Figures 7 and 8 reveals that the energy

decreases significantly when cell rearrangement occurs.

Finally, we show that the cell movements such as the

chemotactic movement and the random movement can also be

incorporated into the proposed model. The chemotactic move-

ment of the cell can be described by adding a new term, such as

gchem~{m(‘m)+:(um+c), to the right-hand side of Equation 13,

where the variable c(r,t) is the chemical concentration in

extracellular regions. The parameter m(‘m) indicates the sensitivity

of the m-th cell to the gradient of c. Figure 9 shows the time

evolution of a system with cells having chemotaxis. Light gray and

dark gray represent type-1 and type-2 cells, respectively. In this

case, we consider the variable s as an order parameter that

corresponds to the wall. The fifty cells are surrounded by the

unmoving wall defined as

s(r)~2{(1z tanh ((x{xl)=Ew))(1{ tanh ((x{xr)=Ew))=
4{(1z tanh ((y{yb)=Ew))(1{ tanh ((y{yt)=Ew))=4, where xl ,
xr, yb, yt, and w are positive constants. By setting m(1)~0:0 and

m(2)~1:0, it is assumed that the only type-2 cells can sense the

gradient of the chemical concentration c. For simplicity, cell

adhesion is not considered and the form of c is assumed not to be

affected by um or t and is taken as c~c0x, where c0 is a constant. It

is found numerically that type-2 cells move toward the c-rich

region by pressing against type-1 cells.

The random movement of cells can also be incorporated into

the proposed model by adding a new term, such as

grandom~R(a)u(1{u), to the right-hand side of Equation 13.

The function R(a) indicates an uniform random number from {a

to a, where a is a positive constant. Figure 10 shows the result of

cell sorting which has been known to require both of the random

movement of cells and the cell adhesion [5,6,12]. We obtained that

differential adhesion with fluctuation leads the sorting of a mixture

of two types of cells as reported in Ref. [6].

Figure 6. Three-dimensional results of cell adhesions on the substrate. The case of 10 cells (M~10) of the same type (L~1) is considered.
Numerical calculations were performed with g(1,1)~0:0000 in Panel A, g(1,1)~0:0100 in Panel B, and g(1,1)~0:0219 in Panel C. Light and dark gray
surfaces are contour plots of um~0:1 (m~1, � � � ,10) and s~0:1, respectively. The diagonal, top, and side views for each result are shown in the top,
middle, and bottom rows, respectively. The size of the simulation box is V~5|5|4, and the size of the spatial grid is d~0:05: The time increment is
dt~0:01: The remaining parameters are set as follows: tu~1, D(1)~0:001, V (1)~2:26, a(1)~100, c(1)~0:022, b(1,1)~bs(1)~1, gs(1)~0:005,
zf ~0:8, and f ~2

ffiffiffiffiffiffiffiffiffiffiffi
0:001
p

:
doi:10.1371/journal.pone.0033501.g006
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Conclusion
We proposed a new type of cell model based on a phase field

model, including the effects of excluded volumes and cell

adhesions. To our knowledge, this is the first study to apply the

phase field model to multicellular systems. We succeeded to make

a skillful method for reduction of the computational memory and

simulation time using the auxiliary variable w as discussed in

Methods.

The proposed model is based on a concept similar to the cellular

Potts model, but the time evolutions of cell shapes in the proposed

model differ from those in the cellular Potts model. In the cellular

Potts model, the time evolutions of the spins are computed by the

Monte Carlo method, and thus the fluctuations are required for

the time evolution. On the other hand, the time evolution

equations in the present model are written in the form of partial

differential equations, whereby fluctuations are not necessary in

order to run the simulations. In addition, the proposed model is

thought to be more appropriate for investigating problems in

which a small volume variant must be accounted for, because the

proposed model is continuous in any parameter.

Since the cell shapes are represented by interfaces of finite

thickness, the proposed model has the potential to be applied to the

investigation of not only shape changes due to interactions between

cells (Figures 5 and 6) and rearrangements of cells in clusters

(Figure 7) but also phenomena requiring knowledge of the position of

the cell membrane and/or cortex. It is easy to incorporate additional

cell behaviors such as chemotaxis (Figure 9) and random movement

(Figure 10) into the proposed model by adding corresponding terms.

The proposed model can express the time evolution of changes in

cell shape due to the interactions between cells, cell differentiation by

changing the cell type, cell size growth, cell movement, and cell

death by deleting the corresponding component of u: Thus, this

model may well provide a useful tool for approaching the problem of

morphogenesis, although this remains a subject for future study in

order to estimate the parameters as well as the time scale by

comparison with earlier models and with experimental data.

Considering both of the adhesion and the random movement of

cells, we will investigate the chemotactic movement by using the

proposed model and compare the obtained results to those reported

in Ref. [12] as the next step. We also plan to include the cell division,

in the process of which the cortex of the dividing cell is known to be

important as well as the spindle positioning [20–22], in the present

model and to approach the problem of morphogenesis.

