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In this study, we investigated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) analysis the effects of
resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson’s
disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson’s disease. Functional
alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or
aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed
revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular
redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein
network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level,
reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus,
our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the

cellular homeostasis in parkin-mutant fibroblasts.

1. Introduction

Parkinson’s disease (PD) is a multifactorial neurodegenera-
tive disorder that predominantly affects the population over
65 years of age [1]. From a clinical point of view, the disease
is characterized by the presence of motor deficit associated
with abnormal intracellular protein deposits called Lewy
bodies (LBs) and loss of dopaminergic neurons, primarily,
within the substantia nigra pars compacta (SNpc) [2]. Several
risk factors were identified including disease-causing muta-
tions in a specific set of genes that mediate the autosomal-
dominant or autosomal-recessive forms of PD [3], among
which mutations in alpha synuclein (SNCA) and in leucine-

rich repeat kinase 2 (LRRK2) are responsible for autosomal-
dominant PD forms whereas mutations in parkin, PTEN-
induced putative kinase 1 (PINK1), DJ-1, and ATP13A2 are
accountable for PD that displays an autosomal recessive
mode of inheritance [3].

The most common mutant gene implicated in familial
PD is parkin, and various loss-of-function mutations occur-
ring in both alleles produce an aggressive, generally early
form of PD [4-6]. Parkin is a cytosolic protein with E3 ubiq-
uitin ligase activity, for ubiquitin-proteasome-dependent
protein turnover, with a central role in mitochondrial main-
tenance and turnover. In response to mitochondrial damage,
PINKI1 induces the activation of parkin by phosphorylation.
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Once activated, parkin conjugates ubiquitin onto proteins on
the outer mitochondrial membrane (OMM), leading to
mitochondrial engulfment by the autophagosome via the
endosomal sorting complexes required for transport (ESCRT)
machinery [7-9]. Pathogenic mutations of parkin lead to the
accumulation of damaged mitochondria and are associated
with several cellular dysfunctions including impaired energy
metabolism, deregulated reactive oxygen species (ROS) pro-
duction, failure of ubiquitin-proteasome pathway, and protein
misfolding [10-13].

Mass spectrometry- (MS-) based studies made possible to
shed lights on the cellular pathways modified after parkin
loss [14-16]. Proteomic analysis of human primary fibroblasts
isolated from patients with a genetic deficit of parkin revealed
that parkin is implicated in the modulation of multiple cellular
functions including cytoskeleton structure dynamics, calcium
homeostasis, oxidative stress response, and protein and RNA
processing [17]. In this cellular model, the absence of parkin
has also been associated with a specific phospholipid and gly-
cosphingolipid lipidomic profile likely related to dysfunction
of autophagy and mitochondrial turnover [18].

Current pharmacological treatments of PD remain
largely symptomatic, and the development of new therapeu-
tic strategies may provide effective alternative treatment
options. In recent years, resveratrol has emerged as a
compound conferring protective effects against metabolic
and other stresses in age-related diseases, including neurode-
generation [19]. Resveratrol (trans—3,5,4'—trihydroxystilbene)
a dietary polyphenol present in several medical plants [20]
demonstrated multiple biological activities, including anti-
inflammatory properties [21], antioxidant effects [22], and
neuroprotection in both cerebral ischemia and neurodegener-
ative diseases, such as Alzheimer’s disease and Parkinson’s dis-
ease [23, 24]. Studies performed on animal models of PD have
shown that resveratrol protects dopaminergic neurons from 6-
hydroxydopamine- (6-OHDA-) and 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine- (MPTP-) induced degeneration,
possibly via modulation of autophagy and proinflammatory
pathways [25-27]. Ex vivo models of PD also gained interest
for the preclinical assessment of the biological and medical
properties of resveratrol. Previous studies of our group
have shown that resveratrol treatment of parkin-null cellu-
lar model induced a partial rescue of mitochondrial func-
tions and oxidative stress through the activation of the
AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/
peroxisome proliferator-activated receptor gamma coactiva-
tor 1-alpha (PGC-1«) pathway [28].

In this work, we investigated by two-dimensional gel
electrophoresis (2-DE) and mass spectrometry (MS) analysis
the effects of resveratrol in parkin-mutant human skin fibro-
blasts. The analysis of proteins differentially expressed
revealed that resveratrol treatment acts on deregulated
specific biological process and molecular function such as
cellular redox balance and protein homeostasis. In particular,
resveratrol was highly effective at restoring the heat-shock
protein network and the protein degradation systems as well
as the GSH/GSSG ratio, together responsible for the main-
taining of the normal protein homeostasis which is essential
to proper cellular function.
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2. Materials and Methods

2.1. Cell Culture Conditions. Primary skin fibroblasts from
one subject affected by an early onset PD with parkin
compound heterozygous mutations (P1 with del exon2-3/
del exon3) and from the parental healthy subject (CTR)
[13, 28] were obtained by explants from skin punch biopsy,
after informed consent. Cells were grown in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% (v/v) fetal bovine serum (FBS), 1% (v/v) L-glutamine,
and 1% (v/v) penicillin/streptomycin, at 37°C in a humidified
atmosphere of 5% CO.,.

