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Abstract: Respiratory diseases are the cause of millions of deaths annually around the world. Despite
the recent growth of our understanding of underlying mechanisms contributing to the pathogenesis of
lung diseases, most therapeutic approaches are still limited to symptomatic treatments and therapies
that only delay disease progression. Several clinical and preclinical studies have suggested stem cell
(SC) therapy as a promising approach for treating various lung diseases. However, challenges such
as the potential tumorigenicity, the low survival rate of the SCs in the recipient body, and difficulties
in cell culturing and storage have limited the applicability of SC therapy. SC-derived extracellular
vesicles (SC-EVs), particularly SC-derived exosomes (SC-Exos), exhibit most therapeutic properties
of stem cells without their potential drawbacks. Similar to SCs, SC-Exos exhibit immunomodulatory,
anti-inflammatory, and antifibrotic properties with the potential to be employed in the treatment of
various inflammatory and chronic respiratory diseases. Furthermore, recent studies have demon-
strated that the microRNA (miRNA) content of SC-Exos may play a crucial role in the therapeutic
potential of these exosomes. Several studies have investigated the administration of SC-Exos via the
pulmonary route, and techniques for SCs and SC-Exos delivery to the lungs by intratracheal instilla-
tion or inhalation have been developed. Here, we review the literature discussing the therapeutic
effects of SC-Exos against respiratory diseases and advances in the pulmonary route of delivery of
these exosomes to the damaged tissues.

Keywords: extracellular vesicles; nanosized vesicles; lung diseases; stem cell-derived exosomes

1. Introduction

Respiratory diseases are among the top causes of death globally. It was estimated
that cumulatively, respiratory diseases were the third largest cause of death and were
responsible for approximately 4 million deaths worldwide in 2019 [1]. Novel approaches,
such as nanomedicine and regenerative medicine, could be beneficial in the diagnosis or
treatment of various lung disorders [2–5]. Despite advances in modern medicine and drug
design techniques, no drug has been developed to cure major respiratory diseases. Most
available drugs mainly help control and restrict the progress of the disease or prevent
complications. Cell-based therapies hold great promise for treating various lung diseases.
In cell therapy, viable cells are introduced into the body via different routes to exert their
particular therapeutic effects. Stem cells (SCs) have been found to have protective and
regenerative properties on different tissues, and numerous studies have investigated the
advantages of SCs in the treatment of disorders. SCs can be obtained from four different
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sources: embryonic tissues, fetal tissues, adult tissues (e.g., mesenchymal stem cells (MSCs)
derived from different tissues), and differentiated somatic cells resulting from genetic
manipulation, known as induced pluripotent SCs (iPSCs) [6]. The administration of SCs
has been shown to be safe and effective in various respiratory diseases, such as chronic
obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and
pulmonary fibrosis (PF) [7]. However, the therapeutic use of SCs has its downsides: (I) SCs
secrete varied growth factors that may have the potential to induce tumors; (II) the survival
rate of SCs after administration is low; (III) SCs may block some small-diameter pulmonary
blood vessels due to their size, and (IV) specific requirements make it challenging to culture
and store SCs [8].

SC-derived exosomes (SC-Exos) as a cell-free therapy have been shown to be a promis-
ing strategy in addressing challenges associated with the administration of SCs, according
to their negligible tumorigenicity, easier manipulation, standard storage requirements, and
availability [9]. Exosomes are the smallest type of lipid-bilayer EVs with a 30–120 nm diam-
eter size, similar to other EVs (microvesicles and apoptotic bodies), take part in intracellular
communications as a paracrine factor, and can be secreted from many cell types including
SCs [10,11]. Although exosomes secreted from different sources share a conserved general
composition (Figure 1), they can be wildly diverse depending on the origin of the cell type
and its microenvironmental stresses and conditions [12]. Accordingly, by inheriting their
origin cell molecular pattern in their cargo composition, SC-Exos can affect their recipient
cells similarly to their parental cells [13].

Figure 1. Exosome composition. Exosomes share a conserved cargo composition consisting of
proteins, DNA, mRNAs, and miRNAs, which can be regulated according to the secreting cell type and
its microenvironment. Abbreviations: MHC, Major histocompatibility complex; miRNA, microRNAs;
lncRNA, long noncoding RNA.
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The administration route is one of the determining factors in the success and effec-
tiveness of therapeutic agents. Introducing drugs directly to the lungs is suitable for
treating respiratory diseases, mainly because the therapeutic agent could reach the region
affected by the disease without entering circulation [14]. Therapeutic ingredients can be
injected directly into the trachea (i.e., intratracheal instillation) or introduced to the lungs
in aerosolized form using devices such as nebulizers and inhalers. Instillation via an endo-
tracheal tube temporarily placed in the trachea is more invasive than inhalation; however,
both approaches are considered noninvasive compared to invasive methods such as par-
enteral administration [15–17]. Several clinical and preclinical studies have investigated
the potential of pulmonary delivery of SC-EVs and SC-Exos via intratracheal instillation
and inhalation. Further in this review, we discuss the biogenesis of SC-Exos, their role and
mechanism of action in treating lung diseases, and their potential to be administered via
the direct pulmonary route.

