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Abstract 
The MendelianRandomization package is a software package written 
for the R software environment that implements methods for 
Mendelian randomization based on summarized data. In this 
manuscript, we describe functions that have been added or edited in 
the package since version 0.5.0, when we last described the package 
and its contents. The main additions to the package since that time 
are: 1) new robust methods for performing Mendelian randomization, 
particularly in the cases of bias from weak instruments and/or 
winner’s curse, and pleiotropic variants, 2) methods for performing 
Mendelian randomization with correlated variants using dimension 
reduction to summarize large numbers of highly correlated variants 
into a limited set of principal components, 3) functions for calculating 
first-stage F statistics, representing instrument strength, in both 
univariable and multivariable contexts, and with uncorrelated and 
correlated genetic variants. We also discuss some pragmatic issues 
relating to the use of correlated variants in Mendelian randomization.
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Introduction
Assessing causality in relationships between risk factors and outcomes is tricky and subject to many 
potential pitfalls. Mendelian randomization is an epidemiological technique that assesses such questions 
using genetic variants1,2. Mendelian randomization uses genetic variants as instrumental variables to assess  
evidence for the causal effect of an exposure on an outcome.

An instrumental variable is a variable that behaves analogously to randomization in a randomized trial. It 
divides the population into groups with different distributions of the exposure, but the groups are otherwise 
indistinguishable (aside from any differences occurring due to downstream causal effects of the exposure)3.  
Formally, an instrumental variable should be associated with the exposure (relevance), not associated with 
the outcome via any confounding pathway (exchangeability), and does not affect the outcome directly, only 
potentially indirectly via an effect of the exposure (exclusion restriction)4. Generally speaking, genetic vari-
ants are plausible candidate instrumental variables, as they tend to have specific effects on particular biologi-
cal mechanisms, they are uncorrelated with genetic variants that influence other biological mechanisms (due 
to Mendel’s laws of inheritance), and they are fixed at conception (hence not subject to reverse causation or  
influence by environmental factors)5.

MendelianRandomization is a software package written for the R software environment6 that implements meth-
ods for Mendelian randomization based on summarized data7. By summarized data, we mean genetic asso-
ciations with traits (beta-coefficients and standard errors) taken from regression analyses of a trait on a genetic  
variant8. Such associations are estimated in genome-wide association studies. They have been publicly reported 
for millions of variants by many large studies and consortia, and can be accessed through several different  
public portals9,10.

This package has previously been introduced11, and updates up to version 0.5.0 have been discussed12. In 
this paper, we present updates to the package since version 0.5.0 up to the current version 0.9.0. A complete 
list of functions in the package is given in Table 1. The properties of the various methods are not discussed here 
in detail; we encourage users to read the relevant references for the specific methods or the guidelines paper for 
general advice on performing Mendelian randomization investigations13. We also encourage users to con-
sult the documentation provided with the package, which describes all the options available for each method 
in greater detail. In this paper, we aim to provide an overview of recent updates to the package.

Table 1. Functions available in the MendelianRandomization package. Functions are divided into five 
categories: data entry functions, univariable estimation methods, multivariable estimation methods, data 
visualization functions, and functions that load data from PhenoScanner.

Function Description Status Can include 
correlated variants?

Data entry functions

mr_input Data entry for univariable analysis

mr_mvinput Data entry for multivariable analysis

          Amendments from Version 1
We have updated the manuscript in response to reviewer comments. In particular, we have expanded the introduction 
to provide more background information on the Mendelian randomization approach; we have clarified the source of 
the genetic association data; we have expanded and clarified the discussion about genetic correlation matrices and 
orientation; we have re-ordered the material, adding section headings on “Correlated variants” and “Variant correlation 
matrix and exposure correlation matrix”; we have expanded on how to obtain a genetic correlation matrix; and we 
have discussed specification of the exposure correlation matrix. All changes to the manuscript are minor in nature, and 
clarify the material in the initial submission rather than correcting or changing any interpretation of the original text.

Any further responses from the reviewers can be found at the end of the article

REVISED

Page 3 of 21

Wellcome Open Research 2023, 8:449 Last updated: 30 NOV 2023



Methods
Implementation
Constrained maximum likelihood methods. The mr_cML and mr_mvcML functions perform the constrained 
maximum likelihood method, for the univariable Mendelian randomization14 (mr_cML) and multivariable 
Mendelian randomization15 (mr_mvcML) settings. These methods are robust to the violation of any of the 
three instrumental variable assumptions under mild assumptions. In a maximum likelihood framework, these 
methods constrain the number of invalid instruments with horizontal pleiotropy. The number of invalid 
instruments is asymptotically consistently selected by the Bayesian information criterion. To further 
account for the selection uncertainty with a finite sample, a data perturbation approach is employed.