In cell culture experiments, resveratrol (Sigma, R5010)
was dissolved in dimethyl sulfoxide (DMSO) and used at
the concentration of 25 uM; control cells were treated with
an equivalent volume of DMSO (vehicle, 0.02%).

2.2. Sample Preparation and Protein Separation by 2-DE. Cell
pellets were dissolved in a lysis solution that contained 7 M
urea, 2M thiourea, 4% CHAPS, and a cocktail of protease
and phosphatase inhibitors (Biotool). Samples were then
sonicated on ice for three rounds of 10s and processed
according to the methods described before [29-31] with
minor modification. Briefly, total proteins (80 ug) were
diluted up to 250 uL with a rehydration buffer (7 M urea, 2
thiourea, 4% CHAPS, 65 mM DTT, and 0.5% v/v IPG buffer)
and applied to IPG strips (13cm, pH3-10 NL). IEF and
second dimension were carried out using an IPGphor IEF
and a Hoefer SE 600 Ruby electrophoresis system (GE
Healthcare). The IPG strips were loaded and run on a 12%
SDS-PAGE gel and stained according to the protocol of
Chevallet et al. [32]. Gels were scanned by Image Master
scanner and analyzed by Image Master software 5.0 (GE
Healthcare) using TIF format images at 300 dpi. Spot detec-
tion and matching were carried out by the software tools
and corrected manually when necessary. The parameter that
we used to compare gels was the volume % (vol %) of each
spot, expressed as percentage of the spot volume over the
total volume of all spots in the gel. Student’s t-test with a
set value of p < 0.05 was used to determine significant differ-
ences in protein expression levels. Each experiment was
performed three times independently.

2.3. Mass Spectrometry Identification and Data Analysis

2.3.1. Protein Identification by nHPLC ESI-Trap Analysis.
Protein spots were manually excised from 2D gels, destained
with H,0,, and subjected to trypsin digestion followed by
identification using an nLC-MS/MS as described [29-31].
The nano-HPLC separation of peptides was performed
using a Proxeon Easy-nLC (Thermo Fisher Scientific,
Waltham, MA, USA) equipped with a NS-AC-10 analytical
column, 5uM, C18, 375 uM OD x 75 uM ID x 10 cm length,
protected by an NS-MP-10 guard column, 5uM, Cl8,
375uM OD x 100 uM ID x2cm length (Nano Separations,
Nieuwkoop, The Netherlands).

2.3.2. Protein Identification by MALDI-TOF/TOEF. Spots of
interest were dehydrated with 50 L of acetonitrile and tryp-
sin digested overnight as described [29]. Resulting peptides
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were then concentrated by using C18 Zip-Tips (Millipore)
and eluted with 2 uL of CHCA matrix (66 uL TFA, 0.1%;
33 uL ACN) directly on an MTP AnchorChipTM 384 BC
plate (Bruker Daltonics). Peptides were analyzed by peptide
mass fingerprinting (PMF) and MS/MS analysis with a
MALDI-TOF/TOF Ultraflextreme (Bruker Daltonics) in
positive ion reflector mode (m/z range 500-4000), operating
at 1kHz frequency and controlled by the FlexControl 3.4
software. External calibration was performed using the
Peptide Standard Calibration II (Bruker Daltonics). Spectra
were processed using the software FlexAnalysis (version 3.4,
Bruker Daltonics) and precursor ions with a signal to noise
ratio greater than 10 selected for subsequent MS/MS analysis.

Compound lists were submitted to Mascot using the soft-
ware BioTools (version 3.2, Bruker Daltonics). Peptide
masses were compared with those present in the Swiss-Prot
human protein database. Database search was performed
using the following parameters: peptide tolerance, 0.05Da;
fragment mass tolerance, 0.25Da; enzyme, trypsin; missed
cleavage, one; and instrument, MALDI-TOF/TOF. Peptide
tolerance was set to +1.2Da, the MS/MS tolerance was
set to 0.6Da, and searching peptide charges were of 1+,
2+, and 3+ for ESI-Trap data. Moreover, carbamidomethyl
(C) and oxidation (M) were chosen as fixed and variable
modifications, respectively. Identified proteins were sub-
jected to Gene Ontology (GO) analysis and protein-protein
interaction (PPI) analysis by STRING software (version
10.0, http://string-db.org/).

