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Abstract

Lumpy skin disease virus (LSDV) causes an infectious disease in cattle. Due to its direct relationship with the survival of
arthropod vectors, geospatial and climatic features play a vital role in the epidemiology of the disease. The objective of this
study was to assess the ability of some machine learning algorithms to forecast the occurrence of LSDV infection based on
meteorological and geological attributes. Initially, ExtraTreesClassifier algorithm was used to select the important predic-
tive features in forecasting the disease occurrence in unseen (test) data among meteorological, animal population density,
dominant land cover, and elevation attributes. Some machine learning techniques revealed high accuracy in predicting
the LSDV occurrence in test data (up to 97%). In terms of area under curve (AUC) and F1 performance metric scores, the
artificial neural network (ANN) algorithm outperformed other machine learning methods in predicting the occurrence of
LSDV infection in unseen data with the corresponding values of 0.97 and 0.94, respectively. Using this algorithm, the model
consisted of all predictive features and the one which only included meteorological attributes as important features showed
similar predictive performance. According to the findings of this research, ANN can be used to forecast the occurrence of
LSDV infection with high precision using geospatial and meteorological parameters. Applying the forecasting power of these
methods could be a great help in conducting screening and awareness programs, as well as taking preventive measures like

vaccination in areas where the occurrence of LSDV infection is a high risk.

Keywords Lumpy skin disease - Forecasting - Meteorological parameters - Geospatial features - Machine learning
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Introduction

Lumpy skin disease virus (LSDV) infection is a major chal-
lenge to cattle production, causing acute or subacute disease
in cattle and water buffalo population. Cattle of all breeds
can become infected, and cows that are around the peak of
milk production and calves are particularly susceptible to
LSDV infection (Namazi and Khodakaram Tafti 2021).
The LSDV is a double-stranded DNA virus belonging
to the Capripoxvirus genus. Fever, inappetence, a signifi-
cant drop in milk production, swollen lymph nodes, and the
appearance of hard, slightly elevated skin nodules quickly
after the onset of fever are the main clinical signs of the
infection. Despite the availability of a variety of diagnostic
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tests, the diagnosis is generally confirmed using a traditional
or real-time PCR (polymerase chain reaction) approach
(Namazi and Khodakaram Tafti 2021).

In 1929, the first case of LSDV infection was recorded
in Zambia (Von Backstrom 1945). LSDV has gradually
expanded through Africa, the Middle East, Southeastern
Europe, Central Asia, and, most recently, South Asia and
China. The disease is now endemic in many African coun-
tries, as well as areas of the Middle East (Iraq, Saudi Ara-
bia, and the Syrian Arab Republic) and Turkey (Roche et al.
2020). The disease has resulted in major economic losses in
the affected countries. Due to high fever and secondary mas-
titis, it causes a substantial drop in milk production. Other
consequences of the disease include damaged skin, a reduc-
tion in the growth rate of beef cattle, transient or lifelong
infertility, abortion, treatment and vaccination costs, and
the mortality in infected animals (Alemayehu et al. 2013;
Namazi and Khodakaram Tafti 2021).
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LSDV is transmitted by insects, in particular blood-suck-
ing arthropods, contaminated food and drink, and at the later
stages of the disease through saliva, nasal secretions, and
semen (Sprygin et al. 2018; Tuppurainen et al. 2017). Due
to its direct relationship with the survival of vectors, climatic
conditions play an important role in the epidemiology of the
disease. A warm and humid climate, environmental condi-
tions that support an influx of vector populations, such as
those seen during seasonal rains, and the introduction of new
animals to a herd are all risk factors for the spread of LSDV.
Furthermore, the wind’s direction and intensity may play a
role in the spread of the virus (Chihota et al. 2003).

The association between LSDV infection and meteoro-
logical and geospatial factors has been studied in many stud-
ies, and they have discovered that factors like temperature,
precipitation, land cover, humidity, and wind speed can pre-
dict or influence the occurrence of the disease (Alkhamis
and VanderWaal 2016; Allepuz et al. 2019; Machado et al.
2019; Molla et al. 2017; Sprygin et al. 2018; Tuppurainen
and Oura 2012).