Function Description Status Can include 
correlated variants?

Univariable estimation methods

mr_ivw Inverse-variance weighted (IVW) method † ✓

mr_median Median method

mr_egger MR-Egger method ✓

mr_maxlik Maximum likelihood method ✓

mr_mbe Mode-based estimation method

mr_hetpen Heterogeneity penalized method

mr_conmix Contamination mixture method

mr_lasso Lasso method

mr_cML Constrained maximum likelihood method *

mr_divw Debiased inverse-variance weighted method *

mr_pivw Penalized inverse-variance weighted method *

mr_pcgmm Principal component generalized method of moments 
method * ✓

mr_allmethods Runs several methods

Multivariable estimation methods

mr_mvivw Multivariable IVW method † ✓

mr_mvmedian Multivariable median-based method

mr_mvegger Multivariable MR-Egger method ✓

mr_mvlasso Multivariable lasso method

mr_mvcML Multivariable constrained maximum likelihood method *

mr_mvgmm Multivariable generalized method of moments method * ✓

mr_mvpcgmm Multivariable principal component generalized method of 
moments method * ✓

Data visualization functions

mr_plot Scatter plot

mr_forest Forest plot

mr_funnel Funnel plot

mr_loo Leave-one-out plot

Loading data from PhenoScanner

extract.pheno.csv Data entry from PhenoScanner .csv file (legacy)

pheno_input Data entry from web-based PhenoScanner
* = new since version 0.5.0, † = updated since version 0.5.0, ✓ = estimation method allows variants to be correlated (if not, then the 
method assumes variants are uncorrelated).
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The mr_cML function takes an MRInput object as input, created using the mr_input command. The 
syntax is:

mr_cML(mr_input(ldlc, ldlcse, chdlodds, chdloddsse),n=17723)

where ldlc and ldlcse are genetic associations with low-density lipoprotein (LDL) cholesterol and their 
standard errors for 28 uncorrelated genetic variants previously reported as associated with at least one of 
LDL-cholesterol, high-density lipoprotein (HDL) cholesterol, or triglycerides by Waterworth et al.16, and 
chdlodds and chdloddsse are genetic associations with coronary heart disease risk for the same vari-
ants. These data variables are provided with the package. n is the sample size for the genetic associations. In 
practice n could be the sample size either for the exposure or the outcome, the smaller value is recommended to 
get appropriately-sized confidence intervals; see reference for detailed discussions14.

The mr_mvcML function takes an MRMVInput object as input, created using the mr_mvinput command. 
The syntax is:

mr_mvcML(mr_mvinput(bx = cbind(ldlc, hdlc, trig),
   bxse = cbind(ldlcse, hdlcse, trigse),
   by = chdlodds, byse = chdloddsse), n = 17723)

where hdlc and hdlcse are genetic associations with HDL cholesterol and their standard errors, trig and  
trigse are genetic associations with triglycerides and their standard errors for the same 28 variants, and n is  
the sample size for the genetic associations with the exposures (or outcome if smaller). Again, these data variables  
are provided with the package.

The main options for these methods are DP = TRUE, which performs data perturbation and generally results 
in wider confidence intervals, but is recommended to provide appropriately-sized confidence intervals;  
MA = TRUE (for mr_cML), which performs model averaging, which again is recommended to provide appro-
priately-sized confidence intervals; and rho_mat (for mr_mvcML), which specifies the exposure correla-
tion matrix between the summarized data for the exposures and outcome. If this is unspecified, then it is 
taken as the identity matrix, implying that the summarized data for the exposures and outcome are independ-
ent (typically because they were estimated in non-overlapping samples). Other options are provided to change 
the settings of the optimization functions used in the methods.

Debiased inverse-variance weighted method. The mr_divw function performs the debiased inverse-variance  
weighted method17. This method is an extension of the inverse-variance weighted (IVW) method that is more  
robust to weak instruments, with better bias and coverage properties.

The mr_divw function takes an MRInput object as input, created using the mr_input command. 
The syntax is:

mr_divw(mr_input(ldlc, ldlcse, chdlodds, chdloddsse))

The main options for this method are over.dispersion = TRUE, which allows for overdispersion in the vari-
ant-specific estimates (similar to a random-effects model for the IVW method), and diagnostics = FALSE,  
which provides a quantile—quantile plot of the variant-specific estimates, as a visual inspection for overdispersion  
and outliers.