2.4. GSH and GSSG Determination. For GSH and GSSG
assay, fibroblasts were collected by trypsinization and centri-
fuged at 500 xg and then resuspended in cold 5% (w/v) meta-
phosphoric acid. The sample was exposed to ultrasound
energy for 15s at 0°C and centrifuged at 12,000 xg for 5
minutes. The supernatant was used to determine GSH and
GSSG concentration using an enzymatic/colorimetric assay
kit (Enzo Life Sciences) according to the manufacturer’s
instructions. The measurements were performed on a Victor
2030 Explorer (PerkinElmer). Total protein concentration
was determined by Bio-Rad protein assay. GSH and GSSG
levels were normalized to protein concentration and
expressed as nmol/mg protein.

2.5. P-SH Measurement. Cells were collected by trypsini-
zation and centrifugation at 500xg and then resus-
pended in phosphate-buffered saline (PBS), pH7.4, in
the presence of the protease inhibitor phenylmethanesulfonyl
fluoride (PMSF). The content of P-SH in total cellular lysate
was measured with a modification of the Ellman’s procedure
[33]. The protein pellet was obtained by precipitation with
4% SSA and centrifugation. Next, the pellet was resus-
pended in 6 M guanidine, pH 6.0. Optical density was read
spectrophotometrically at 412 and 530 nm before and after
30min of incubation with 10mM 5,5-dithiobis (2-nitro-
benzoic acid). P-SH concentrations were calculated using
a standard curve generated with reduced glutathione.

2.6. Analysis of Glutathionylated Proteins. Glutathionylated
proteins were detected by Western blot analysis of cellular

lysates after nonreducing SDS-PAGE. Cells were collected by
trypsinization and centrifugation at 500 xg and then resus-
pended in PBS, pH7.4, containing the protease inhibitor
PMSF and supplemented with 5mM N-ethylmaleimide
(NEM) to block unreacted thiol group. Total cellular proteins
(50 pg per lane) were separated on 12% (w/v) SDS-PAGE
and transferred to nitrocellulose membranes. Glutathiony-
lated proteins were visualized with anti-GSH antibody
(1:1000, Thermo Fisher Scientific number MA1-7620).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Sigma)
was used as loading control. After several washes in Tween/Tris-
buffered saline solution (TTBS), the membrane was incubated
for 60 minutes with an anti-rabbit or anti-mouse IgG
peroxidase-conjugate antibody (diluted 1:5000). Immunode-
tection was then performed with the enhanced chemilumines-
cence (ECL) (Bio-Rad, Milan, Italy). The VersaDoc imaging
system was used to perform densitometric analysis (Bio-Rad,
Milan, Italy).

2.7. Western Blot Analysis. Whole proteins were extracted
with RIPA buffer (Cell Signaling) and quantified by the
Bradford protein assay (Bio-Rad). Samples were separated
by 10% SDS-PAGE and transferred to the Hybond ECL
nitrocellulose membrane. The membranes were blocked
overnight in Blotto A (Santa Cruz) at 4°C and subsequently
probed by the appropriately diluted primary antibodies
for 2h at room temperature. Protein bands were visualized
by incubating with a horseradish peroxidase-conjugated
secondary antibody (Amersham, ECL Western blotting
detection reagents).

3. Results and Discussion

3.1. Proteomic Profile Alteration in PD Fibroblasts. In our
previous work, we analyzed, by 2-DE and MALDI-MS, pro-
teins isolated from fibroblast cultures of healthy subjects
and patients affected by PD [17]. This comparative proteo-
mic approach led to the identification of several differentially
expressed proteins. Here, we modified some of the experi-
mental parameters used previously to separate proteins from
fibroblast cultures, including 2-DE buffer composition and
isoelectric focusing conditions, in order to increase the num-
ber of proteins separated by 2-DE and the potential number
of differentially expressed proteins identified after compara-
tive analysis. We focused on control (CTR) and PD patient
(P1) fibroblasts that we recently characterized for a variety
of cellular alterations associated with the modulation of
metabolic and cytoskeletal proteins [13, 34]. With these tech-
nical improvements, we identified 15 additional differentially
expressed proteins which are not yet identified in the previ-
ous work [17]. The identity of these proteins was determined
by MALDI-TOF MS/MS and listed in Table 1. By combining
these new results with the precedent group of identified pro-
teins, we obtained a dataset of 44 distinct and well-annotated
differentially expressed proteins that were subjected to bioin-
formatics analysis. GO classification and protein-protein
interaction network (PPI) of this dataset are shown in
Tables 2, 3, and 4 and Figure 1(b). Data showed a significant
decrease, in P1 compared to CTR cells, of the expression of
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TaBLE 2: List of significantly enriched biological processes in CTR versus P1 protein dataset identified by STRING software.