Due to the introduction of new technologies and analyti-
cal techniques such as big data, remote sensing, and Earth
observation, many digital Earth researches are now employ-
ing big spatiotemporal data to track and define the dynamic
Earth climate system, (Kovacs-Gyori et al. 2020; Yang et al.
2017).

Nowadays, machine learning (ML) offers highly valuable
resources for intelligent geospatial and environmental data
analysis, synthesis, and visualization. ML methods, particu-
larly deep learning approaches, have become more common
as the availability of more and different types of big data
has grown (Xu and Jackson 2019). These techniques use
general purpose learning algorithms to look for similarities
in often complex and unwieldy data (Bzdok et al. 2018). In
general, they can be used effectively at all levels of envi-
ronmental data mining: exploratory spatial data processing,
identification and modeling of spatial-temporal patterns, and
decision-driven mapping. Traditional geostatistical methods
have been replaced greatly by machine learning techniques
especially in big data analyses (Kanevski et al. 2008). How-
ever, ML techniques should be implemented accurately and
effectively from pre-processing data to analysis and justifica-
tion of the findings (Kanevski et al. 2008).

ML techniques have been evaluated in several studies for
predicting the occurrence of infectious diseases in human
or animals using various climatic and geospatial features.

Wang et al. (2015) developed a feed-forward back-prop-
agation neural network model to predict the weekly number
of human cases of infectious diarrhea in China (Shanghai)
using meteorological factors as predictive features. Non-
linear models including neural networks, support vector
regression, and random forests regression showed better per-
formance than multiple linear regression. Neural networks
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showed most satisfactory results when all performance eval-
uation criteria were considered simultaneously.

Malki et al. (2020) explored various regressor machine
learning models to predict confirmed and death cases of
COVID-19 in various countries. In forecasting the COVID-
19 confirmed cases, the highest performance was obtained
by the KNN (K-nearest neighbors) regressor. Decision tree
algorithm showed best performance in predicting the rate of
COVID-19 mortality. Weather variables such as temperature
and humidity were more important in predicting the mortal-
ity rate when compared to the other census variables such as
population, age, and urbanization.

Golden et al. (2019) collected soil and feces samples
from 11 pastured poultry farms from 2014 to 2017 in the
USA. They generated random forest and gradient boosting
machine predictive models to predict Listeria spp. preva-
lence in samples based on meteorological factors such as
temperature, wind speed, gust speed, humidity, and precipi-
tation at the farming location. AUC performance metric for
the random forest and gradient boosting machine models of
fecal samples was 0.905 and 0.855, respectively. The soil
gradient boosting machine model outperformed the random
forest model with AUCs of 0.873 and 0.700, respectively.

Liang et al. (2020) used machine learning methods to
forecast African swine fever outbreaks around the world
using bio-climatic variables. The random forest algorithm
outperformed other techniques with 80.4% accuracy in the
dataset containing all predictive variables, and the support
vector machine algorithm showed the best accuracy in the
subset dataset containing only important climatic features
(76.02%).

The accuracy score of prediction varied between 47.8 and
99.6% in the study by Niu et al. (2020), which used vari-
ous machine learning algorithms to forecast Peste des Petits
ruminants (PPR) outbreaks based on certain bio-climatic
variables and altitude data. The random forest algorithm per-
formed best in a test dataset consisting of data from three
countries that were not included in the training process.

To the best of the author’s knowledge, no related research
has been undertaken in terms of evaluating ML techniques in
building models to forecast the incidence of LSDV infection
using meteorological and/or geospatial attributes.

Because of the importance of insects in LSDV transmis-
sion and their reliance on climatic and geographical features,
the key objective of this research was to develop predictive
models using some robust ML algorithms based on mete-
orological and geospatial features to predict the incidence of
LSDV infection in countries with a prior history of disease
outbreak reported between 2011 and 2021.
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Materials and methods

Figure 1 depicts the summary of steps taken in the materials
and methods, and the details of each step are explained in
the following sections.

