
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11250-022-03073-2

REGULAR ARTICLES

Assessing machine learning techniques in forecasting lumpy skin 
disease occurrence based on meteorological and geospatial features

Ehsanallah Afshari Safavi1 

Received: 25 June 2021 / Accepted: 10 January 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Lumpy skin disease virus (LSDV) causes an infectious disease in cattle. Due to its direct relationship with the survival of 
arthropod vectors, geospatial and climatic features play a vital role in the epidemiology of the disease. The objective of this 
study was to assess the ability of some machine learning algorithms to forecast the occurrence of LSDV infection based on 
meteorological and geological attributes. Initially, ExtraTreesClassifier algorithm was used to select the important predic-
tive features in forecasting the disease occurrence in unseen (test) data among meteorological, animal population density, 
dominant land cover, and elevation attributes. Some machine learning techniques revealed high accuracy in predicting 
the LSDV occurrence in test data (up to 97%). In terms of area under curve (AUC) and F1 performance metric scores, the 
artificial neural network (ANN) algorithm outperformed other machine learning methods in predicting the occurrence of 
LSDV infection in unseen data with the corresponding values of 0.97 and 0.94, respectively. Using this algorithm, the model 
consisted of all predictive features and the one which only included meteorological attributes as important features showed 
similar predictive performance. According to the findings of this research, ANN can be used to forecast the occurrence of 
LSDV infection with high precision using geospatial and meteorological parameters. Applying the forecasting power of these 
methods could be a great help in conducting screening and awareness programs, as well as taking preventive measures like 
vaccination in areas where the occurrence of LSDV infection is a high risk.

Keywords Lumpy skin disease · Forecasting · Meteorological parameters · Geospatial features · Machine learning 
techniques

Introduction

Lumpy skin disease virus (LSDV) infection is a major chal-
lenge to cattle production, causing acute or subacute disease 
in cattle and water buffalo population. Cattle of all breeds 
can become infected, and cows that are around the peak of 
milk production and calves are particularly susceptible to 
LSDV infection (Namazi and Khodakaram Tafti 2021).

The LSDV is a double-stranded DNA virus belonging 
to the Capripoxvirus genus. Fever, inappetence, a signifi-
cant drop in milk production, swollen lymph nodes, and the 
appearance of hard, slightly elevated skin nodules quickly 
after the onset of fever are the main clinical signs of the 
infection. Despite the availability of a variety of diagnostic 

tests, the diagnosis is generally confirmed using a traditional 
or real-time PCR (polymerase chain reaction) approach 
(Namazi and Khodakaram Tafti 2021).

In 1929, the first case of LSDV infection was recorded 
in Zambia (Von Backstrom 1945). LSDV has gradually 
expanded through Africa, the Middle East, Southeastern 
Europe, Central Asia, and, most recently, South Asia and 
China. The disease is now endemic in many African coun-
tries, as well as areas of the Middle East (Iraq, Saudi Ara-
bia, and the Syrian Arab Republic) and Turkey (Roche et al. 
2020). The disease has resulted in major economic losses in 
the affected countries. Due to high fever and secondary mas-
titis, it causes a substantial drop in milk production. Other 
consequences of the disease include damaged skin, a reduc-
tion in the growth rate of beef cattle, transient or lifelong 
infertility, abortion, treatment and vaccination costs, and 
the mortality in infected animals (Alemayehu et al. 2013; 
Namazi and Khodakaram Tafti 2021).
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LSDV is transmitted by insects, in particular blood-suck-
ing arthropods, contaminated food and drink, and at the later 
stages of the disease through saliva, nasal secretions, and 
semen (Sprygin et al. 2018; Tuppurainen et al. 2017). Due 
to its direct relationship with the survival of vectors, climatic 
conditions play an important role in the epidemiology of the 
disease. A warm and humid climate, environmental condi-
tions that support an influx of vector populations, such as 
those seen during seasonal rains, and the introduction of new 
animals to a herd are all risk factors for the spread of LSDV. 
Furthermore, the wind’s direction and intensity may play a 
role in the spread of the virus (Chihota et al. 2003).