Biological process (GO)

Pathway ID Pathway description Count in gene set False discovery rate
GO0:0006928 Movement of a cell or subcellular component 16 1.1e-05
GO0:0006457 Protein folding 4.08e-05
GO:0030049 Muscle filament sliding 4.08e—05
GO:0006986 Response to unfolded protein 5.67e—05
GO0:0022607 Cellular component assembly 16 9.99¢—05

TaBLE 3: List of significantly enriched molecular functions in CTR versus P1 protein dataset identified by STRING software.

Molecular function (GO)

Pathway ID Pathway description Count in gene set False discovery rate
GO:0005515 Protein binding 30 1.16e-08
GO:0005509 Calcium ion binding 12 7.71e-06
G0:0051082 Unfolded protein binding 6 7.71e—06
GO:0003723 RNA binding 16 1.33e-05
GO:0044822 Poly(A) RNA binding 13 0.000172

TABLE 4: List of significantly enriched molecular functions in CTR versus P1 protein dataset identified by STRING software.

KEGG pathways (GO)

Pathway ID Pathway description

Count in gene set False discovery rate

04141

Protein processing in endoplasmic reticulum

7 1.25e-05

protein related to several biological processes like those
involved in cell movement or subcellular components as well
as those involved in regulating, assembly and protein folding,
calcium ion binding, and unfolded protein binding. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis identified protein processing in the
endoplasmic reticulum (ER) as significantly modified
(Table 4). This includes a list of 7 well-connected proteins
HYOUI1, GANAB, CALR, HSPA5, HSP90B1, VCP, and
HSPAS8 as determined by PPI analysis (Figure 1(c)). Most
of these proteins belong to the heat-shock protein (HSP)
family, and all of them participate in protein folding. HSPs
have become a research focus in PD because the pathogenesis
of this disease is highlighted by the intracellular protein mis-
folding and inclusion body formation. HSPs are mainly
involved, by interaction with different cochaperones, in fold-
ing nascent polypeptides to their appropriate conformation
and refolding mild denatured/damaged proteins. Moreover,
working together with the ubiquitin-proteasome system
(UPS), they are involved in the decomposition of aberrant
proteins. In addition, HSPs may possess antiapoptotic effects
and keep the cellular homeostasis against stress conditions
[35-38]. Evidence involving a direct role for UPS in PD
results from the association between genetic mutations in
parkin with familial parkinsonism [4].

It is noteworthy to highlight the high level of the ubiqui-
tin carboxyl-terminal hydrolase isozyme L1 (UCHLI), a pro-
tein component of UPS, observed in PD fibroblasts (3.8-fold
increase with respect to CTR cells) (Table 1). In addition to
its major function related to protein degradation as a compo-
nent of UPS [39], UCHLI possesses an ubiquitin ligase-like
enzymatic activity [40], placing it in a pathway potentially
related to parkin. It is reported that interaction with parkin
promotes UCHLI lysosomal degradation [41] and conse-
quently the lack of parkin could lead to the abnormal UCHLL1
accumulation in PD patient cells. P1 cells are also character-
ized by a deregulation of redox state, and, according to previ-
ous work showing a different expression level of protein
involved in oxidative stress response [17], 2-DE data revealed
a significant increase of peroxiredoxin-1 (PRDX1) in P1 with
respect to CTR cells (Table 1).

A differential expression level of energy metabolism-
associated proteins was also observed. L-lactate dehydroge-
nase A chain (LDH-A) and B chain (LDH-B) resulted both
overexpressed in P1 fibroblasts. This is consistent with
the finding that P1 cells, characterized by mitochondrial
dysfunctions, showed a high glycolytic ATP production,
lactate level, and intracellular LDH activity [13].