Data sources
Lumpy skin disease outbreak data

Geographic coordinates of Lumpy Skin Disease outbreaks
were obtained from Global Animal Disease Information Sys-
tem of FAO (Food and Agriculture Organization) (https://
empres-i.review.fao.org//). Relevant information between
January 2011 and March 2021 including the specific time of
the outbreak and the longitude and latitude of the outbreak
point were downloaded.

Meteorological data

Monthly cloud cover (percentage), diurnal temperature range
(degrees Celsius), frost day frequency (days per month), wet
day frequency (days), potential evapotranspiration (mil-
limeters per day), precipitation (millimeters per months),
daily mean temperature (degrees Celsius), monthly average
maximum and minimum temperature (degrees Celsius),

and vapor pressure (hectopascal) data for the period Janu-
ary 2011-December 2019 were obtained from the Univer-
sity of East Anglia’s Climatic Research Unit (CRU TS4.04)
(Harris et al. 2020).

Animal density data

Cattle and buffalo population density data were obtained
from Gridded Livestock of the World (GLW 3) database
(Gilbert et al. 2018).

Land cover data

GLC-SHARE Beta-Release v1.0 (Latham et al. 2014) was
used to extract global land cover data (spatial information
on various forms of physical covering of the Earth’s sur-
face) including artificial surfaces, cropland, grassland, tree
covered areas, shrubs covered areas, herbaceous vegetation,
aquatic or regularly flooded areas, mangroves, sparse vegeta-
tion, bare soil, snow and glaciers, and waterbodies coverage.

Elevation data

Global geospatial elevation dataset (GRAY_S5S0M_
SR.VERSION 2.1.0) was downloaded from Natural Earth
database (free vector and raster map data @ naturalearth-
data.com).

Fig. 1 Summary of steps taken
in the materials and methods
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Data preprocessing

Only data in countries which reported the LSDV infection
during the study time period (2011-2021) were extracted in
all downloaded data and map files. In order to prepare data
values to be used by ML algorithms, categorical variables
were converted to numeric values using one-hot encoding
technique. Moreover, the values of different predictive fea-
tures were normalized using min—-max scaling. Finally, the
dataset was split into train and test sets using train_test_split
class from scikit-learn library (Pedregosa et al. 2011). The
training dataset which was used during model development
and the test set which was not seen by the model were used
for validation. Repeated stratified K-Fold cross-validation
using 3 splits and 2 repeats was also used to validate the
machine learning models during training step.

Selecting of features based on importance

The Scikit-learn module’s ExtraTreesClassifier and Select-
FromModel classes were used to select features that are most
useful for prediction. The ExtraTreesClassifier class imple-
ments a meta estimator that employs averaging to control
over-fitting by fitting a number of randomized decision trees
(extra-trees) on different sub-samples of the dataset (Geurts
et al. 2006). SelectFromModel class is a meta-transformer
for selecting features based on importance weights. Select-
FromModel accepts a threshold parameter and will select
the features whose importance (defined by the coefficients)
are above this threshold. SelectFromModel requires the
underlying estimator to expose a coef_ attribute or a fea-
ture_importances_ attribute which in this case was provided
by ExtraTreesClassifier class. The net results of the coopera-
tion of these two classes are choosing the important predic-
tive features among all predictive variables.

Hyperparameter tuning

To choose a set of optimal parameters for each machine
learning techniques, RandomizedSearchCV method from the
scikit-learn library was used. This method can test a given
number of candidates from a parameter set with a specified
distribution.

Machine learning algorithms used in training
and testing phases

Logistic regression

Logistic regression is one of the machine learning classi-
fication techniques, which is utilized for anticipating the
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categorical dependent variable employing a given set of
dependent variables and gives the probabilistic values which
lie between 0 and 1 (Cox 1958).