The association between LSDV infection and meteoro-
logical and geospatial factors has been studied in many stud-
ies, and they have discovered that factors like temperature, 
precipitation, land cover, humidity, and wind speed can pre-
dict or influence the occurrence of the disease (Alkhamis 
and VanderWaal 2016; Allepuz et al. 2019; Machado et al. 
2019; Molla et al. 2017; Sprygin et al. 2018; Tuppurainen 
and Oura 2012).

Due to the introduction of new technologies and analyti-
cal techniques such as big data, remote sensing, and Earth 
observation, many digital Earth researches are now employ-
ing big spatiotemporal data to track and define the dynamic 
Earth climate system, (Kovacs-Györi et al. 2020; Yang et al. 
2017).

Nowadays, machine learning (ML) offers highly valuable 
resources for intelligent geospatial and environmental data 
analysis, synthesis, and visualization. ML methods, particu-
larly deep learning approaches, have become more common 
as the availability of more and different types of big data 
has grown (Xu and Jackson 2019). These techniques use 
general purpose learning algorithms to look for similarities 
in often complex and unwieldy data (Bzdok et al. 2018). In 
general, they can be used effectively at all levels of envi-
ronmental data mining: exploratory spatial data processing, 
identification and modeling of spatial–temporal patterns, and 
decision-driven mapping. Traditional geostatistical methods 
have been replaced greatly by machine learning techniques 
especially in big data analyses (Kanevski et al. 2008). How-
ever, ML techniques should be implemented accurately and 
effectively from pre-processing data to analysis and justifica-
tion of the findings (Kanevski et al. 2008).

ML techniques have been evaluated in several studies for 
predicting the occurrence of infectious diseases in human 
or animals using various climatic and geospatial features.

Wang et al. (2015) developed a feed-forward back-prop-
agation neural network model to predict the weekly number 
of human cases of infectious diarrhea in China (Shanghai) 
using meteorological factors as predictive features. Non-
linear models including neural networks, support vector 
regression, and random forests regression showed better per-
formance than multiple linear regression. Neural networks 

showed most satisfactory results when all performance eval-
uation criteria were considered simultaneously.

Malki et al. (2020) explored various regressor machine 
learning models to predict confirmed and death cases of 
COVID-19 in various countries. In forecasting the COVID-
19 confirmed cases, the highest performance was obtained 
by the KNN (K-nearest neighbors) regressor. Decision tree 
algorithm showed best performance in predicting the rate of 
COVID-19 mortality. Weather variables such as temperature 
and humidity were more important in predicting the mortal-
ity rate when compared to the other census variables such as 
population, age, and urbanization.

Golden et al. (2019) collected soil and feces samples 
from 11 pastured poultry farms from 2014 to 2017 in the 
USA. They generated random forest and gradient boosting 
machine predictive models to predict Listeria spp. preva-
lence in samples based on meteorological factors such as 
temperature, wind speed, gust speed, humidity, and precipi-
tation at the farming location. AUC performance metric for 
the random forest and gradient boosting machine models of 
fecal samples was 0.905 and 0.855, respectively. The soil 
gradient boosting machine model outperformed the random 
forest model with AUCs of 0.873 and 0.700, respectively.

Liang et al. (2020) used machine learning methods to 
forecast African swine fever outbreaks around the world 
using bio-climatic variables. The random forest algorithm 
outperformed other techniques with 80.4% accuracy in the 
dataset containing all predictive variables, and the support 
vector machine algorithm showed the best accuracy in the 
subset dataset containing only important climatic features 
(76.02%).

The accuracy score of prediction varied between 47.8 and 
99.6% in the study by Niu et al. (2020), which used vari-
ous machine learning algorithms to forecast Peste des Petits 
ruminants (PPR) outbreaks based on certain bio-climatic 
variables and altitude data. The random forest algorithm per-
formed best in a test dataset consisting of data from three 
countries that were not included in the training process.

To the best of the author’s knowledge, no related research 
has been undertaken in terms of evaluating ML techniques in 
building models to forecast the incidence of LSDV infection 
using meteorological and/or geospatial attributes.

Because of the importance of insects in LSDV transmis-
sion and their reliance on climatic and geographical features, 
the key objective of this research was to develop predictive 
models using some robust ML algorithms based on mete-
orological and geospatial features to predict the incidence of 
LSDV infection in countries with a prior history of disease 
outbreak reported between 2011 and 2021.
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Materials and methods

Figure 1 depicts the summary of steps taken in the materials 
and methods, and the details of each step are explained in 
the following sections.