Perturbation of protein folding homeostasis is a common
pathologic feature of many neurodegenerative diseases,
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FIGURE 1: Representative 2-DE gel map of proteins isolated from human CTR and P1 fibroblasts. (a) A total of 80 ug of proteins were
separated by 2-DE using a 13 cm IPG strip pH 3-10 NL and 12% SDS-PAGE. Proteins were visualized by silver staining. Spot numbers
indicate proteins that were differentially regulated between CTR and P1 samples. (b, ¢) Bioinformatics analysis of differentially expressed
proteins. (b) A high confidence protein-protein interaction network generated with STRING using our protein dataset is shown. The
network nodes are input proteins. The edges represent the predicted functional associations. An edge may be drawn with up to 7
differently colored lines—these lines represent the existence of the seven types of evidence used in predicting the associations. A red line
indicates the presence of fusion evidence; a green line, neighborhood evidence; a blue line, coocurrence evidence; a purple line,
experimental evidence; a yellow line, textmining evidence; a light blue line, database evidence; and a black line, coexpression evidence.
(c) Proteins involved in protein processing in the endoplasmic reticulum proteins are highlighted in red (HYOU1, GANAB, CALR,

HSPA5, HSP90B1, VCP, and HSPAS) in the main PPI network.

including Alzheimer’s disease and PD [42, 43]. Protein fold-
ing in the ER is finely regulated by various conditions includ-
ing redox state and calcium concentrations. In the list of the
molecular functions (Table 3), we observed that the calcium
ion binding and unfolded protein binding pathways were

significantly enriched in CTR versus P1 cells suggesting that
the defect of these functions in P1 cells could be responsible
for the altered cellular homeostasis. Furthermore, according
to our previous work [17, 34], we detected in PD samples
with respect to CTR a significantly lower level of the protein
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MW (kDa)

FIGURE 2: Representative 2-DE gel map of CTR and CTR-Res-treated cell proteins. A total of 80 ug of proteins were separated by 2-DE using
a 13cm IPG strip pH3-10NL and 12% SDS-PAGE. Proteins were visualized by silver staining. Spot numbers indicate differentially

expressed proteins.

F1GURE 3: Representative 2-DE gel map of P1 and P1-Res-treated cell proteins. A total of 80 yg of proteins were separated by 2-DE usinga 13 cm
IPG strip pH 3-10 NL and 12% SDS-PAGE. Proteins were visualized by silver staining. Spot numbers indicate differentially expressed proteins.

ezrin, a member of the ERM (ezrin, radixin, and moesin)
protein family, involved in the connection of major cytoskel-
etal structures to the plasma membrane [44].

Overall these new data, together with the previously
obtained results, point to the involvement of parkin in the
regulation of a complex network of processes related to
cytoskeletal rearrangements and protein folding organization
in the ER [17, 34].

3.2. Establishing a Proteomic Expression Signature Associated
with Resveratrol Treatment in Control and PD Fibroblasts.

Since in vitro and in vivo studies demonstrated the promising
effects of resveratrol on neuronal diseases, with a well-
described effect in retarding or even reversing the accelerated
rate of neuronal degeneration [25-27, 45, 46], we went
through the study of protein expression profile in a cellular
PD model to gain further insights into the molecular effects
induced by resveratrol treatment.

Protein expression was investigated by 2-DE and
MALDI-MS/MS analysis after 24 h of treatment with resver-
atrol at the concentration of 25 uM or with vehicle (DMSO)
(Figures 2 and 3). A specific dataset of proteins resulted
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TaBLE 7: List of significantly enriched biological processes in CTR versus CTR-Res protein dataset identified by STRING software.

Biological process (GO)

Pathway ID Pathway description Count in gene set False discovery rate
GO:0001666 Response to hypoxia 5 0.00305
GO0:0034976 Response to endoplasmic reticulum stress 5 0.00305
GO:0042743 Hydrogen peroxide metabolic process 3 0.00305
GO:0061621 Canonical glycolysis 3 0.00305
GO:2000152 Regulation of ubiquitin-specific protease activity 2 0.00305

TaBLE 8: List of significantly enriched molecular functions in CTR versus CTR-Res protein dataset identified by STRING software.

Molecular function (GO)

Pathway ID Pathway description Count in gene set False discovery rate
GO:0051920 Peroxiredoxin activity 3 8.22e-05
GO:0003723 RNA binding 10 0.000179
GO:0044822 Poly(A) RNA binding 9 0.000179
GO:0005515 Protein binding 13 0.00361
GO:0008379 Thioredoxin peroxidase activity 2 0.00361

TaBLE 9: List of significantly enriched molecular functions in P1 versus P1-Res protein dataset identified by STRING software.