Methods

Numerical Implementation
In order to rapidly simulate a system having numerous cells,

it is important to design a program that does not consume a

large amount of computational memory and to increase the

simulation speed. These two requirements are easily satisfied

because Equation 13 is not written explicitly in terms of um’

Figure 7. Two-dimensional results of cell deformation and
rearrangement in a cluster. The cluster is composed of eight cells
(M~8) of two types (L~2): Light and dark gray areas represent the
region of um§0:2: Light gray areas indicate the locations of type-1 cells,
and dark gray areas indicate the locations of type-2 cells. Black areas
represent the walls (s§0:5): Numerical calculations were performed
with g(1,1)~g(2,2)~0:008 and g(1,2)~0:005 in Panel A and
g(1,1)~g(2,2)~0:005 and g(1,2)~0:008 in Panel B. The left and right
walls are assumed to move at a uniform velocity, xl~7{Vst,
xr~13zVst, and Vs~0:0001: The size of the simulation box is
V~20|15, and the size of the spatial grid is d~0:05: The time
increment is dt~0:01: The remaining parameters are set as follows:
tu~1, Du(1)~Du(2)~0:001, V (1)~V (2)~4, a(1)~a(2)~10,
c(1)~c(2)~0:01, b(1,1)~b(1,2)~b(2,2)~bs(1)~bs(2)~0:1,
gs(1)~gs(2)~0:005, and s~2

ffiffiffiffiffiffiffiffiffiffiffi
0:002
p

:
doi:10.1371/journal.pone.0033501.g007

Figure 8. Plots of the total energy E with respect to time. The
solid line shows the results for Figure 7A, and the dotted line shows the
results for Figure 7B.
doi:10.1371/journal.pone.0033501.g008
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(m’~1, � � � ,M=m): Once w is obtained for each time step, the

time evolution of um can be computed independent of um’: Such

a program is fully compatible with parallel computation.

Moreover, the shape of the m-th cell can be obtained by

computing the equation for um within the small region Vm,
which covers the region of umw0: This reduces the computa-

tional memory and increases the simulation speed. The position

rm(t), which indicates the center position of Vm measured for

the entire system, must be moved along with the movement of

the center position of the m-th cell. Since um~0 is realized

outside the region Vm, the Dirichlet boundary condition must

always be set for the small region Vm: In this paper, the

periodic boundary conditions are imposed on the boundary of

V throughout the simulations.

The estimation of the required memory is described below.

Since the number of cell types L is generally much smaller than

the number of cells M, the memory increase by introducing w
becomes smaller than the memory decrease by computing um

within the small region Vm: For simplicity, we assume that each of

the cells has the same volume, i.e., V (1)~ � � �~V (L)~V and

that the entire system is covered by the cells, i.e., V*VM: Then,

the computational memories for u, r(t)~(r1(t), � � � ,rM (t)), and w
are roughly estimated as VM=dd , dM, and LVM=dd , respective-

ly, where d is the spatial dimension and d is the size of the spatial

grid. Therefore, the total memory required to compute Equation

13 using w is linearly dependent on M: On the other hand, in

order to compute cell-cell interactions without using w, the value of

u must be preserved over the entire region V: Then, the

computational memories for solving Equation 13 increase by

VM=dd|M!M2: These estimations reveal that the introduction

of w is very useful for computation in the case of a system that

contains a large number of cells, even in three dimensions.

In fact, we have checked the required memory with and

without adopting auxiliary variable w by changing the

maximum number of cells, Mmax: All other settings are the

same for Figure 4. We used MacPro (3.2 GHz Quad-Core Intel

Xeon, 32 GB 800 MHz DDR2 FB-DIMM) for this purpose. If

the auxiliary variable w is not considered, Equation 13 should

be solved in the whole region V: In this case, a segmentation

fault occurs at start of simulation when Mmax is set to be larger

than 187: As discussed above, if the auxiliary variable w is

considered, the shape of the m-th cell can be obtained by

computing the equation for um within the small region Vm: In

the case of Vm~1:6|1:6 (m~1, � � �Mmax), the maximum

number of cells Mmax can be set to be 262,142 at a maximum

without a segmentation fault. These results support our claim

which is that the introducing the auxiliary variable w is very

Figure 9. Two-dimensional result of chemotactic movement of cells. The case of fifty cells (M~50) of two types (L~2) is considered. Light
gray (dark gray) areas indicate the region of um§0:2, for the case in which the m-th cell is a type-1 (type-2) cell. Black areas represent the walls
(s§0:5): Numerical calculation was performed with m(1)~0:0 and m(2)~1:0: The other parameters are set as follows: size of the simulation box
V~10|10, size of the spatial grid d~0:05, time increment dt~0:01, tu~1, Du(1)~Du(2)~0:001, V (1)~V (2)~1, a(1)~a(2)~1,
b(1,1)~b(1,2)~b(2,2)~bs(1)~bs(2)~1, c(1)~c(2)~0, g(1,1)~g(1,2)~g(2,2)~gs(1)~gs(2)~0, w~2

ffiffiffiffiffiffiffiffiffiffiffi
0:002
p

, c0~0:01, xl~yb~0:8, a n d
xr~yt~9:2:
doi:10.1371/journal.pone.0033501.g009

Figure 10. Two-dimensional result of cell sorting. The case of eighty cells (M~80) of two types (L~2) is considered. The number of the type-
2 cells is 20. Light gray (dark gray) areas indicate the region of um§0:2, for the case in which the m-th cell is a type-1 (type-2) cell. The other
parameters are set as follows: size of the simulation box V~4|4, size of the spatial grid d~0:05, time increment dt~0:01, tu~1,
Du(1)~Du(2)~0:0003, V (1)~V (2)~0:05, a(1)~a(2)~100, b(1,1)~b(1,2)~b(2,2)~10, c(1)~c(2)~0:0030, g(1,1)~g(2,2)~0:0017,
g(1,2)~0:0000, and a~8:
doi:10.1371/journal.pone.0033501.g010
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useful for computation in the case of a system with numerous

cells.
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