Support vector machine

Support vector machines (SVMs) are a group of supervised
learning techniques which are effective in high dimensional
spaces. It creates the best decision boundary to separate
multi-dimensional space into subclasses using the extreme
cases which are called support vectors (Scholkopf 1998).

Decision tree

A decision tree classifier is a tree-like structure that creates
a training model to predict the target class through learning
simple decision rules inferred from prior data (training data).
Internal nodes represent features (or attributes), the branches
represent decision rules, and each leaf node represents the
outcome (Safavian and Landgrebe 1991).

Random forest

Random forest is an ensemble decision tree-based classifi-
cation method that acts through building a number of trees
and each tree is dependent on the values of an independently
sampled random vector with the same distribution for all
trees within the forest (Breiman 2001).

AdaBoost

AdaBoost is an ensemble algorithm in which subsequent
weak learners are adjusted adaptively in favor of those
instances misclassified by previous classifiers (Freund and
Schapire 1997).

Bagging

As another ensemble method, bagging (short for bootstrap
aggregating) uses the same training algorithm for every
predictor and train them on different random subsets of the
training set with replacement (Breiman 1996).

XGBoost

XGBoost is a popular and efficient open-source implementa-
tion of the gradient boosted trees algorithm (Chen and Gues-
trin 2016). XGBoost stands for extreme gradient boosting,
which uses decision trees as base learners, merging several
weak learners to create a more powerful learner. Therefore,
it is referred to as an ensemble learning algorithm since the
final prediction incorporates the output of several models.
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Artificial neural network (multilayer perceptron)

A simple form of artificial neural network (ANN) is the mul-
tilayer perceptron (MLP). In most cases, it has three layers:
input, output, and a hidden layer. The input layer is where
the data to be processed is received. The output layer is in
charge of classification. The true computational engine of
the MLP is an arbitrary number of hidden layers located
between the input and output layers (Chollet 2018).

Evaluating the performance of predictive models

Accuracy score, precision, recall, F1 score, and area under
curve (AUC) were used as performance metrics to measure
the power of different classifiers in predicting unseen data
(test set) (Géron 2019).

Accuracy score is one of the common performance met-
rics which is calculated by dividing the number of correct
predictions by total number of predictions.

Another useful metric is precision, or the accuracy of the
positive predictions:

Truepositive

Precision = — —
Truepositive + Falsepositive

Recall is the ratio of positive instances that are correctly
detected by the classifier:

Recall = Truepositive

Truepositive + Falsenegative

F1 score is the harmonic mean of precision and recall
which gives much more weight to low values:

Fig.2 The distribution of
reported LSDV infection points
during 2011-2021
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Receiver operating characteristic (ROC) curve plots the
true positive rate (recall) against the false positive rate. The
area under curve (AUC) of ROC curves used as its summary
and assesses a classifier’s ability to discriminate between
classes.

Analysis tools

QGIS software (version 3.16 — Hannover) was applied to
analyze and edit spatial data files. Machine learning tech-
niques were implemented using the Python programming
language (version 3.8) and the Anaconda navigator platform
(as a package manager; version 1.10.0). Scikit-learn 0.24.1
(Pedregosa et al. 2011) was used to implement logistic
regression, SVM, decision tree, random forest, AdaBoost,
and bagging algorithms. The XGBoost library was utilized
to run the XGBoost technique (Chen and Guestrin 2016).
Keras API (Chollet 2018) running as an abstraction layer
on top of TensorFlow 2 framework (Abadi et al. 2016) was
used for building multilayer perceptron (ANN).

Results

Distribution of outbreaks points

Between January 2011 and March 2021, 3039 LSDV infec-
tion outbreaks were recorded across Africa, Asia, and
Europe. Figure 2 indicates the distribution of outbreaks
points along with 21,757 free points.

¢ Qutbreak points

[ Countries which reported LSDV infection during 2011-2021
] Countries which did not report LSDV infection during 2011-2021
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The highest incidence of the disease during the study
period was reported in Europe (2172 outbreaks), Asia (777
outbreaks), and Africa (90 outbreaks), respectively.