Molecular function (GO)

Pathway ID Pathway description Count in gene set False discovery rate
GO:0019899 Enzyme binding 11 0.000172
GO:0031625 Ubiquitin protein ligase binding 6 0.000172
GO:0044822 Poly(A) RNA binding 10 0.000228
GO:0005515 Protein binding 15 0.00801
GO:0051920 Peroxiredoxin activity 2 0.0162

differentially expressed in CTR and P1 fibroblasts and listed
in Tables 5 and 6. These datasets were functionally annotated
using the software STRING. The most enriched GO terms of
molecular functions and biological processes are depicted in
Tables 7,8, and 9. After resveratrol treatment, CTR fibroblasts
showed changes in the protein level associated with peroxire-
doxin activity (Table 8). This is in line with previous observa-
tions that linked resveratrol action with the modulation of
enzymes involved in the ROS metabolism [28, 47]. The
effect of resveratrol treatment on proteins with peroxire-
doxin activity was also observed, to a lesser extent, in P1
fibroblasts (Table 9). These results were validated by
Western blotting analysis (Figure 4). Consistent with MS
data, P1 resveratrol-treated cells expressed higher levels of
PXR1 and lower levels of PXR6 compared to untreated
cells. By contrast, CTR cells showed a trend towards a
lower PXR1 and higher PXR6 expression in resveratrol-
treated cells compared to untreated cells.

3.3. Modulation of Redox Status of Sulfhydryl Groups upon
Treatment with Resveratrol. Mammalian cells have a well-
defined set of antioxidant enzymes, which includes super-
oxide dismutase, catalase, glutathione peroxidases, and

peroxiredoxins, ubiquitous enzymes that have emerged as
an important and widespread peroxide and peroxynitrite
scavenging system [48]. PD is characterized by changes in
oxidative balance, and the loss of glutathione (GSH) level
is one of the earliest biochemical changes detectable in
PD [49]. GSH is a major component of cellular antioxidant
system, whose reduced and oxidized forms (GSH and
GSSG) act in concert with other redox-active compounds
(e.g, NAD(P)H) to regulate and maintain cellular redox
status [50]. Glutathione depletion may occur as a defect
of its synthesis, as well as its metabolism, when the redox
state of the cells is altered. In these conditions, the GSSG
produced can be reduced back to GSH, but the formation
and export of GSH conjugates could lead to GSH depletion.
As shown in Figure 5, total GSH level was significantly
lower in PI1 fibroblasts as compared to CTR cells
(Figure 5(a)). However, treatment of P1 cells with 25uM
Res for 24h resulted in a significant increase of GSH con-
tent (Figure 5(c)), whereas the treatment had no effect on
the GSH level in CTR cells (Figure 5(b)). The analysis of
oxidized glutathione (GSSG) revealed an increase of
GSSG/GSH ratio in P1 cells (Figure 5(d)), which was par-
tially reversed after resveratrol treatment, though the value
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FI1GURE 4: Western blot analysis of CTR and P1 fibroblasts treated with resveratrol. CTR and P1 cells were treated with resveratrol at the
concentration of 25 uM for 24 h. Proteins were separated by SDS-PAGE and probed with the following antibodies: ezrin (1:2000, Santa
Cruz, sc-20773), alpha B crystallin (1:1000, Proteintech, 15808-1-AP), peroredoxin-1 (1:2000, Santa Cruz, sc-7381), peroredoxin-2
(1:2000, Santa Cruz, sc-33572), peroredoxin-6 (1:2000, Santa Cruz, sc-393024), and heat-shock protein (HSP70) (1:2000, Sigma, H51747).
a-Tubulin was used as loading control (1:4000, Santa Cruz, sc-23948). This image is representative of three independent experiments.

did not reach a statistical significance (p=0.06)
(Figure 5(f)). These data are consistent with the observa-
tion that resveratrol could act positively on glutathione
homeostasis by increasing the activity and the expression,
through NREF2, of glutamate cysteine ligase (GCL), the
rate-limiting enzyme for de novo GSH synthesis that cata-
lyzes the formation of y-glutamylcysteine [51, 52].
Changes in GSH metabolism prompted us to investigate
the redox state of thiol groups of protein (P-SH). The thiol
groups of the protein are characterized by a reversible forma-
tion of a mixed disulfide bond between two cysteines and
with glutathione (glutathionylation), which controls correct
protein folding and represents an emergent mechanism of
posttranslational modification to regulate signal transduction
[53]. Quantitative analysis of free sulthydryl groups of
protein (P-SH) in total cellular lysate reveals higher levels
of P-SH in P1 cells respect to CTR cells (Figure 6(a)), and this
result could reflect the high steady-state cellular redox state
(NADH/NAD") measured in these cells [28]. As expected,
resveratrol treatment of CTR cells results in a significant
increase of P-SH (Figure 6(b)), reflecting the antioxidant
capacity of the employed polyphenol [54]. The P-SH increase
could be potentially related to the decreased level of two
disulfide isomerases, PDIA3 and P4HB, as detected by the
proteomic analysis (Table 6). These proteins check the oxida-
tion (formation), reduction (break down), and isomerization
(rearrangement) of protein disulfide bonds via disulfide
interchange activity. PDIs also have a chaperone activity by
binding to misfolded proteins to prevent them from aggre-
gating and targeting misfolded proteins for degradation [55].
Interestingly, treatment of P1 cells with resveratrol
resulted in the decrease of P-SH content reflecting the resver-
atrol enhancement, in an AMPK-dependent manner, of the

NAD*/NADH ratio [28], capable of restoring the basal level
of CTR fibroblasts (Figure 6(c)).