Data sources

Lumpy skin disease outbreak data

Geographic coordinates of Lumpy Skin Disease outbreaks 
were obtained from Global Animal Disease Information Sys-
tem of FAO (Food and Agriculture Organization) (https:// 
empres- i. review. fao. org//). Relevant information between 
January 2011 and March 2021 including the specific time of 
the outbreak and the longitude and latitude of the outbreak 
point were downloaded.

Meteorological data

Monthly cloud cover (percentage), diurnal temperature range 
(degrees Celsius), frost day frequency (days per month), wet 
day frequency (days), potential evapotranspiration (mil-
limeters per day), precipitation (millimeters per months), 
daily mean temperature (degrees Celsius), monthly average 
maximum and minimum temperature (degrees Celsius), 

and vapor pressure (hectopascal) data for the period Janu-
ary 2011–December 2019 were obtained from the Univer-
sity of East Anglia’s Climatic Research Unit (CRU TS4.04) 
(Harris et al. 2020).

Animal density data

Cattle and buffalo population density data were obtained 
from Gridded Livestock of the World (GLW 3) database 
(Gilbert et al. 2018).

Land cover data

GLC-SHARE Beta-Release v1.0 (Latham et al. 2014) was 
used to extract global land cover data (spatial information 
on various forms of physical covering of the Earth’s sur-
face) including artificial surfaces, cropland, grassland, tree 
covered areas, shrubs covered areas, herbaceous vegetation, 
aquatic or regularly flooded areas, mangroves, sparse vegeta-
tion, bare soil, snow and glaciers, and waterbodies coverage.

Elevation data

Global geospatial elevation dataset (GRAY_50M_
SR.VERSION 2.1.0) was downloaded from Natural Earth 
database (free vector and raster map data @ naturalearth-
data.com).

Fig. 1  Summary of steps taken 
in the materials and methods 
section
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Data preprocessing

Only data in countries which reported the LSDV infection 
during the study time period (2011–2021) were extracted in 
all downloaded data and map files. In order to prepare data 
values to be used by ML algorithms, categorical variables 
were converted to numeric values using one-hot encoding 
technique. Moreover, the values of different predictive fea-
tures were normalized using min–max scaling. Finally, the 
dataset was split into train and test sets using train_test_split 
class from scikit-learn library (Pedregosa et al. 2011). The 
training dataset which was used during model development 
and the test set which was not seen by the model were used 
for validation. Repeated stratified K-Fold cross-validation 
using 3 splits and 2 repeats was also used to validate the 
machine learning models during training step.

Selecting of features based on importance

The Scikit-learn module’s ExtraTreesClassifier and Select-
FromModel classes were used to select features that are most 
useful for prediction. The ExtraTreesClassifier class imple-
ments a meta estimator that employs averaging to control 
over-fitting by fitting a number of randomized decision trees 
(extra-trees) on different sub-samples of the dataset (Geurts 
et al. 2006). SelectFromModel class is a meta-transformer 
for selecting features based on importance weights. Select-
FromModel accepts a threshold parameter and will select 
the features whose importance (defined by the coefficients) 
are above this threshold. SelectFromModel requires the 
underlying estimator to expose a coef_ attribute or a fea-
ture_importances_ attribute which in this case was provided 
by ExtraTreesClassifier class. The net results of the coopera-
tion of these two classes are choosing the important predic-
tive features among all predictive variables.

Hyperparameter tuning

To choose a set of optimal parameters for each machine 
learning techniques, RandomizedSearchCV method from the 
scikit-learn library was used. This method can test a given 
number of candidates from a parameter set with a specified 
distribution.

Machine learning algorithms used in training 
and testing phases

Logistic regression

Logistic regression is one of the machine learning classi-
fication techniques, which is utilized for anticipating the 

categorical dependent variable employing a given set of 
dependent variables and gives the probabilistic values which 
lie between 0 and 1 (Cox 1958).