2. Exosome Biogenesis

Exosome biogenesis starts with the formation of an early endosome that matures
into a late endosome. Exosomal cargos are then segregated into microdomains on the late
endosome membrane. Exosome biogenesis starts with the formation of an early endosome
that forms by several endocytic vesicle fusion. Exosomal cargos are then segregated into
microdomains on the endosome membrane. Further, these microdomains bud into the
lumen of the endosome and form a multivesicular body (MVB), also referred to as a late
endosome, containing numerous intraluminal vesicles (ILVs) that can be secreted upon
fusion of this MVB with the plasma membrane or become degraded by MVB fusion with
the lysosome [18]. Although this pathway is generally accepted, it does not seem to be the
only mechanism of exosome biogenesis. Multiple studies suggested that exosomes can be
formed and secreted by direct budding from the plasma membrane in some cell types and
circumstances [19–21].

The protein sorting process into ILVs can be regulated by both endosomal sorting
complexes required for transport (ESCRT)-dependent and independent pathways. ESCRT
machinery consists of four main ESCRT complexes, including ESCRT-0, ESCRT-I, ESCRT-
II, and ESCRT-III, and sort proteins into ILVs in ubiquitin-dependent and independent
pathways. In the ubiquitin-dependent pathway, ubiquitylated proteins are recognized and
encountered by ESCRT-0. By joining ESCRT-I and ESCRT-II to the complex, a strong recog-
nition domain with a high affinity for ubiquitinated substrates forms on the endosomal
membrane and buds into the inside. With ESCRT-III convergence with the complex, these
buds can further be released into the intraluminal space, and the cargo proteins can be deu-
biquitinated by the deubiquitylating enzyme to rescue the ILVs from lysosomal degradation.
In addition, nonubiquitinated proteins can be sorted into ILVs via the ESCRT pathway in-
tersection by syntenin and ALIX (ALG-2-interacting protein X; an ESCRT accessory protein)
proteins, which clusters nonubiquitinated proteins into microdomains and bridges them
and the Vps32 (Vacuolar sorting-associated protein 32) ESCRT-III subunit, respectively [22].
Additionally, ESCRT-independent pathways mediated by ceramide (ESCRT-independent
ILV budding), tetraspanins such as CD63, CD81, CD82, and CD9 (ESCRT-independent
endosomal sorting regulation), and HSP70 and HSC70 (selective cytosolic protein cosorting
into ILVs) can result in ILV formation and regulation separately from the ESCRT machinery.
However, the role of both the ESCRT-dependent and independent pathway in determining
ILV composition is necessary and routinely regulates ILV formation simultaneously [23].

3. Stem Cell-Derived Exosome Therapeutic Effect on Lung Diseases
3.1. Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) is a clinical condition resulting from vari-
ous risk factors, including pneumonia, sepsis, aspiration of gastric contents, trauma, and
other less common precipitants [24,25]. ARDS is considered a more severe form of acute
lung injury as it shares similar pathophysiological conditions. ARDS is associated with
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increased alveolar–capillary permeability to fluid, proteins, neutrophils, and inflammatory
cells resulting in enhanced inflammation, accelerated autophagy, epithelial-mesenchymal
transition (EMT), and decreased alveolar fluid clearance, leading to pulmonary edema,
impaired gas exchange, hypoxemia, and PF [26–28]. Various stimuli such as hypoxia,
cytokines, chemokines, thrombins, primed leukocytes, lipopolysaccharides (LPS), and
damage-associated molecular patterns can shift the alveolar-capillary membrane toward
dysfunction [24]. With the relatively high rate of ARDS-associated mortality and mor-
bidity [28], and, on the other hand, the promising SC and SC-Exo regenerative and im-
munomodulatory properties, several studies evaluated SC-Exo effects on ARDS models
and investigated the underlying mechanisms (Table 1) [29–34].

Table 1. Effects of stem cell-derived exosomes (SC-Exos) on acute respiratory distress syndrome
(ARDS) models.

Factor Study Model Cell Source Target Effect Reference

miR-182-5p,
miR-23a-3p

Lipopolysaccharide
(LPS)-induced

ARDS

Mesenchymal stem
cells (MSCs) Ikbkb, USP5

Immunomodulation and
tissue recovery via

IKKβ/nuclear factor
kappa-light-chain-enhancer
of activated B cells (NF-κB)/

hedgehog suppression

[35]

miR-377-3p LPS-induced
ARDS

Umbilical
cord-derived

MSCs (UCMSCs)

Regulatory
associated protein

of mammalian
target of

mTOR (RPTOR)

Injury recovery by RPTOR
suppression and

inducing autophagy
[36]

miR-22-3p LPS-induced
ARDS

Umbilical cord
blood-derived

MSCs (UCBMSCs)

Frizzled class
receptor 6

(FZD6)/Wnt

Immunomodulation via
decreasing FZD6 expression,

leading to
NF-κB suppression

[37]

miR-150 LPS-induced
ARDS

Bone
marrow-derived
MSCs (BMSCs)

MAPK

Immunomodulation via
suppression of

MAPK-associated proteins
and cleaved caspase-3 and

B-cell lymphoma 2
(Bcl-2) promotion

[38]

miR-30b-3p LPS-induced
ARDS MSCs SAA3

Immunomodulation via
suppression of serum
amyloid A-3 (SAA3)

[39]

miR-425 HYRX-induced
ARDS BMSCs PTEN PI3K/AKT upregulation via

suppressing PTEN [40]

miR-126 Histone-induced
ARDS

Adipose-derived
MSCs (AMSCs) PI3K/AKT PI3K/AKT upregulation [41]