Therefore, while the antioxidant effects of resveratrol are
predominant in the CTR cells [22, 26] the capacity of this
natural compound to modulate additional pathways is more
evident in P1 cells [28, 51], including those regulating the
glutathionylation status of proteins.

The redox state of thiol groups is related to glutathionyla-
tion of proteins which occurs in unstressed cells under
physiological conditions as well as during cellular redox
defense [56]. The glutathionylation is either a spontaneous
or enzymatically driven finely controlled reversible process,
which can involve both the GSH and GSSG [57]. To investigate
the modifications in protein glutathionylated residues (PSSG),
whole proteins were separated under nonreducing conditions.
Western blotting analysis with an antibody against glutathio-
nylated residues revealed, as expected, many protein bands
(Figure 6(d)). Densitometric analysis showed a lower level of
proteins detected by anti-GSH antibody in P1 cells compared
to CTR cells (Figure 6(e)). Furthermore, resveratrol treat-
ment resulted in a decrease of bands detected in control cells
and, on the contrary, in an increase of bands detected in P1
cells (Figure 6(e)). These results (Figures 6(d) and 6(e)) are
in agreement with the specific changes in P-SH levels
(Figures 6(a), 6(b), and 6(c)), considering that a P-SH
increase corresponds to a P-SSG decrease. Many enzymes
are involved in the balance of the redox state of the SH
groups, among which glutathione transferases (GST) cata-
lyze protein glutathionylation [58]. Proteomic analysis
reveals that resveratrol treatment of P1 cells leads to an
increase of the glutathione S-transferase omega I (GSTO1)
expression (Table 6), a protein possibly responsible for
reversing the deregulation of GSH system and the redox state
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of protein sulthydryl groups. In a Drosophila model of PD,
upregulation of Drosophila melanogaster GST Sigma 1
(DmGSTOL1) suppressed phenotypes caused by parkin loss
of function, including the degeneration of DA neurons and
muscle [59].

Deglutathionylation is catalyzed by thiol-disulfide oxido-
reductase enzymes, such as glutaredoxin (GRX), thioredoxin
(Trx), and protein disulfide isomerase (PDI). PRXs are also
involved in the control of protein glutathionylation. Their
primary role is associated to H,O, detoxification, a process
in which the active cysteines of PRX are oxidized. The recy-
cling step of PRX involves the reduction of the disulfide
bridge by the thioredoxin system, utilizing NADPH as a
source of reducing power [60].

Overall, these data suggest that in P1 cells, there is a
deregulation of GSH homeostasis and consequently of the
redox state of sulthydryl groups. The low availability of
GSH and deregulation of protein folding processes in the
ER, the first intracellular compartment for protein processing
such as disulfide bond formation [61], could explain the high
level of P-SH and the low level of glutathionylated protein
observed P1 cells. In our previous study, proteomic analysis
revealed a low level of PRDX4 [17], an ER-resident protein,

in P1 compared to CTR cells. In the present study, a higher
level of PRDX1, a cytosolic protein with antioxidant proper-
ties [62], was detected in P1 compared to CTR cells. Both
peroxidases use thioredoxin as physiological reductant [48].
Resveratrol treatment restored GSH level and induced
normal homeostasis of protein thiol groups in P1 cells.
Moreover, in P1 cells, resveratrol treatment induced an
upregulation of PRX1 and a downregulation of PRDX6,
which uses glutathione as the physiological reductant, saving
the amount of the glutathione for other activities.

3.4. Modulation of Chaperone Proteins upon Treatment with
Resveratrol. Resveratrol, apart from being an effective scaven-
ger of free radicals, may directly stimulate the cell defense
against stress response through cellular chaperone in early
time treatment [63]. Some members of the HSPs are differen-
tially expressed in CTR and P1 samples after resveratrol
treatment (Tables 5 and 6). Recently, many studies provided
evidence that AMPK is a key mediator of the metabolic ben-
efits produced by resveratrol, upstream of SIRT1 activation
[64-67]. In the PD cellular model used in our previous study,
we have shown that resveratrol regulates energy homeostasis
through activation of AMPK and SIRT1 and raises mRNA
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expression of a number of PGC-1a’s target genes resulting in
enhanced mitochondrial oxidative function, likely related to
a decrease of oxidative stress and to an increase of mitochon-
drial biogenesis [28]. SIRT1 can deacetylate and activate
heat-shock factor 1 (HSF1), which affects transcription of
molecular chaperones [68].