Penalized inverse-variance weighted method. The mr_pivw function performs the penalized inverse-
variance weighted method18. This method is an extension of the IVW method and the debiased 
inverse-variance weighted method, which handles weak instrument bias by a penalized log-likelihood function, 
and handles balanced horizontal pleiotropy by accounting for overdispersion in the variant-specific estimates.

The mr_pivw function takes an MRInput object as input, created using the mr_input command. The 
syntax is:

mr_pivw(mr_input(ldlc, ldlcse, chdlodds, chdloddsse))
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The main options for this method are: lambda = 1, which is the penalty parameter. It plays a role in the bias-
variance trade-off of the estimator. It is recommended to choose lambda = 1 to achieve the smallest  
bias and valid statistical inference; over.dispersion = TRUE, which allows for overdispersion in the 
variant-specific estimates; and delta = 0, which is a z-score threshold used for screening out weak instru-
ments. delta should be greater than or equal to zero. When delta = 0, all variants provided will be used in 
the analysis. When delta > 0, the option sel.pval should be specified, which is the p-values of the genetic 
associations on the exposure. Then, the variants with sel.pval > 2*pnorm(delta,lower.tail = 
FALSE) will be removed from the analysis. The final option is Boot.Fieller = TRUE, which provides 
the p-value and the confidence interval of the causal effect calculated by the bootstrapping Fieller method.

Generalized method of moments method. The mr_mvgmm function performs the generalized method 
of moments (GMM) method19 for the multivariable Mendelian randomization setting. The key advantage of 
the GMM method is that estimates are more robust to weak instrument bias and/or measurement error in the  
exposures20 compared with the standard IVW method, which is equivalent to a two-stage least squares approach 
with individual-level data7. Weak instrument bias is particularly important in the multivariable setting, as bias in 
the multivariable setting can be in any direction, particularly if instrument strength varies between the exposures.

Unlike the multivariable IVW method (mr_mvivw), the multivariable GMM method requires the sample  
sizes for genetic associations with the exposure, and the sample size for the genetic associations with the 
outcome. The method offers inferences that are robust to overdispersion in the variant-specific estimates 
(using the default option robust = TRUE).

If a genetic correlation matrix is not supplied in the mr_mvinput function, then the genetic variants will be 
assumed to be uncorrelated. There is also the option to use correlated variants if a genetic correlation matrix 
is supplied. If a genetic correlation matrix is supplied, the orientation of variants in the genetic correlation 
matrix (i.e. the assumed effect alleles) should be harmonized with the summary statistics used in the analysis 
as described in the mr_pcgmm section below.

The syntax for the mr_mvgmm function is:

mr_mvgmm(mr_mvinput(bx = cbind(ldlc, hdlc, trig), bxse = cbind(ldlcse, hdlcse, 
trigse), by = chdlodds, byse = chdloddsse), nx=rep(17723,3), ny=17723)

Principal component generalized method of moments methods. The mr_pcgmm and mr_mvpcgmm func-
tions perform the principal component generalized method of moments (PC-GMM) method, for the univari-
able Mendelian randomization (mr_pcgmm) and multivariable Mendelian randomization (mr_mvpcgmm) 
settings21. This method is very similar to the GMM method, the key difference being that the GMM method 
uses individual variants as instruments rather than principal components.

These methods are designed for use when performing Mendelian randomization using genetic variants from 
a single gene region22. As an alternative to pruning and clumping approaches, which take a large number of vari-
ants from a gene region (potentially hundreds or thousands) and select a small number of uncorrelated (or 
weakly correlated) variants, the principal components approach performs dimension reduction on the full set of 
variant associations. The aim is to construct a small number of principal components which capture the  
information in the data, allowing the analysis to be performed using all available data, but avoiding numeri-
cal issues that would occur if highly-correlated genetic variants were included in the analysis. Previous 
investigations have shown that dimension reduction approaches can give additional precision compared 
with approaches using a small number of selected variants, and are less sensitive to variability arising 
from the variant selection process23. Results from dimension reduction approaches are also less sensitive to 
misspecification of the variant correlation matrix, compared with other approaches using highly-correlated 
variants23,24.