Support vector machine

Support vector machines (SVMs) are a group of supervised 
learning techniques which are effective in high dimensional 
spaces. It creates the best decision boundary to separate 
multi-dimensional space into subclasses using the extreme 
cases which are called support vectors (Scholkopf 1998).

Decision tree

A decision tree classifier is a tree-like structure that creates 
a training model to predict the target class through learning 
simple decision rules inferred from prior data (training data). 
Internal nodes represent features (or attributes), the branches 
represent decision rules, and each leaf node represents the 
outcome (Safavian and Landgrebe 1991).

Random forest

Random forest is an ensemble decision tree-based classifi-
cation method that acts through building a number of trees 
and each tree is dependent on the values of an independently 
sampled random vector with the same distribution for all 
trees within the forest (Breiman 2001).

AdaBoost

AdaBoost is an ensemble algorithm in which subsequent 
weak learners are adjusted adaptively in favor of those 
instances misclassified by previous classifiers (Freund and 
Schapire 1997).

Bagging

As another ensemble method, bagging (short for bootstrap 
aggregating) uses the same training algorithm for every 
predictor and train them on different random subsets of the 
training set with replacement (Breiman 1996).

XGBoost

XGBoost is a popular and efficient open-source implementa-
tion of the gradient boosted trees algorithm (Chen and Gues-
trin 2016). XGBoost stands for extreme gradient boosting, 
which uses decision trees as base learners, merging several 
weak learners to create a more powerful learner. Therefore, 
it is referred to as an ensemble learning algorithm since the 
final prediction incorporates the output of several models.
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Artificial neural network (multilayer perceptron)

A simple form of artificial neural network (ANN) is the mul-
tilayer perceptron (MLP). In most cases, it has three layers: 
input, output, and a hidden layer. The input layer is where 
the data to be processed is received. The output layer is in 
charge of classification. The true computational engine of 
the MLP is an arbitrary number of hidden layers located 
between the input and output layers (Chollet 2018).

Evaluating the performance of predictive models

Accuracy score, precision, recall, F1 score, and area under 
curve (AUC) were used as performance metrics to measure 
the power of different classifiers in predicting unseen data 
(test set) (Géron 2019).

Accuracy score is one of the common performance met-
rics which is calculated by dividing the number of correct 
predictions by total number of predictions.

Another useful metric is precision, or the accuracy of the 
positive predictions:

Recall is the ratio of positive instances that are correctly 
detected by the classifier:

F1 score is the harmonic mean of precision and recall 
which gives much more weight to low values:

Precision =
Truepositive

Truepositive + Falsepositive

Recall =
Truepositive

Truepositive + Falsenegative

Receiver operating characteristic (ROC) curve plots the 
true positive rate (recall) against the false positive rate. The 
area under curve (AUC) of ROC curves used as its summary 
and assesses a classifier’s ability to discriminate between 
classes.

Analysis tools

QGIS software (version 3.16 – Hannover) was applied to 
analyze and edit spatial data files. Machine learning tech-
niques were implemented using the Python programming 
language (version 3.8) and the Anaconda navigator platform 
(as a package manager; version 1.10.0). Scikit-learn 0.24.1 
(Pedregosa et  al. 2011) was used to implement logistic 
regression, SVM, decision tree, random forest, AdaBoost, 
and bagging algorithms. The XGBoost library was utilized 
to run the XGBoost technique (Chen and Guestrin 2016). 
Keras API (Chollet 2018) running as an abstraction layer 
on top of TensorFlow 2 framework (Abadi et al. 2016) was 
used for building multilayer perceptron (ANN).

Results

Distribution of outbreaks points

Between January 2011 and March 2021, 3039 LSDV infec-
tion outbreaks were recorded across Africa, Asia, and 
Europe. Figure 2 indicates the distribution of outbreaks 
points along with 21,757 free points.

F1 =
2

1

precision
+

1

recall

Fig. 2  The distribution of 
reported LSDV infection points 
during 2011–2021
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The highest incidence of the disease during the study 
period was reported in Europe (2172 outbreaks), Asia (777 
outbreaks), and Africa (90 outbreaks), respectively.

The highest incidence of the disease was recorded in 2016 
(Fig. 3).