In addition to protein refolding or degradation, HSPs
also support a specialized autophagy mechanism called
chaperone-mediated autophagy (CMA). This is a highly
selective and constitutive subtype of autophagy that utilizes
chaperone proteins and lysosomal receptors to directly
target proteins into the lysosomal lumen for their degrada-
tion, under both physiological and pathological conditions
to maintain cellular homeostasis [69-73]. There are multi-
ple lines of evidence for the impairment of CMA activity
in both familial and sporadic PD [74, 75]. In the CMA
process, which is activated after macroautophagy and acti-
vation persists for days [76], the heat-shock cognate 70
(Hsc70/HSPAS), a constitutive chaperone, binds target pro-
teins and transports them to the surface of endoplasmic
reticulum where it specifically binds to lysosomal receptor

protein LAMP-2A and HSP90, an inducible chaperone.
Resveratrol treatment of P1 cells induces increased expres-
sion of both HSPA8 and HSP90, possibly leading to
CMA. Interestingly, we have shown in our previous study
that resveratrol treatment caused an enhanced macroauto-
phagic flux through activation of an LC3-independent
pathway [28].

Furthermore, concerning the behaviour of alpha-
crystallin B chain (CRYAB), which belongs to the chaperone
family whose main role is to bind improperly folded proteins
to prevent protein aggregation [77], we have found that the
treatment with resveratrol increased the expression of CRYAB
in CRT cells and, on the contrary, induced a decreased expres-
sion in P1 cells, reestablishing the levels of control cells
(Tables 5 and 7) (Figure 4).

HSPs are proving to be a therapeutic target in neurode-
generative disorders because the pathogenesis of these dis-
eases is thought to be related to an abnormal increase of
unfolded protein response (UPR), failure of UPS, and protein
misfolding and/or aggregation [78] and their regulation
could be mediated by polyphenols as resveratrol [79, 80].
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3.5. Modulation of Metabolic Proteins upon Treatment with
Resveratrol. As already described, resveratrol can carry out
its functions by activating AMPK, a crucial cellular energy
sensor. Once activated, it promotes ATP production by
increasing the activity or expression of proteins involved in
catabolism while conserving ATP by switching off biosyn-
thetic pathways [81]. A significant number of proteins differ-
entially expressed after resveratrol treatment are involved in
energy metabolism pathways. We observed an upregulation
of several proteins related to glycolysis in resveratrol-
treated CTR cells. These include phosphoglycerate mutase 1
(PGAM1), triose phosphate isomerase (TPIS), and alpha
enolase (ENOA). A changed rate of glycolysis may affect sub-
strate levels for the tricarboxylic acid cycle and subsequent
oxidative phosphorylation, in turn influencing ATP levels.
Furthermore, we observed an upregulation of the cytoplasmic
isoform of malate dehydrogenase (MDHc) in resveratrol-
treated P1 cells. MDHc is a metabolic isoform involved in
the malate-aspartate shuttle that aids in the transfer of reduc-
ing equivalents of NADH into the mitochondria. This is in
line with the low steady-state cellular ratio NADH/NAD"
present in resveratrol-treated P1 cells, which indicates the
enhancement of oxidative capacity attested by the increase
in mitochondrial ATP production [28].

All these data confirm and extend our previous observa-
tions on the metabolic dysfunction of P1 fibroblasts, which
show a deregulation of pathways involved in key cellular
processes such as protein folding, protein degradation, and
cellular redox balance. The analysis of differentially expressed
proteins identified after resveratrol treatment of CTR and P1
cells reveals the great ability of resveratrol to act on protein
expression modifying pathway and reversing the molecular
defects in P1 fibroblast cells.

4. Conclusions

P1 fibroblasts are characterized by a dysregulated expression
of proteins linked to biological processes regarding cell
movement or subcellular component, assembly and protein
folding, calcium ion binding, unfolded protein binding, and
redox homeostasis. In this study, we show the biological
effects of resveratrol acting through the modulation of the
expression of proteins involved in protecting cells from the
damaging effects of ROS, in protein refolding or degradation,
and, specifically, in chaperone-mediated autophagy.

Overall, the complex proteome alterations shown in
this ex vivo model of PD could provide further insights
into the pathogenic processes involved in the disease.
Importantly, the elucidation of the biomarkers might pro-
vide new therapeutic targets for the treatment and preven-
tion of PD. Evidences are emerging to support the potential
of small bioactive molecules, as resveratrol, against neuro-
degenerative disorders, to control and modulate ROS and
abnormal protein.
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