Compared with other dimension reduction approaches that have been proposed25, the PC-GMM method has 
some important advantages: it uses the Continuously Updating Generalized Method of Moments method26, 
which provides estimates that are more robust to weak instruments than some other instrumental variable 
methods20; and it can allow for overdispersion in the variant-specific estimates (using the default option 
robust = TRUE), which is recommended to provide appropriately-sized confidence intervals and valid 
inferences.
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The syntax for the univariable mr_pcgmm function is:

mr_pcgmm(mr_input(bx = calcium, bxse = calciumse,
   by = fastgluc, byse = fastglucse, correlation = calc.rho),
   nx=6351, ny=133010)

where calcium, calciumse, fastgluc, fastglucse, and calc.rho are genetic association data 
on six correlated variants from the CASR gene region provided with the package and their associations with 
serum calcium levels (calcium and associated standard errors calciumse) and fasting glucose levels  
(fastgluc and associated standard errors fastglucse), nx is the sample size for genetic associations with  
the exposure, and ny is the sample size for genetic associations with the outcome. These associations are:

> mr_input(bx = calcium, bxse = calciumse,
>    by = fastgluc, byse = fastglucse, correlation = calc.rho)

    SNP exposure.beta exposure.se outcome.beta outcome.se
1 snp_1       0.00625     0.00233      0.02805     0.0122
2 snp_2       0.00590     0.00338      0.00953     0.0198
3 snp_3       0.01822     0.00318      0.03646     0.0173
4 snp_4       0.00598     0.00233      0.01049     0.0119
5 snp_5       0.00825     0.00229      0.02357     0.0122
6 snp_6       0.00651     0.00352      0.00204     0.0179

The syntax for the multivariable mr_mvpcgmm function is:

mr_mvpcgmm(mr_mvinput(bx = cbind(ldlc, hdlc, trig),
   bxse = cbind(ldlcse, hdlcse, trigse),
   by = chdlodds, byse = chdloddsse,
   correlation = diag(length(ldlc))),
   nx=rep(17723,3), ny=17723)

We note that this example does not use genetic variants from a single gene region, and so does not 
represent a recommended use case for the method. It is provided to demonstrate the code syntax.

The default operation of the mr_pcgmm and mr_mvpcgmm functions chooses the number of principal  
components to explain 99.9% of the variability in a weighted version of the variant correlation matrix. This 
can be varied, either by setting a different threshold (default thres = 0.999 corresponds to 99.9%) or by  
fixing the number of principal components using the r option (for example, r = 10 would select 10 principal  
components). As for the mr_mvcML function, the mr_mvpcgmm function requires the exposure correlation  
matrix, set using the cor.x option (although for mr_mvpcgmm, correlations with the outcome are not 
needed). If not specified, this is set to the identity matrix, implying that the summarized data for the exposures 
are estimated in non-overlapping samples. If these associations were estimated in the same dataset and these  
correlations are not known, a sensitivity analysis may be worthwhile.

Correlated variants. Most methods in the MendelianRandomization package assume that all genetic variants  
are uncorrelated (see Table 1). The mr_ivw and mr_egger functions (and their multivariable counterparts) 
can account for correlations between variants, as can the mr_mvgmm and related methods (mr_pcgmm and  
mr_mvpcgmm) introduced above. While using partly correlated variants can provide additional precision com-
pared with using uncorrelated (or minimally-correlated) variants, there are several cautions to the use of  
correlated variants in Mendelian randomization.

First, the estimate from the analysis with correlated variants should not be strikingly more precise than the 
result with the lead variant only (i.e. the variant having the lowest p-value in its association with the expo-
sure) or with minimally-correlated variants. We would expect the correlated variants to explain slightly more 
variance in the exposure, and so we would expect the standard error to reduce and confidence intervals to narrow 
slightly when using correlated variants. However, if the standard error when using correlated variants is much 
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smaller than when using the lead variant only (say, it is two or three times smaller), then inputs should be 
checked carefully, as the increase in precision may represent a convergence issue. Reporting a sensitivity 
analysis using fewer variants or principal components is recommended.

Second, many software tools report the squared-correlation matrix (the r2 matrix) between variants, not 
the (signed) correlation matrix. Mendelian randomization requires the correlation matrix, which provides 
correlations between variants.

Third, the signs of the correlations (positive or negative) must be correctly specified. If the correlation matrix 
is calculated using the same effect and non-effect alleles as the summarized data, then the correlations should 
have the correct signs27. If not, then the correlation matrix should be harmonized to the same effect alleles  
by flipping signs in the relevant rows and columns. Failure to harmonize the genetic correlation matrix can 
result in erroneous estimates. This can be implemented in R by adapting the following example code:

flip = c(+1, +1, -1, +1, -1, +1)
calc.rho.signed = calc.rho*flip%o%flip

where flip is +1 for variants for which the alleles are correctly aligned, and -1 for variants for which the  
alleles are incorrectly aligned, and the elements of flip correspond to the genetic variants in order.