The highest incidence of the disease was recorded in 2016
(Fig. 3).

Important features

Based on the results of applying ExtraTreesClassifier and
SelectFromModel algorithms on the dataset, only meteor-
ological variables were considered as important features.
Therefore, two independent analyses were carried out: one
involving all predictive variables including all meteorologi-
cal, elevation, animal population density, and land cover
features (model 1) and the other consisting of only mete-
orological features (model 2).

Tuned parameters of algorithms

In Tables 1 and 2, some of the most important tuned
parameters in each algorithms in model 1 and 2 are shown,
respectively.

The predictive ability of various machine learning
algorithms

Depending on the type of ML algorithm and performance
metric used, the predictive ability of techniques using two
subsets of features was different (Table 3).

AUC metric ranged between 0.53% to 0.97% and 0.63%
to 0.97% in model 1 and model 2, respectively. In both
models, ANN algorithm outperformed other algorithms in
terms of AUC and F1 score. ROC curves of different ML

Fig.3 Reported LSDV infection
outbreaks in each year during
2011-2021
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Table 1 The most important tuned parameters after implementing hyperparameter tuning for model 1

Machine learning algorithm Tuned parameters

Logistic regression

Support vector machine

Decision Tree

Random forest (decision tree as base estimator)

class_weight={0: 50, 1: 50}, penalty ="11", solver ='liblinear"

kernel ='poly’, degree =5, coef0=1, gamma ='scale’, class_weight={0: 50, 1: 50}

splitter ='best’, class_weight={0: 25, 1: 75}, criterion ='entropy', max_depth=14
n_estimators = 5000, min_samples_split=2, bootstrap =True, max_leaf_nodes =200, class_

weight={0: 30, 1: 70}, criterion="'entropy', max_depth=14

AdaBoost (decision tree as base estimator)

Bagging (decision tree as base estimator)

n_estimators = 1000, algorithm ="SAMME.R’, learning_rate=0.1

warm_start=True, oob_score =False, n_estimators = 100, max_samples = 1000, max_fea-

tures = 10, bootstrap = False

XGBoost

objective = 'binary:logistic', max_depth =10, colsample_bytree= 1, eta=0.01, gamma=2,

min_child_weight=0.1, subsample =0.6

Artificial neural networks

Input dimension =24, Total number of neurons =70,

number of hidden layers =0,

EarlyStopping(patience = 10),

activation ="relu", solver="adam", learning rate =0.001,
loss ="binary_crossentropy”, epochs =200
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Table 2 The most important tuned parameters after implementing hyperparameter tuning for model 2

Machine learning algorithm Tuned parameters

Logistic regression
Support vector machine
Decision tree

Random forest (decision tree as base estimator)

AdaBoost (decision tree as base estimator)
Bagging (decision tree as base estimator)

max_iter = 1000, class_weight={0: 50, 1: 50}, penalty ="11", solver ="liblinear’

kernel ='rbf", coef) =0, gamma ='scale',class_weight={0: 50, 1: 50}

splitter ="best’, class_weight={0: 30, 1: 70}, criterion='entropy', max_depth=13

n_estimators = 5000, bootstrap = True, max_leaf_nodes =300, class_weight={0: 20, 1: 80},
criterion = 'entropy’

n_estimators =700, algorithm="SAMME.R', learning_rate =0.1

warm_start =False, oob_score =True, n_estimators =200, max_samples = 1000, max_fea-

tures = 10, bootstrap =True

XGBoost

objective = 'binary:logistic', max_depth =15, colsample_bytree=1, eta=0.2, gamma=1.5,

min_child_weight=1, subsample=0.6

Artificial neural networks

Input dimension = 10, Total number of neurons =80,

number of hidden layers=0,

EarlyStopping(patience = 10),

activation = "relu", solver ="adam", learning rate =0.001,
loss ="binary_crossentropy", epochs =200

Table 3 Comparative performance of various machine learning algorithms using two sets of predictors