Unknown IIR-induced ARDS BMSCs TLR4/NF-κB

Immunomodulation via
downregulation of toll-like

receptor 4 (TLR4)/
NF-κB pathway

[42]

miR-384-5p LPS-induced
ARDS BMSCs Beclin-1

Immunomodulation via
inducing autophagy in

disordered macrophages
[43]

miR-451 Burn-induced
ARDS UCMSCs TLR4/NF-κB

Immunomodulation via
TLR4 and NF-κB
downregulation

[31]
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Various in vitro and in vivo studies on LPS-induced ARDS models reported a signifi-
cant increase in inflammatory factors, leading to enhanced autophagy and EMT progress.
Investigations on an LPS-induced murine lung epithelial-12 (MLE-12) model revealed
that upregulation in the nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) signaling pathway is the main factor in LPS-induced inflammation, which further
initiates EMT by the hedgehog signaling pathway activation via sonic hedgehog protein
transcription. Additional treatment with MSC-Exos suggests NF-κB regulation, leading
to inflammation suppression and EMT reverse. Further investigations into the underly-
ing MSC-Exo mechanism of action demonstrate that MSC-Exo contains miR-182-5p and
miR-23a-3p, targeting Ikbkb and Usp5 genes, respectively. Ikbkb and Usp5 encode IKKβ

(inhibitor of nuclear factor kappa-B kinase subunit beta) and Usp5 (ubiquitin-specific pepti-
dase 5) proteins, and their silencing causes a decrease in IKKβ expression and an increase
in its ubiquitination, leading to a coinhibition of the NF-κB pathway [35]. A study on
LPS-induced NR8383 cell treatment with UCMSC-Exos demonstrated that UCMSC-Exos
can reduce the inflammatory reaction, suppress oxidative stress response, and decrease
NF-κB expression via frizzled class receptor 6 (FZD6) downregulation by transferring
miR-22-3p into LPS-induced cells and targeting FZD6 directly [37]. Although FZD6 mainly
serves as an initiator in the Wnt signaling pathway, it can lead to NF-κB activation via
Wnt/β-Catenin signaling pathway mediation [44]. Serum amyloid A-3 (SAA3) is a down-
stream gene in the NF-κB signaling pathway whose activation enhances proinflammatory
cytokine activation [45], and its upregulation has been shown to play a role in inflammation
occurrence in MLE-12 cells after LPS treatment. It is shown that MSC-derived exosomal
miR-30b-3p is another anti-inflammatory factor in MSC-Exos that can suppress inflamma-
tion and enhance cell proliferation by decreasing SAA3 expression [39]. In addition, it is
reported that MSC-Exos inhibit inflammation in an intestinal ischemia reperfusion-induced
(IIR-induced) ARDS model by NF-κB suppression via downregulating toll-like receptor-4
(TLR4); however, the underlying mechanism has not yet been identified [42].

In addition to NF-κB, MSC-Exos are reported to ameliorate ARDS by manipulating
other signaling pathways in different ARDS models. A recent study on an LPS-induced mice
ARDS model suggested that hUCMSC-Exos treatment can effectively reverse LPS induction
complications, including inflammatory infiltration, increased bronchoalveolar lavage fluid
protein concentration, and increased interleukin (IL)-6 and IL-1β concentrations. Moreover,
it was revealed that the administration of hUCMSC-Exos significantly enhances autophagy.
Further investigations on LPS-treated human pulmonary alveolar epithelial cells and the
underlying mechanism of hUCMSC-Exos in autophagy induction stand for the exosomal
miR-377-3p pivotal role, which targets the regulatory associated protein of mTOR (RPTOR).
Although the exact mechanism by which RPTOR silencing induces autophagy is still
unclear, it is shown that exosomal miR-377-3p-mediated RPTOR downregulation can
effectively improve LPS-induced ARDS in vitro and in vivo [36]. Figure 2 demonstrates
the underlying mechanism of actions revealed by the mentioned studies in which SC-Exos
improve alveolar cells in ARDS.

As one of the pivotal players in ARDS occurrence and progression, alveolar macrophages
can also be affected by MSC-Exos, resulting in ARDS improvement. It is demonstrated that
bone marrow-derived MSC (BMSC)-derived exosomes (BMSC-Exos) uptake by alveolar
macrophages in LPS-induced ARDS mice can induce their differentiation from a proinflam-
matory type into an anti-inflammatory type via inhibiting M1 polarization and promoting
M2 polarization [46]. Further, it is shown that by targeting and suppressing Beclin-1
mediated by exosomal miR-384-5p, BMSC-Exo treatment can inhibit the viability loss,
prevent apoptosis, and attenuate autolysosome and autophagosome punctum formation in
LPS-induced alveolar macrophages, which leads to controlling the alveolar macrophage
autophagy induced by LPS [43].
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Figure 2. SC-Exo miRNA cargo regulates dysregulated pathways in ARDS. NF-κB is one of the main
pathways in which out of balance activity in ARDS leads to lung damage. NF-κB upregulation during
ARDS leads to an increased level of proinflammatory factors and sonic hedgehog (Shh) protein,
which triggers the hedgehog signaling pathway and begins epithelial–mesenchymal transition in
alveolar-epithelial cells. SC-Exos can restore balance to the NF-κB pathway activity and prevent
inflammation and EMT, mediated by several miRNAs targeting different proteins upstream of the
NF-κB, including TLR4 and IKKβ. FZD6 is another target of SC-Exo miRNA, and its suppression can
lead to NF-κB downregulation; however, it is mainly associated with the Wnt/β-Catenin pathway,
and the underlying relation between FZD6 and NF-κB is not fully determined.