In this example, before orientation, the variant correlation matrix is:

> calc.rho

       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]
[1,]  1.000  0.070  0.094 -0.172  0.079 -0.104
[2,]  0.070  1.000 -0.050  0.081 -0.080 -0.014
[3,]  0.094 -0.050  1.000 -0.306  0.349 -0.134
[4,] -0.172  0.081 -0.306  1.000 -0.129  0.446
[5,]  0.079 -0.080  0.349 -0.129  1.000 -0.289
[6,] -0.104 -0.014 -0.134  0.446 -0.289  1.000

After orientation, the variant correlation matrix is:

> calc.rho.signed

       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]
[1,]  1.000  0.070 -0.094 -0.172 -0.079 -0.104
[2,]  0.070  1.000  0.050  0.081  0.080 -0.014
[3,] -0.094  0.050  1.000  0.306  0.349  0.134
[4,] -0.172  0.081  0.306  1.000  0.129  0.446
[5,] -0.079  0.080  0.349  0.129  1.000  0.289
[6,] -0.104 -0.014  0.134  0.446  0.289  1.000

As the third and fifth elements of flip are -1 (and all others are +1), all entries in the third row or column, and 
the fifth row or column, have flipped in sign (from positive to negative, or from negative to positive). For exam-
ple, the third entry in the first row was +0.094, but is now -0.094. The element in the third row and fifth  
column (+0.349) is flipped in sign twice, and so its sign ends up unchanged; similarly for the element in the third  
row and third column, the fifth row and third column, and so on.

Fourth, the correlation matrix should be obtained from the same population (or same ancestry group) as the origi-
nal data, to avoid mismatches between the correlation matrix and the summarized data. If the exposure and out-
come data are from different ancestry groups, then correlated variant analyses should not be attempted. If 
the exposure and outcome data are from the same ancestry group, then correlations should be taken from 
the outcome data by preference, but either (or use of a suitable reference population) is acceptable.

Fifth, analysts should consider pruning out extremely highly correlated variants, as these are likely to contrib-
ute little to the analysis, even when using the mr_pcgmm and mr_mvpcgmm methods. A suggestion when using 
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these methods is to take pairs of variants that are correlated at r2 > 0.95, and remove one of the pair at random 
until no such pairs remain. This can be implemented using the code below for a correlation matrix rho:

set.seed(496)         # for reproducibility
thres = sqrt(0.95)    # threshold set to r2>0.95
omit = NULL           # set up list of variants to be omitted
rho.upper = rho       # correlation matrix
rho.upper[lower.tri(rho, diag=TRUE)] <- 0
                      # only consider upper triangle of correlations
j=1                   # set counter to 1

while (max(abs(rho.upper), na.rm=TRUE)> thres) {
 omit[j] = ifelse(rbinom(1, 1, 0.5)==1, 
   which.max(apply(abs(rho.upper), 1, max, na.rm=TRUE)), 
   which.max(apply(abs(rho.upper), 2, max, na.rm=TRUE)))
                      # find the highest correlation value
                      # select either the row or column at random
                      # add this to the list of omitted variants
 rho.upper[omit[j],] <- 0 # set the correlations in this row to zero
 rho.upper[,omit[j]] <- 0 # set the correlations in this column to zero
                          # (to avoid selecting the same variant again)
 j=j+1                # increment the counter 
 }  # stop when no more pairwise correlations exceed threshold

For other methods that allow for correlated variants, either pruning at a stricter threshold (say, r2 < 0.3) 
or applying another approach for variant selection (such as fine-mapping or conditional modelling) is 
recommended to avoid high levels of variant multicollinearity.

Following these steps should ensure that the correlation matrix is relevant to the data under analysis, 
is correctly harmonized, and does not include pairs of variants with very highly correlations.

Variant correlation matrix and exposure correlation matrix. We note the distinction between the variant cor-
relation matrix which represents correlations between variant association estimates occurring due to linkage 
disequilibrium, and the exposure correlation matrix which represents correlations between variant association  
estimates occurring due to correlations in exposure measurements, which arise if these estimates are obtained 
in the same individuals. If the analyst has access to individual-level data on allele counts, the variant correla-
tion matrix can be calculated directly using the correlation (cor) function in R applied to the matrix of allele 
counts. The variant correlation matrix can be obtained from a reference population; for example, correlations  
for European ancestry individuals from UK Biobank are available here, and correlations for other ancestry groups 
(although for much smaller sample sizes) are available at https://ldlink.nci.nih.gov/?tab=ldmatrix (although 
note these are squared correlations, so not suitable for direct use in the MendelianRandomization package  
functions).  

The exposure correlation matrix can only be estimated from individual-level data, and hence a sensitivity analy-
sis for its value is suggested if it is unknown. However, investigations have indicated that estimates are generally 
insensitive to the correct specification of the exposure correlation matrix, and so the default value of the iden-
tity matrix is likely to be a reasonable choice. A sensitivity analysis varying this matrix is recommended, to  
assess whether findings change for different values of this matrix.