Important features

Based on the results of applying ExtraTreesClassifier and 
SelectFromModel algorithms on the dataset, only meteor-
ological variables were considered as important features. 
Therefore, two independent analyses were carried out: one 
involving all predictive variables including all meteorologi-
cal, elevation, animal population density, and land cover 
features (model 1) and the other consisting of only mete-
orological features (model 2).

Tuned parameters of algorithms

In Tables  1 and 2, some of the most important tuned 
parameters in each algorithms in model 1 and 2 are shown, 
respectively.

The predictive ability of various machine learning 
algorithms

Depending on the type of ML algorithm and performance 
metric used, the predictive ability of techniques using two 
subsets of features was different (Table 3).

AUC metric ranged between 0.53% to 0.97% and 0.63% 
to 0.97% in model 1 and model 2, respectively. In both 
models, ANN algorithm outperformed other algorithms in 
terms of AUC and F1 score. ROC curves of different ML 

Fig. 3  Reported LSDV infection 
outbreaks in each year during 
2011–2021

Table 1  The most important tuned parameters after implementing hyperparameter tuning for model 1

Machine learning algorithm Tuned parameters

Logistic regression class_weight = {0: 50, 1: 50}, penalty = 'l1', solver = 'liblinear'
Support vector machine kernel = 'poly', degree = 5, coef0 = 1, gamma = 'scale', class_weight = {0: 50, 1: 50}
Decision Tree splitter = 'best', class_weight = {0: 25, 1: 75}, criterion = 'entropy', max_depth = 14
Random forest (decision tree as base estimator) n_estimators = 5000, min_samples_split = 2, bootstrap = True, max_leaf_nodes = 200, class_

weight = {0: 30, 1: 70}, criterion = 'entropy', max_depth = 14
AdaBoost (decision tree as base estimator) n_estimators = 1000, algorithm = 'SAMME.R', learning_rate = 0.1
Bagging (decision tree as base estimator) warm_start = True, oob_score = False, n_estimators = 100, max_samples = 1000, max_fea-

tures = 10, bootstrap = False
XGBoost objective = 'binary:logistic', max_depth = 10, colsample_bytree = 1, eta = 0.01, gamma = 2, 

min_child_weight = 0.1, subsample = 0.6
Artificial neural networks Input dimension = 24, Total number of neurons = 70,

number of hidden layers = 0,
EarlyStopping(patience = 10),
activation = "relu", solver = "adam", learning rate = 0.001,
loss = "binary_crossentropy”, epochs = 200
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algorithms for model 1 and model 2 are shown in Figs. 4 
and 5, respectively.

Discussion

The findings of current study demonstrated that by apply-
ing machine learning methods and using climatic and 
geospatial features as predictive variables, the occurrence 
of LSDV infection could be predicted in test set (unseen 
data) with high accuracy. For instance, ANN algorithm 
indicated 97% accuracy score. However, the accuracy 
score is not the preferred performance measure for classi-
fiers, particularly where certain classes are more frequent 
than others (Géron 2019). As a result, when assessing the 
predictive power of algorithms, it makes more sense to 
consider performance metrics such as precision, recall, F1 

score, and AUC. Regarding AUC metric and by incorpo-
rating all predictive variables in the model or using only 
meteorological variables as predictors, the highest perfor-
mance was associated with ANN algorithm (97% in both 
models) (Table 3).

Artificial neural networks have been widely used in differ-
ent fields including medical and health field, such as medi-
cal diagnosis and disease prediction and obtained the very 
good prediction results (Abbass 2002; Al-Shayea 2011; Baxt 
1995; Fang et al. 2014; Flores-Fernández et al. 2012; Kara 
and Dirgenali 2007; Kia et al. 2013; Ma and Wang 2010; 
Wang and Gupta 2013; Wang et al. 2001; Zhu and Wang 
2010).

The reason for better performance of ANN could be 
attributed to the fact that this algorithm is a universal 
approximator which can approximate a large class of func-
tions with a high degree of accuracy (Y. Wang et al. 2015).