3.2. Bronchopulmonary Dysplasia

Bronchopulmonary dysplasia (BPD) is a multifunctional chronic lung disease associ-
ated with prematurity and is one of the most common complications in preterm infants
with low birth weight [47]. BPD can be associated with airway distortion, bronchial mus-
cle hypertrophy, pulmonary hypertension leading to capillary remodeling, and severe
inflammation with extensive fibrotic changes, which altogether can cause impaired pul-
monary function and reduced exercise tolerance that continues into adulthood [48,49]. The
improvement in infant viability in past decades has resulted in more premature infants
with diagnosed BPD surviving into adulthood, and, as a consequence, more adult cases
with BPD are diagnosed [50]. Therefore, new and effective treatments are required for
treating and reversing BPD complications, and MSC-Exos are shown to be promising to
address this issue. It is shown that exposing newborn mice to hyperoxia (HYRX; 75% O2)
from postnatal day (PN) 1 to PN7 and returning them to room air (NRMX) for the next
seven days demonstrates similar histological patterns to the human BPD, characterized
by alveolar growth impairment, large airspaces, and incomplete alveolar septation. A
more severe model can be achieved by exposing newborn mice for an extra seven days
(from PN1 to PN14), resulting in additional collagen deposition. These animal models
and MSC-Exos from human bone marrow and the umbilical cord Wharton’s Jelly effects
on them were investigated in a study in the short- and long-term. It has been shown
that treatment of the HYRX-exposed group with a single dose of intravenous injection
of BMSC-Exos or Wharton’s Jelly—a mucoid connective tissue—MSC (WJMSC)-derived
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exosomes (WJMSC-Exos) at PN4 can dramatically improve the alveolarization and restore
lung architecture almost completely in the short-term (PN14) compared with the untreated
HYRX-exposed group. This effect was compared with human dermal fibroblast-derived
exosomes as a control, which demonstrated no significant protective effect as assessed at
PN14. Over a long-term assessment, these effects were studied at PN42, suggesting robust
improvement in pulmonary development, significantly decreased collagen deposition,
peripheral pulmonary arterial remodeling, HYRX-induced PH improvement, and overall
lung function improvement after HYRX-induced lung injury. Additional whole-organ
RNA sequencing and a gene ontology analysis on the NRMX- and HYRX-exposed groups
at PN7 indicate an upregulation in genes associated with adaptive immune response, in-
flammatory response, and leukocyte-mediated immunity in the HYRX-exposed group.
This HYRX-mediated immune response induction is demonstrated to be modulated in the
WJMSC-Exo-treated group by blunting genes involved in inflammation, adaptive immune
response, IFN-γ-mediated signaling, and production of cytokines and granulocytes leading
to suppressing the M1 (proinflammatory phenotype) macrophage and augmenting the
M2-like (anti-inflammatory phenotype) macrophage and shifting the overall transcriptome
profile of the HYRX group toward the NRMX group [51]. Another study compared the
effect of “early” and “late” intervention of WJMSC-Exos on prolonged neonatal HYRX-
induced lung injury. In this study, newborn mice were exposed to HYRX (75% O2) for
14 days and divided the animals into two groups, treated with a single dose of MSC-Exos at
PN4 (early intervention) or a serial dose of MSC-Exos at PN18, 25, 32, and 35 (late interven-
tion). It is demonstrated that the late intervention of MSC-Exos can dramatically improve
alveolarization, reverse elevations in pulmonary vascular muscularization, ameliorate
alterations in the right ventricular hypertrophy, and restore functional exercise capacity in
HYRX-exposed mice at PN60, with no substantial difference with the early intervention [52].
Studies on the MSC-Exos mechanism of action suggest tumor necrosis factor-inducible
gene 6 protein (TSG-6), an immunomodulatory protein, as a crucial factor in MSC-Exo
effects on BPD models. After validating the human WJMSC-Exo immunomodulatory and
regenerative effect on BPD models, BPD models and human tracheal aspirates in patients
with BPD development were checked for TSG-6 RNA level change, demonstrating a signifi-
cant elevation in the expression of TSG-6 in comparison with the non-BPD group. However,
in the WJMSC-Exo-treated group, the TSG-6 level decreased to that of the NRMX group.
By Western blotting, TSG-6 was detected in WJMSC-Exos. Human recombinant TSG-6 was
injected intraperitoneally into PBD mouse models at PN2 and 4 to investigate whether
TSG-6 in WJMSC-Exos acts as one of the mediators in improving the BPD models, which
results in significant immunomodulation and an overall lung architecture improvement.
Additionally, loss of function of TSG-6 was performed by the administration of the TSG-6
neutralizing antibody or the introduction of a TSG-6 short interfering RNA (siRNA) into
exosome donor cells (25 weeks gestational age human WJMSC). A further analysis suggests
no difference between BPD and the exosome-treated group, demonstrating TSG-6 plays a
crucial role in the WJMSC-Exo effect on attenuating BPD in mouse models [53].