Operation. The R software environment (RRID:SCR_001905) runs on a wide variety of UNIX platforms, 
Windows, and MacOS, and requires minimal computer resources (256 kilobytes of RAM is recommended). 
The package requires R version 3.3.0 or higher. As the package now uses C++ code, an up-to-date version of 
Rtools should be installed to successfully install the package. This current work used R version 4.3.1.

Use case
Instrument strength
A further update to the MendelianRandomization package is the functionality to report F statistics in the 
mr_ivw and mr_mvivw commands. The first-stage F statistic is a measure of the variance in the exposure 
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explained by the genetic variants in the exposure dataset28. It is roughly equal to the R2 statistic (the proportion of 
variance explained) multiplied by the sample size and divided by the number of instruments. Larger F sta-
tistics correspond to stronger instruments. The F statistic cannot be determined exactly based on summary 
statistics, but the simple formula implemented in the package provides a good approximation. While the 
mythical threshold of 10 for F statistics29 is an oversimplification, this value does provide a reasonable yard-
stick for judging the degree of potential bias due to weak instruments (although we would strongly caution 
against basing an analysis plan on measured values of the F statistic in the dataset under analysis28). We note 
that although weak instrument bias is typically in the direction of the null for two-sample univariable Mendelian 
randomization30, this is not necessarily the case for two-sample multivariable Mendelian randomization31.

The default implementation of the mr_ivw and mr_mvivw functions assumes that genetic variants 
are uncorrelated. Correlations can be specified in the mr_input or mr_mvinput command:

mr_ivw(mr_input(calcium, calciumse,
   fastgluc, fastglucse, corr=calc.rho))

If two uncorrelated variants both explain 3% of the variance in the exposure, then together they explain 
6% of the variance in the exposure. If two correlated variants both explain 3% of the variance in the expo-
sure, then the variance explained by both variants could be as low as 3% (if the variants are perfectly correlated) 
or as high as 6% (if the correlation is negligible), or a value between these two, depending on the magnitude of 
correlation. This correlation similarly affects estimates of the F statistic. When the variant correlation 
matrix is specified, the mr_ivw function accounts for these correlations in the calculation of the F statistic 
using a formula that involves the inverse of the Cholesky transform of the correlation matrix32.

For multivariable Mendelian randomization, the key measure of instrument strength is not the univariable F  
statistic for each exposure separately, but the conditional F statistic, representing the independent proportion  
of variance explained in each exposure, after accounting for associations with the other exposures33,34. This is 
because if the genetic associations with one exposure were strong, but were near-perfectly correlated with the 
genetic associations with another exposure, then the multivariable model would not be able to differentiate  
between the effects of the two exposures.

The mr_mvivw function calculates estimates of the conditional F statistics based on summarized data. In order 
to identify and reliably estimate multivariable exposure effects through Mendelian randomization, we require 
that the genetic predictors of the exposures are not collinear. Hence, conditional F-tests assess whether the 
genetic predictors of any one exposure can be expressed as a linear combination of genetic predictors of other 
exposures in the model. Low values of conditional F-test statistics for a given exposure suggest that the expo-
sure may not be identified, and hence estimates may suffer from weak instrument bias. This is generally a  
bigger concern for two-sample multivariable, rather than two-sample univariable, Mendelian randomization 
analyses since weak instrument biases in estimation are not necessarily toward the null of no causal effect, and 
hence inferences can suffer from inflated type I error rates (false positive findings). This calculation of con-
ditional F-statistics involves the sample size for the genetic associations with the exposures, and conditional 
F statistics are only calculated if these sample sizes are provided. If a single value is provided for the sample  
size, then it is assumed that this sample size holds for all exposures. For example, the code:

mr_mvivw(mr_mvinput(bx = cbind(ldlc, hdlc, trig),
   bxse = cbind(ldlcse, hdlcse, trigse),
   by = chdlodds, byse = chdloddsse), nx = 17723)

gives output:

Number of Variants : 28 
------------------------------------------------------------------
   Exposure Estimate Std Error  95% CI       p-value Cond F-stat
 exposure_1    1.925     0.439  1.064, 2.786   0.000        20.3
 exposure_2   -0.590     0.555 -1.677, 0.498   0.288        12.9
 exposure_3    0.723     0.230  0.272, 1.174   0.002        13.3
------------------------------------------------------------------
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Conclusions
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We conclude by again repeating the warning that we stated at the end of the manuscript accompanying the initial  
package release11: while this software simplifies the operational aspects of a Mendelian randomization, the 
truly difficult parts of an analysis are choosing sensible risk factors and outcomes, selecting genetic variants that 
are plausible instrumental variables, performing a reasonable range of analyses, and interpreting the results 
with care and caution13. These aspects of an analysis cannot be automated35.