Table 2  The most important tuned parameters after implementing hyperparameter tuning for model 2

Machine learning algorithm Tuned parameters

Logistic regression max_iter = 1000, class_weight = {0: 50, 1: 50}, penalty = 'l1', solver = 'liblinear'
Support vector machine kernel = 'rbf', coef0 = 0, gamma = 'scale',class_weight = {0: 50, 1: 50}
Decision tree splitter = 'best', class_weight = {0: 30, 1: 70}, criterion = 'entropy', max_depth = 13
Random forest (decision tree as base estimator) n_estimators = 5000, bootstrap = True, max_leaf_nodes = 300, class_weight = {0: 20, 1: 80}, 

criterion = 'entropy'
AdaBoost (decision tree as base estimator) n_estimators = 700, algorithm = 'SAMME.R', learning_rate = 0.1
Bagging (decision tree as base estimator) warm_start = False, oob_score = True, n_estimators = 200, max_samples = 1000, max_fea-

tures = 10, bootstrap = True
XGBoost objective = 'binary:logistic', max_depth = 15, colsample_bytree = 1, eta = 0.2, gamma = 1.5, 

min_child_weight = 1, subsample = 0.6
Artificial neural networks Input dimension = 10, Total number of neurons = 80,

number of hidden layers = 0,
EarlyStopping(patience = 10),
activation = "relu", solver = "adam", learning rate = 0.001,
loss = "binary_crossentropy", epochs = 200

Table 3  Comparative performance of various machine learning algorithms using two sets of predictors

Logistic 
regression

Support vec-
tor machine

Decision tree Random forest AdaBoost Bagging XGBoost Artificial 
neural net-
works

Model 1 Accuracy score 0.93 0.94 0.89 0.96 0.88 0.96 0.94 0.96
Precision 0.85 0.77 0.57 0.89 0.67 0.89 0.91 0.88
Recall 0.48 0.66 0.34 0.71 0.07 0.74 0.50 1
f1 score 0.61 0.71 0.43 0.79 0.13 0.81 0.65 0.94
AUC 0.73 0.82 0.65 0.85 0.53 0.86 0.75 0.97

Model 2 Accuracy score 0.92 0.96 0.90 0.93 0.91 0.95 0.92 0.97
Precision 0.84 0.89 0.63 0.92 0.89 0.90 0.91 0.88
Recall 0.41 0.73 0.37 0.45 0.27 0.63 0.39 1
f1 score 0.55 0.80 0.46 0.61 0.42 0.74 0.54 0.94
AUC 0.70 0.86 0.67 0.72 0.63 0.81 0.69 0.97
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The predictive performance of ANN was almost the same 
in both models (using all predictor variables vs only cli-
matic predictive variables) with AUC of 0.97. The literature 
shows that feature selection can boost the classifier’s pre-
diction accuracy, scalability, and generalization capability. 
This technique is critical in information discovery because it 
reduces computational complexity, storage, and cost (Gutkin 
et al. 2009). It should be noted, however, that any predic-
tive feature may be irrelevant individually, but when com-
bined with others, it becomes relevant (Gheyas and Smith 
2010). As a result, feature selection does not always imply 

improved results, and in some cases, eliminating features 
could be detrimental (Guyon et al. 2008).

To the best of the author’s knowledge, no other study has 
used machine learning algorithms to forecast the incidence 
of LSDV infection using geospatial and meteorological pre-
dictive parameters. However, some similar studies utilized 
machine learning methods to predict the occurrence of some 
viral livestock diseases based on climatic data.

Liang et al. (2020) used machine learning methods to 
forecast African swine fever outbreaks around the world 
using bio-climatic variables, and Niu et al. (2020) applied 

Fig. 4  Receiver operating 
characteristic (ROC) curves of 
various machine learning algo-
rithms for model 1 (including 
all predictors)

Fig. 5  Receiver operating 
characteristic (ROC) curves of 
various machine learning algo-
rithms for model 2 (including 
only predictive meteorological 
variables)

55   Page 8 of 11 Tropical Animal Health and Production (2022) 54: 55



1 3

various machine learning algorithms to forecast Peste des 
Petits ruminants (PPR) outbreaks based on certain bio-
climatic variables and altitude data. Nevertheless, the time 
frame during which climate data (WordClim database 
which contains data for 1970–2000) used in these studies 
was before the time period during which disease outbreaks 
data utilized and this could be a potential source of bias. 
In contrast, in the present study, meteorological data were 
downloaded for the period 2011–2019 from CRU TS4.04 
database (Harris et al. 2020) to provide better time concord-
ance with event data of LSDV infection.