3.3. Pulmonary Hypertension

Pulmonary hypertension (PH) is a chronic disorder defined as an increase in mean
pulmonary arterial pressure (greater than 25 mm Hg at rest). PH has been divided into
five subtypes: (I) pulmonary arterial hypertension (PAH); (II) PH caused by left-sided
heart disease; (III) PH due to lung disease and/or hypoxia; (IV) chronic thromboembolic
PH; and (V) PH with unclear or multifactorial etiologies [54]. Several factors can induce
PH, and currently, most therapies focus on improving the symptoms of PH. In recent
years, advances in the understanding of underlying molecular mechanisms of PH, such as
vascular remodeling and the role of leukocytes, led to the development of new therapies
that potentially can reverse the underlying mechanisms of the disease. SCs and their
secretome have been proven to reverse the PH process by simultaneously affecting several
pathways [55].
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Recent studies indicated that SC-Exos are effective in PH treatment. A 2012 study
demonstrated that MSC-Exos and human umbilical cord-derived MSC (UCMSC)-derived
exosomes (hUCMSC-Exos) inhibit PH through several mechanisms. The injection of MSC-
conditioned media into the hypoxia-induced PH mouse model suppressed the increase in
the hypoxia-induced mitogenic factor and monocyte chemoattractant protein-1. Further
experiments showed that MSC-conditioned, which is depleted from exosomes, had no
considerable inhibitory effect, but isolated MSE-derived exosomes suppressed hypoxic
inflammation in the animal model. MSC-Exos exert their function by inhibiting signal
transducer and the activator of transcription 3 (STAT3); its activation has a crucial role
in respiratory epithelial inflammatory responses. In addition, MSC-Exos affect levels of
several types of miRNA by suppressing STAT3; the transcription of the miR-17 superfamily
is upregulated in pulmonary artery endothelial cells in response to hypoxic conditions.
Additionally, the miR-204 level in pulmonary artery smooth muscle cells (PASMCs) is
inversely related to the severity of PH. The study suggests that MSC-Exos might attenuate
PH by preventing the hypoxic induction of the miR17 superfamily and enhancing the levels
of miR-204 [55–57].

PH, particularly PAH, is mainly associated with a progressive remodeling of small
pulmonary arteries, causing right heart failure and death [58]. Studies indicated that
dysregulation of some signaling pathways, such as the Wnt pathway, could involve PAH
pathogenesis [59,60]. Wnt5a is a signaling protein that activates the Wnt pathway and
regulates cell fate and embryo development. The reduction of Wnt5a has been found as
a role player in regulating PAH through vascular remodeling [61]. Zhang et al., demon-
strated that MSC-Exos are effective against vascular remodeling and right ventricular
hypertrophy caused by monocrotaline-induced PH by regulating Wnt5a. The study also
showed that the mechanism of action of MSC-Exos might be related to controlling the bone
morphogenetic protein type II receptor (BMPRII). Mutations in the BMPRII gene, as a trans-
membrane receptor associated with the bone morphogenetic protein pathway, are related
to PAH’s pathogenesis. Furthermore, MSC-Exos prevented the endothelial to mesenchymal
transition process by regulating the Wnt5a/BMPRII signaling pathway [62–64].

Mitochondrial dysfunction is another factor involved in the pathogenesis of PH [65,66].
Sirtuin 4 (SIRT4), a mitochondrial protein, is a member of the mammalian sirtuin family
with ADP-ribosyltransferase activity. In response to hypoxic conditions, the expression of
the SIRT4 gene increases to block the tricarboxylic acid cycle and protect the cell against
oxygen deficiency. However, chronic activation of SIRT4 might lead to mitochondrial
dysfunction [67,68]. Hogan et al., indicated that MSC-Exos could decrease SIRT4 gene
expression in hypoxia-exposed PASMCs and the semaxinib/hypoxia rat model of PAH.
It is proposed that reducing SIRT4 increases tricarboxylic acid cycle metabolites and,
consequently, mitochondrial metabolism [69].

3.4. Pulmonary Fibrosis

Pulmonary fibrosis (PF) is a progressive and destructive lung condition driven by the
fibrotic response due to various factors. Idiopathic PF (IPF), the most common form of PF,
is identified by replacing healthy lung tissue with extracellular matrix and transforming
alveolar structure [70,71]. Currently, there are two to drugs approved by the Food and
Drug Administration (FDA) for PF, but neither of them can reverse the disease process,
and the only available cure is lung transplantation, which has its own risks. According
to studies, dysregulation of hedgehog, transforming growth factor beta (TGF-β), notch
and fibroblast growth factor signaling pathways associate lung development and repair.
However, dysregulation of these pathways can lead to different diseases such as PF [72].
BMSC-Exos have been shown to attenuate PF in the rat model of silica-induced PF. BMSC-
Exos can reduce levels of the TGF-β1 and Wnt/β-catenin signaling pathways and inhibit
the progress of the EMT process [73].

In recent years, the understanding of the function of miRNA in IPF and related path-
ways has increased. An alteration of about 10 percent of miRNA in an IPF lung indicates
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that miRNAs might play essential roles in treating PF. Previous studies demonstrated the
role of some types of miRNA, such as let-7, miR-155, miR-21, and miR-29, in the patho-
genesis of IPF [74]. Xu et al., showed that human UCMSC-Exos could transfer let-7i-5p
into fibroblast cells and interfere with TGFBR1/Smad3 signaling pathways. The effect
of UCMSC-Exos against the silica-induced mice model was more beneficial than MRC-5
(human embryonic lung fibroblasts)-derived exosomes (Figure 3a) [75]. Sun et al., demon-
strated that menstrual blood-derived SC-derived exosomes contain Let-7 miRNA and
relieved bleomycin-induced PF and alveolar epithelial cell damage (Figure 3b). Exosomal
Let-7 suppresses the expression of lectin-like oxidized low-density lipoprotein scavenger
receptor-1 (LOX1) and has a protective effect on alveolar epithelial cells [76]. Moreover,
the Let-7 family and two other miRNAs, miR-30a and miR-99, have been identified in
lung spheroid cell-derived exosomes (LSC-Exos). LSCs are derived from adult lungs and
contain lung progenitor cells and supporting stromal cells and can be used for therapeutic
applications. It was indicated that LSC-Exos, compared with MSC-Exos, have a better
performance against the rat model of bleomycin- and silica-induced PF [77,78].