Logistic Support vec- Decision tree  Random forest ~AdaBoost Bagging XGBoost Artificial
regression  tor machine neural net-
works
Model I~ Accuracy score  0.93 0.94 0.89 0.96 0.88 0.96 0.94 0.96
Precision 0.85 0.77 0.57 0.89 0.67 0.89 0.91 0.88
Recall 0.48 0.66 0.34 0.71 0.07 0.74 0.50 1
f1 score 0.61 0.71 0.43 0.79 0.13 0.81 0.65 0.94
AUC 0.73 0.82 0.65 0.85 0.53 0.86 0.75 0.97
Model 2 Accuracy score  0.92 0.96 0.90 0.93 0.91 0.95 0.92 0.97
Precision 0.84 0.89 0.63 0.92 0.89 0.90 0.91 0.88
Recall 0.41 0.73 0.37 0.45 0.27 0.63 0.39 1
f1 score 0.55 0.80 0.46 0.61 0.42 0.74 0.54 0.94
AUC 0.70 0.86 0.67 0.72 0.63 0.81 0.69 0.97

algorithms for model 1 and model 2 are shown in Figs. 4
and 5, respectively.

Discussion

The findings of current study demonstrated that by apply-
ing machine learning methods and using climatic and
geospatial features as predictive variables, the occurrence
of LSDV infection could be predicted in test set (unseen
data) with high accuracy. For instance, ANN algorithm
indicated 97% accuracy score. However, the accuracy
score is not the preferred performance measure for classi-
fiers, particularly where certain classes are more frequent
than others (Géron 2019). As a result, when assessing the
predictive power of algorithms, it makes more sense to
consider performance metrics such as precision, recall, F1

score, and AUC. Regarding AUC metric and by incorpo-
rating all predictive variables in the model or using only
meteorological variables as predictors, the highest perfor-
mance was associated with ANN algorithm (97% in both
models) (Table 3).

Artificial neural networks have been widely used in differ-
ent fields including medical and health field, such as medi-
cal diagnosis and disease prediction and obtained the very
good prediction results (Abbass 2002; Al-Shayea 2011; Baxt
1995; Fang et al. 2014; Flores-Fernandez et al. 2012; Kara
and Dirgenali 2007; Kia et al. 2013; Ma and Wang 2010;
Wang and Gupta 2013; Wang et al. 2001; Zhu and Wang
2010).

The reason for better performance of ANN could be
attributed to the fact that this algorithm is a universal
approximator which can approximate a large class of func-
tions with a high degree of accuracy (Y. Wang et al. 2015).
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The predictive performance of ANN was almost the same
in both models (using all predictor variables vs only cli-
matic predictive variables) with AUC of 0.97. The literature
shows that feature selection can boost the classifier’s pre-
diction accuracy, scalability, and generalization capability.
This technique is critical in information discovery because it
reduces computational complexity, storage, and cost (Gutkin
et al. 2009). It should be noted, however, that any predic-
tive feature may be irrelevant individually, but when com-
bined with others, it becomes relevant (Gheyas and Smith
2010). As a result, feature selection does not always imply
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improved results, and in some cases, eliminating features
could be detrimental (Guyon et al. 2008).

To the best of the author’s knowledge, no other study has
used machine learning algorithms to forecast the incidence
of LSDV infection using geospatial and meteorological pre-
dictive parameters. However, some similar studies utilized
machine learning methods to predict the occurrence of some
viral livestock diseases based on climatic data.

Liang et al. (2020) used machine learning methods to
forecast African swine fever outbreaks around the world
using bio-climatic variables, and Niu et al. (2020) applied
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various machine learning algorithms to forecast Peste des
Petits ruminants (PPR) outbreaks based on certain bio-
climatic variables and altitude data. Nevertheless, the time
frame during which climate data (WordClim database
which contains data for 1970-2000) used in these studies
was before the time period during which disease outbreaks
data utilized and this could be a potential source of bias.
In contrast, in the present study, meteorological data were
downloaded for the period 2011-2019 from CRU TS4.04
database (Harris et al. 2020) to provide better time concord-
ance with event data of LSDV infection.