Data availability
Zenodo. MendelianRandomization package version 0.9.0. https://doi.org/10.5281/zenodo.830505636.

This project contains the following underlying data:

-   �Folder/Files containing input data used in the “use case section”.

Software availability
Software available from: https://cran.r-project.org/web/packages/MendelianRandomization/index.html.

Archived source code at time of publication: http://doi.org/10.5281/zenodo.830505636

License: AGPL-3.0-only

Author contributions
Conceptualization: SB; Methodology: AP, TY, HX, ZL, SX, SB; Software: AP, TY, HX, ZL, SX, SB; 
Supervision: SB; Writing – Original Draft Preparation: SB; Writing – Review & Editing: all authors.

Page 11 of 21

Wellcome Open Research 2023, 8:449 Last updated: 30 NOV 2023

http://www.ncbi.nlm.nih.gov/pubmed/12689998
http://dx.doi.org/10.1093/ije/dyg070
https://www.taylorfrancis.com/books/mono/10.1201/9780429324352/mendelian-randomization-stephen-burgess-simon-thompson
https://doi.org/10.5281/zenodo.8305056
https://cran.r-project.org/web/packages/MendelianRandomization/index.html
http://doi.org/10.5281/zenodo.8305056
https://opensource.org/license/agpl-v3/


3.	 Thanassoulis G, O'Donnell CJ: Mendelian randomization: 
nature's randomized trial in the post-genome era. JAMA. 2009; 
301(22): 2386–2388.  
PubMed Abstract | Publisher Full Text | Free Full Text 

4.	 Labrecque J, Swanson SA: Understanding the Assumptions 
Underlying Instrumental Variable Analyses: a Brief Review of 
Falsification Strategies and Related Tools. Curr Epidemiol Rep. 
2018; 5(3): 214–220.  
PubMed Abstract | Publisher Full Text | Free Full Text 

5.	 Haycock PC, Burgess S, Wade KH, et al.: Best (but oft-forgotten) 
practices: the design, analysis, and interpretation of 
Mendelian randomization studies. Am J Clin Nutr. 2016; 103(4): 
965–78.  
PubMed Abstract | Publisher Full Text | Free Full Text

6.	 R: A language and environment for statistical computing 
[computer program]. Vienna, Austria: R Foundation for Statistical 
Computing; 2021. 

7.	 Burgess S, Dudbridge F, Thompson SG: Combining information 
on multiple instrumental variables in Mendelian 
randomization: comparison of allele score and summarized 
data methods. Stat Med. 2016; 35(11): 1880–1906. 
PubMed Abstract | Publisher Full Text | Free Full Text 

8.	 Bowden J, Del Greco MF, Minelli C, et al.: A framework for the 
investigation of pleiotropy in two-sample summary data 
Mendelian randomization. Stat Med. 2017; 36(11): 1783–1802. 
PubMed Abstract | Publisher Full Text | Free Full Text 

9.	 Burgess S, Scott RA, Timpson NJ, et al.: Using published data 
in Mendelian randomization: a blueprint for efficient 
identification of causal risk factors. Eur J Epidemiol. 2015; 30(7): 
543–552. 
PubMed Abstract | Publisher Full Text | Free Full Text 

10.	 Elsworth B, Lyon M, Alexander T, et al.: The MRC IEU OpenGWAS 
data infrastructure. bioRxiv. 2020; 2020.2008.2010.244293. 
Publisher Full Text 

11.	 Yavorska OO, Burgess S: MendelianRandomization: an R 
package for performing Mendelian randomization analyses 
using summarized data. Int J Epidemiol. 2017; 46(6): 1734–1739. 
PubMed Abstract | Publisher Full Text | Free Full Text 

12.	 Broadbent J, Foley CN, Grant AJ, et al.: MendelianRandomization 
v0.5.0: updates to an R package for performing Mendelian 
randomization analyses using summarized data [version 
2; peer review: 1 approved, 2 approved with reservations]. 
Wellcome Open Res. 2020; 5: 252. 
PubMed Abstract | Publisher Full Text | Free Full Text 

13.	 Burgess S, Davey Smith G, Davies N, et al.: Guidelines for 
performing Mendelian randomization investigations [version 
2; peer review: 2 approved]. Wellcome Open Res. 2020; 4: 186. 