Figure 3. Effects of SC-Exos on PF in mice. (a) Human UCMSC-derived exosomes (hucMSC-Exos) but
not MRC-5-Exos alleviated silica-induced mice model of pulmonary fibrosis (PF) (H&E and Masson
staining; magnifications of 200× via light micrograph [75]. (b) Menstrual blood-derived SC-derived
exos showed protective effects in bleomycin (BLM)-induced PF in mice (H&E and Masson staining;
the scale bar represents 200 µm) [76].
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The immune system is another factor associated with the pathogenesis of IPF [79].
It is well known that SC-Exos have immunomodulatory properties, and recent studies
showed that at least part of the protective effects of SC-Exos against PF is due to the
immune system’s regulation [8]. SC-Exos are reported to regulate the function and behav-
ior of different immune system cell types, such as neutrophil, macrophage, and T cells,
and their immunomodulatory properties are effective in IPF treatment [80]. Mansouri
et al., showed that MSC-Exos could inhibit and revert the process of bleomycin-induced
PF and suggested that this effect may be due to the systemic modulation of monocyte
phenotypes [81]. Furthermore, iPSC-derived exosomes (iPSC-Exos) can alleviate PF by
suppressing M2-type macrophages. A recent study showed that iPSC-Exos contain high
levels of MiR-302a-3p miRNA and detected the binding between MiR-302a-3p and ten-
eleven translocation 1 (TET1). TET1 functions as a DNA methylation and gene transcription
modulator and may have roles in fibrosis by regulating M2-type macrophages. The study
suggests that MiR-302a-3p is a critical mediator in iPSC-Exos that ameliorates PF by TET1
and, consequently, M2-type macrophages [82].

3.5. Asthma

Asthma is one of the most common chronic and nontransmissible lung diseases
affecting children and adults. Asthma has been regarded as a heterogeneous condition
caused by a complex interplay of genetic and environmental factors. Inhaled corticosteroids
remain the mainstay intervention to control asthma, but their effects vary based on the
subtype of disease [83,84]. SCs and SC-Exos may be a potential therapy that may use as a
complement or alternative medication [85]. Immune system malfunction and disruption
in signaling pathways have been associated with the pathophysiology of asthma [86,87],
and SC-Exos may be beneficial by regulating the involved pathways [88]. Dong et al.,
demonstrated that MSC-Exos could reduce lung inflammation and pulmonary hyper-
responsiveness in the mice model of severe steroid-resistant asthma. Experiments on
LPS-stimulated RAW 264.7 cells showed that MSC-Exos regulate macrophage polarization
activation of the NF-κB and PI3K/AKT signaling pathways through tumor necrosis factor
receptor-associated factor 1 protein [89]. Moreover, another study found that MSC-Exos
could moderately increase lung interstitial macrophages and promote protective effects
in ovalbumin-sensitized mice. Interstitial macrophages are shown to produce IL-10 and
improve allergic asthma in mice [90]. The miRNA content also plays some roles in the
function of exosomes against asthma. A study identified miR-301a-3p in adipose-derived
MSC (ASC)-derived exosomes (ASC-Exos) and tested its function against platelet-derived
growth factor-treated airway smooth muscle cells (ASMCs). The results imply that the
exosomal miR-301a-3p reduces remodeling and inflammation of PDGF-BB-treated ASMCs
by targeting the 3′UTR region of STAT3 [90].

3.6. Other Pulmonary Disorders

Sepsis is a life-threatening condition caused by an improper host response to infection.
The lung is the most common site of the infection and may fail during sepsis [91]. Recent
studies proposed some roles for SC-Exos in improving sepsis-induced lung failure. SC-Exos
could modulate various pathways involved in sepsis-induced lung injury pathogenesis
and regulate the immune system. IL-27 is a cytokine that increases during sepsis, and its
suppression could be a potential target in treating sepsis [92]. ASC-Exos have been shown
to attenuate lung injury in septic mice by decreasing pulmonary macrophages and reducing
their IL-27 expression [93]. The molecular mechanism of action of SC-Exos could be related
to their miRNA content. A study identified exosomal miR-16-5p derived from ASC as a
regulator of TLR4 in septic mice. By this mechanism, ASC-Exos promoted macrophage
polarization and alleviated sepsis-induced lung injury [93].

SC-Exos have been shown to be effective against cigarette smoke (CS)-induced lung
inflammation. Xu et al., demonstrated that BMSC-Exos could regulate inflammatory and
apoptosis-related factors by repressing the HMGB1/NF-κB pathways. Regulatory effects
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of exosomes reduced CS-induced lung injury in vivo and in vitro [94]. In another study,
immunomodulatory effects of ASC-Exos against CS-induced lung injury were determined.
The results suggest that alveolar macrophage pyroptosis is associated with CS-induced lung
inflammation, and ASC-Exos ameliorate the inflammation and mucus hypersecretion in
CS-exposed mice by preventing the pyroptosis process in alveolar macrophages [95]. Some
recent studies reported the benefits of SC-Exos to treat other pulmonary conditions, such as
ventilator-induced lung injury [95], diffuse alveolar hemorrhage [96], ischemia/reperfusion
injury (IRI) [97], pulmonary embolism [98], and basement membrane-induced fibrosis [99].