According to the feature selection algorithm, out of mete-
orological, animal density, land cover, and elevation data,
only meteorological variables were chosen as significant pre-
dictive factors in the present study. Similarly, wet and warm
climates which are prime habitat for blood-feeding arthro-
pods have been linked to the occurrence of LSDV infec-
tion previously (Alkhamis and VanderWaal 2016; Chihota
et al. 2003; Weiss 1968). Some studies which used statistical
methods have found a connection between land cover char-
acteristics and/or animal density and disease incidence. For
instance, Alkhamis and VanderWaal (2016) examined LSDV
outbreak records in the Middle East between 2012 and 2015.
The most important environmental predictors that contrib-
uted to the ecological niche of LSDV were annual precipita-
tion, land cover, mean diurnal range, type of livestock pro-
duction system, and global livestock densities, according to
ecological niche modeling. Allepuz et al. (2019) investigated
the relationship between confirmed LSDV infection out-
breaks and climatic factors, land cover, and cattle density in
the Balkans, Caucasus, and Middle East between 2012 and
2018. The findings revealed that the likelihood of disease
incidence was considerably higher in areas dominated by
croplands, grassland, or shrub land. Higher cattle popula-
tions, as well as regions with a higher annual mean tem-
perature and a larger diurnal temperature range, increased
the odds. In contrast to areas covered mostly by forest, areas
with sparse vegetation have a lower risk of infection.

Gari et al. (2010) conducted a questionnaire survey to
perform a cross-sectional analysis to assess the distribution
of LSDV infection and related risk factors in Ethiopia’s three
major agro-climatic areas. Across agro-climate zones, herd-
level prevalence of LSDV infection was slightly higher in the
midland agro-climate than in the highland and lowland agro-
climate zones. The odds ratio of LSDV infection incidence
was 3.86 (95% confidence interval: 2.61-5.11) in the mid-
land vs. highland region and 4.85 (95% confidence interval:
2.59-7.1) in the lowland vs. highland zone. The introduction
of new animal, as well as communal grazing and watering
management, was correlated with a significantly increased
risk of LSDV infection incidence.

Molla et al. (2017) conducted a research between 2000
and 2015 with the goals of determining the geographical

and temporal spread of LSDV infection outbreaks and
forecasting the possible outbreaks in Ethiopia. The inci-
dence varied by region, with the lowest in hot dry lowlands
and the highest in wet moist highlands. They discovered
that outbreaks were seasonal, occurring most often in the
months after a long rainy season.

All the mentioned researches used statistical methods
which are designed for inference about the relationships
between variables and not making predictions. On the
contrary, prediction made by machine learning algorithms
aims at forecasting unobserved outcomes (Bzdok et al.
2018) which is what has been used in the present study.
In addition to the different methods used, discrepancies in
the results of similar researches could also be caused by
the use of different independent variables (risk factors) and
different study locations.

Howerver, it is worth mentioning that the LSDV out-
break data used in the present study were mainly passive
accounts from veterinary facilities in various countries.
There are some drawbacks of using passive monitoring
data that should be addressed when analyzing the find-
ings. The presence or quality of compensation schemes,
the capability and transparency of veterinary facilities,
the remoteness of some regions, and farmer visibility all
impede reporting in some countries. Nevertheless, the lack
of LSDV reports in some areas of the surveyed countries
could be attributed to a lack of suitable environmental
conditions for the dissemination of the disease in the area.

Other limitations of the current study include the small
amount of data used, the small number of predictor vari-
ables used, and the possibility that the disease has spread
to other regions of the studied countries with different cli-
matic and geographical conditions since conducting this
research.

In conclusion, some machine learning algorithms like
ANN could be potentially used to accurately forecast the
occurrence of LSDV infection based on some geospa-
tial and meteorological parameters. Using this approach
could be extremely beneficial to implement monitoring
and awareness schemes, as well as preventive measures
such as vaccine campaigns in areas where LSDV infection
is a high risk.
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