According to the feature selection algorithm, out of mete-
orological, animal density, land cover, and elevation data, 
only meteorological variables were chosen as significant pre-
dictive factors in the present study. Similarly, wet and warm 
climates which are prime habitat for blood-feeding arthro-
pods have been linked to the occurrence of LSDV infec-
tion previously (Alkhamis and VanderWaal 2016; Chihota 
et al. 2003; Weiss 1968). Some studies which used statistical 
methods have found a connection between land cover char-
acteristics and/or animal density and disease incidence. For 
instance, Alkhamis and VanderWaal (2016) examined LSDV 
outbreak records in the Middle East between 2012 and 2015. 
The most important environmental predictors that contrib-
uted to the ecological niche of LSDV were annual precipita-
tion, land cover, mean diurnal range, type of livestock pro-
duction system, and global livestock densities, according to 
ecological niche modeling. Allepuz et al. (2019) investigated 
the relationship between confirmed LSDV infection out-
breaks and climatic factors, land cover, and cattle density in 
the Balkans, Caucasus, and Middle East between 2012 and 
2018. The findings revealed that the likelihood of disease 
incidence was considerably higher in areas dominated by 
croplands, grassland, or shrub land. Higher cattle popula-
tions, as well as regions with a higher annual mean tem-
perature and a larger diurnal temperature range, increased 
the odds. In contrast to areas covered mostly by forest, areas 
with sparse vegetation have a lower risk of infection.

Gari et al. (2010) conducted a questionnaire survey to 
perform a cross-sectional analysis to assess the distribution 
of LSDV infection and related risk factors in Ethiopia’s three 
major agro-climatic areas. Across agro-climate zones, herd-
level prevalence of LSDV infection was slightly higher in the 
midland agro-climate than in the highland and lowland agro-
climate zones. The odds ratio of LSDV infection incidence 
was 3.86 (95% confidence interval: 2.61–5.11) in the mid-
land vs. highland region and 4.85 (95% confidence interval: 
2.59–7.1) in the lowland vs. highland zone. The introduction 
of new animal, as well as communal grazing and watering 
management, was correlated with a significantly increased 
risk of LSDV infection incidence.

Molla et al. (2017) conducted a research between 2000 
and 2015 with the goals of determining the geographical 

and temporal spread of LSDV infection outbreaks and 
forecasting the possible outbreaks in Ethiopia. The inci-
dence varied by region, with the lowest in hot dry lowlands 
and the highest in wet moist highlands. They discovered 
that outbreaks were seasonal, occurring most often in the 
months after a long rainy season.

All the mentioned researches used statistical methods 
which are designed for inference about the relationships 
between variables and not making predictions. On the 
contrary, prediction made by machine learning algorithms 
aims at forecasting unobserved outcomes (Bzdok et al. 
2018) which is what has been used in the present study. 
In addition to the different methods used, discrepancies in 
the results of similar researches could also be caused by 
the use of different independent variables (risk factors) and 
different study locations.

Howerver, it is worth mentioning that the LSDV out-
break data used in the present study were mainly passive 
accounts from veterinary facilities in various countries. 
There are some drawbacks of using passive monitoring 
data that should be addressed when analyzing the find-
ings. The presence or quality of compensation schemes, 
the capability and transparency of veterinary facilities, 
the remoteness of some regions, and farmer visibility all 
impede reporting in some countries. Nevertheless, the lack 
of LSDV reports in some areas of the surveyed countries 
could be attributed to a lack of suitable environmental 
conditions for the dissemination of the disease in the area.

Other limitations of the current study include the small 
amount of data used, the small number of predictor vari-
ables used, and the possibility that the disease has spread 
to other regions of the studied countries with different cli-
matic and geographical conditions since conducting this 
research.

In conclusion, some machine learning algorithms like 
ANN could be potentially used to accurately forecast the 
occurrence of LSDV infection based on some geospa-
tial and meteorological parameters. Using this approach 
could be extremely beneficial to implement monitoring 
and awareness schemes, as well as preventive measures 
such as vaccine campaigns in areas where LSDV infection 
is a high risk.
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