4. Pulmonary Delivery of Stem Cell-Derived Exosomes

Several routes may be used to deliver drugs into the body, and preferring one depends
on multiple factors such as the disease, the affected organ, and the drug’s properties [100].
The pulmonary route has been used for thousands of years and has several advantages
over other delivery routes: The lungs have a large surface area that is suitable for the rapid
absorption of drugs; there are no extreme PH and distractive enzymes that exist in other
routes; drugs do not need to pass first-pass liver; drugs rapidly transfer from the alveolar
area to the lungs, and, finally, delivering drugs directly to the lungs when the lungs are the
disease site minimizes the side effects on other organs [101–103]. However, the lung has
its defense mechanism; for instance, macrophages and mucus capture and remove foreign
particles in the airway, and to deliver therapeutic agents, this removal by macrophages
should be taken into account [104]. Nevertheless, the pulmonary route is appropriate for
drug delivery and is used for various respiratory and lung diseases such as asthma [105].
Intratracheal instillation and inhalation are two noninvasive pulmonary drug delivery
approaches recently used to introduce SC-Exos to the lungs.

4.1. Intratracheal Instillation

The intratracheal instillation process can expose chemical substances directly to the
trachea [15]. Instillation has some advantages over inhalation; compared to inhalation,
installation is a simple technique, allows precise determination of delivered dose to the
lungs, prevents the exposure of administered substances to the skin, and permits intro-
ducing substances to a specific region in the lungs. However, the use of this method is
limited mainly because of its invasive nature, uneven distribution, and prolonged clearance
of substances in the lungs (Figure 4) [106]. Instillation conventionally has been used to
evaluate the respiratory toxicity of substances and the induction of pulmonary inflamma-
tion in animal models, but many studies employed this method to administer therapeutic
agents [107]. A few studies investigated the effects of pulmonary instillation of SC-Exos on
animal models of some lung disorders. Table 2. summarizes some of these studies.

Table 2. Preclinical studies that used intratracheal instillation for delivering SC-Exos.

Disease Source of Exosomes Instilled Dose Animal Model Refs

Severe steroid-resistant
asthma (SSRA)

Human
UCMSCs

100 µg Exos in 50 µL
Phosphate-buffered

saline (PBS)

Ovalbumin (OVA)/:
(complete Freud’s adjuvant)

CFA-induced SSRA mice
[89]

Ischemia/reperfusion
(I/R) injury Murine BMSC Exos derived from

2 × 106 in 30 µL PBS I/R model mice [97]

Cigarette smoke
(CS)-induced lung injury Human ASC

30 µL of purified Exos
solution (as explained in

the original paper)
CS-exposed C57BL/6 mice [95]

ARDS BMSC
50 mg Exos in 10 mL PBS

and 100 mg Exos in
10 mL PBS

LPS-induced ARDS
C57BL/6 mice [46]

Phosgene-induced acute
lung injury (ALI) Rat BMSC Exos isolated from

3 × 106 MSC (50 mL)
Phosgene-induced ALI

Sprague–Dawley rat [108]
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Figure 4. A comparison of advantages and disadvantages of intratracheal instillation and inhalation
related to human use.

4.2. Inhalation

Inhalation therapy has become more prevalent in recent years as it offers a noninvasive
and efficient drug delivery route to the lungs. For a therapeutic agent to be inhaled, in
combination with the aerosol generator of choice, it should form an aerosol droplet within
a highly respirable distribution, usually considered to be between 1 and 5 µm (Andrersen
Cascade Impactor, operated at 28.3 liters per minute). Additionally, aerosol generator
devices are medical devices that aerosolize drugs to deliver them via inhalation [109].
Currently, there are three prevalent aerosol generator technologies in commercial use,
with many new technologies under development or as of yet not commercially available:
(I) pressurized metered-dose inhalers (pMDIs); (II) dry powder inhalers; and (III) medical
nebulizers [110]. The choice of device should consider the required target lung dose and
the likely patient intervention at the time of administration, as both have been shown
to have significant influence [111,112]. The pMDIs are the most prescribed device for
lung diseases such as COPD and asthma, but regarding clinical research, nebulizers are
the most used instrument [113]. Nebulizers are preferred for early experiments because
formulating a liquid is more accessible than making dry powder, and also nebulizers
are appropriate for use on animal models [114]. Among the three common types of
nebulizers—jet, ultrasonic, and vibrating mesh nebulizers (VMNs)—the jet nebulizers have
been the most commonly used [115]. Some studies investigated jet and VMNs to deliver
SCs into the lungs. Ultrasonic nebulizers are not considered appropriate for SC delivery,
primarily because of the excessive heat produced and its effect on SC viability [116]. A
2013 study showed that, among three nebulizers, MSCs had the highest survival rate when
jet nebulizers were used as the delivery device; however, aerosol generator technologies
continue to advance, and so they warrant further investigations [117–119].

A few studies have investigated the effects of nebulization on SC-secretome or exo-
somes and its application in pulmonary diseases. The VMN was shown to be a suitable
device to deliver BMSC and UCMSC secretome to the lungs [116]. Moreover, Dinh et al.,
used a jet nebulizer to introduce MSC- and LSC-Exos to the silica model of induced PF.
Approximately 10 × 109 exosome particles per kg of body weight were given through
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the nebulizer, and any adverse effects were observed on the heart, kidneys, liver, and
spleen after treatment. Interestingly, nebulized secretomes and exosomes alleviated PF
in silica-induced models and improved lung health (Figure 5) [77]. Inhalation delivery of
exosomes is being investigated in several recent clinical trials. The following section will
mainly focus on the role of exosomes and their delivery route in these trials.

Figure 5. Administration of SC-Exos via the inhalation route. (a) The schematic representation of lung
spheroid cell (LSC)-secretome (LSC-sec) preparation and animal model treatment with aerosolized
secretome. The mice model of PF was obtained by intratracheal injection of bleomycin, and after
ten days, 10 mg of secretome protein per kg of body weight was introduced to mice by a nebulizer
for seven consecutive days. On day 18, animals were euthanized, and lungs were harvested for
histological analysis. (b) Macroscopic view of harvested lungs from bleomycin-induced mice. LSC-sec
and MSC-sec improved the lung condition in PF mice [77].

5. Clinical Trials

Some clinical trials have been conducted to evaluate the benefits of SC-Exos against
lung disorders. Coronavirus disease 2019 (COVID-19) is an infectious disease caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus that
was first isolated from the respiratory epithelium of patients suffering from unexplained
pneumonia in 2019 [120,121]. COVID-19 affects different organs and causes serious compli-
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cations, such as pneumonia, ARDS, acute liver injury, and multiorgan failure [122,123]. SCs
and SC-Exos, with their immunomodulatory and protective properties, can help control
and prevent destructive COVID-19 complications [8]. Currently, a number of clinical and
preclinical trials are underway in order to evaluate the safety and efficacy of SCs and
SC-Exos in severe COVID-19 patients. Table 3 indicates some of the clinical trials that
assessed the safety and effectiveness of SC-Exos against respiratory diseases.

Table 3. Clinical trials conducted with SC-Exos on patients with respiratory diseases (www.
clinicaltrials.gov; accessed on 20 April 2022.).

Trail
Identification Official Title Conditions Source of

Exosomes
Administration

Route Status

NCT04602104

A Clinical Study of
Mesenchymal Stem Cell

Exosomes Nebulizer for the
Treatment of ARDS

ARDS Human MSCs Inhalation Recruiting

NCT04544215

A Clinical Study of
Mesenchymal Progenitor

Cell Exosomes Nebulizer for
the Treatment of

Pulmonary Infection

Drug-resistant Human ASCs Inhalation Recruiting

NCT04313647

A Tolerance Clinical Study
on Aerosol Inhalation of
Mesenchymal Stem Cells

Exosomes In
Healthy Volunteers

Healthy MSCs Inhalation Completed

NCT04602442

Safety and Efficiency of
Method of Exosome

Inhalation in COVID-19
Associated Pneumonia

COVID-19
Pneumonia MSCs Inhalation Enrolling by

invitation

NCT04491240

Evaluation of Safety and
Efficiency of Method of
Exosome Inhalation in

SARS-CoV-2
Associated Pneumonia.

COVID-19
Pneumonia MSCs Inhalation Completed

NCT04276987

A Pilot Clinical Study on
Inhalation of Mesenchymal

Stem Cells Exosomes
Treating Severe Novel

Coronavirus Pneumonia

COVID-19
Pneumonia Allogenic ASCs Inhalation Completed

NCT05216562

Efficacy and Safety of
EXOSOME-MSC Therapy to

Reduce
Hyper-inflammation In

Moderate
COVID-19 Patients

SARS-CoV2
Infection MSCs Intravenous Recruiting

NCT04798716

The Use of Exosomes for the
Treatment of Acute
Respiratory Distress
Syndrome or Novel

Coronavirus Pneumonia
Caused by COVID-19

COVID-19
ARDS MSCs Intravenous Not yet

recruiting

According to the ongoing and completed trials, inhalation is the preferred route in
clinical studies (rows 1–6 in Table 3). In one study, preclinical and clinical efficacy and
safety of MSC-derived EVs were determined. Nebulizing human ASC-derived EVs (haMSC-

www.clinicaltrials.gov
www.clinicaltrials.gov
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EVs) using VMNs showed an 80 percent increase in survival rate in P. aeruginosa-induced
murine lung injury model. Considerable side effects were not observed after administering
haMSC-EVs nebulization to twenty-four volunteers. Based on these results, a randomized,
double-blind, placebo-controlled clinical study is in progress to determine the efficacy of
haMSC-EV nebulizers for treating ARDS (NCT04313647) [124]. In another nonrandomized
open-label clinical trial, 24 COVID-19 patients were treated with exosomes (ExoFloTM)
derived from allogeneic BMSC. At the end of the study, the intravenous administration of
exosomes led to a survival rate of 83 percent. In addition, ExoFloTM improved oxygenation,
reduced cytokine storm, and regulated the immune system [125]. Future clinical trials are
needed to determine all aspects of SC-Exos in the treatment of respiratory diseases.

6. Conclusions and Future Perspective

Cell-free therapy has gained much momentum and focus in recent years, and numer-
ous studies have investigated the therapeutic potential of exosomes. In this review, we
discussed the clinical and preclinical studies around SC-Exos for improving the condition of
patients suffering from lung diseases. Further, we talked about the potential of pulmonary
drug delivery as a promising route for administering SC-Exos. Although our knowledge
of exosomes has increased steadily over recent years, the exact mechanism of action of
exosomes remains to be elucidated. Recent studies attributed the function of exosomes
to their RNA cargos, but the precise role of other components is not clearly understood.
In addition, limitations such as high costs and technical challenges make it difficult to
isolate and purify considerable amounts of particular exosomes; however, recent progress
in detecting exosomal bioactive molecules responsible for their therapeutic effects can lead
to designing exosome-mimic particles with similar therapeutic effects. Another challenge
is to immortalize SCs in order to obtain excess quantities of exosomes. However, the cell
should be manipulated with its risk and limitations to achieve this goal. Further studies
should be carried out to determine the potential of aerosolized SC-Exos and identify the
proper device to administer them.
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