14.	 Xue H, Shen X, Pan W: Constrained maximum likelihood-based 
Mendelian randomization robust to both correlated and 
uncorrelated pleiotropic effects. Am J Hum Genet. 2021; 108(7): 
1251–1269. 
PubMed Abstract | Publisher Full Text | Free Full Text 

15.	 Lin Z, Xue H, Pan W: Robust multivariable Mendelian 
randomization based on constrained maximum likelihood. Am 
J Hum Genet. 2023; 110(4): 592–605. 
PubMed Abstract | Publisher Full Text | Free Full Text 

16.	 Waterworth DM, Ricketts SL, Song K, et al.: Genetic variants 
influencing circulating lipid levels and risk of coronary artery 
disease. Arterioscler Thromb Vasc Biol. 2010; 30(11): 2264–2276. 
PubMed Abstract | Publisher Full Text | Free Full Text 

17.	 Ye T, Shao J, Kang H: Debiased inverse-variance weighted 
estimator in two-sample summary-data Mendelian 
randomization. Ann Stat. 2021; 49(4): 2079–2100. 
Publisher Full Text 

18.	 Xu S, Wang P, Fung WK, et al.: A novel penalized inverse-
variance weighted estimator for Mendelian randomization 
with applications to COVID-19 outcomes. Biometrics. 2023; 
79(3): 2184–2195. 
PubMed Abstract | Publisher Full Text | Free Full Text 

19.	 Hansen LP: Large sample properties of generalized method 
of moments estimators. Econometrica. 1982; 50(4): 1029–1054. 
Reference Source

20.	 Chao JC, Swanson NR: Consistent estimation with a large 
number of weak instruments. Econometrica. 2005; 73(5): 
1673–1692. 
Publisher Full Text 

21.	 Patel A, Gill D, Shungin D, et al.: Robust use of phenotypic 
heterogeneity at drug target genes for mechanistic insights: 
application of cis-multivariable Mendelian randomization to 
GLP1R gene region. medRxiv. 2023; 2023.2007.2020.23292958. 
Publisher Full Text 

22.	 Burgess S, Mason A, Grant AJ, et al.: Using genetic association 
data to guide drug discovery and development: review of 
methods and applications. Am J Hum Genet. 2023; 110(2): 
195–214. 
PubMed Abstract | Publisher Full Text | Free Full Text 

23.	 Burgess S, Zuber V, Valdes‐Marquez E, et al.: Mendelian 
randomization with fine‐mapped genetic data: choosing from 
large numbers of correlated instrumental variables. Genet 
Epidemiol. 2017; 41(8): 714–725. 
PubMed Abstract | Publisher Full Text | Free Full Text 

24.	 Batool F, Patel A, Gill D, et al.: Disentangling the effects of traits 
with shared clustered genetic predictors using multivariable 
Mendelian randomization. Genet Epidemiol. 2022; 46(7): 
415–429. 
PubMed Abstract | Publisher Full Text | Free Full Text 

25.	 Gkatzionis A, Burgess S, Newcombe PJ: Statistical methods for 
cis-Mendelian randomization with two-sample summary-level 
data. Genet Epidemiol. 2023; 47(1): 3–25. 
PubMed Abstract | Publisher Full Text | Free Full Text 

26.	 Hansen LP, Heaton J, Yaron A: Finite-sample properties of some 
alternative GMM estimators. J Bus Econ Stat. 1996; 14(3):  
262–280. 
Publisher Full Text 

27.	 Wootton RE, Sallis HM: Let’s call it the effect allele: a suggestion 
for GWAS naming conventions. Int J Epidemiol. 2020; 49(5): 
1734–1735. 
PubMed Abstract | Publisher Full Text 

28.	 Burgess S, Thompson SG, CRP CHD Genetics Collaboration: 
Avoiding bias from weak instruments in Mendelian 
randomization studies. Int J Epidemiol. 2011; 40(3): 755–764. 
PubMed Abstract | Publisher Full Text 

29.	 Stock JH, Staiger D: Instrumental Variables Regression with 
Weak Instruments. Econometrica. 1997; 65(3): 557–586. 
Publisher Full Text 

30.	 Burgess S, Davies NM, Thompson SG: Bias due to participant 
overlap in two-sample Mendelian randomization. Genet 
Epidemiol. 2016; 40(7): 597–608. 
PubMed Abstract | Publisher Full Text | Free Full Text 

31.	 Zhu J, Burgess S, Grant A: Bias in multivariable Mendelian 
randomization studies due to measurement error on 
exposures. arXiv. 2022. 
Publisher Full Text 

32.	 Burgess S, Thompson SG: Section 8.1.2 Causal estimates with 
weak instruments. In: Mendelian randomization: Methods for 
causal inference using genetic variants. 2nd ed.: Chapman & Hall/
CRC; 2021. 

33.	 Sanderson E, Windmeijer F: A weak instrument F-test in linear 
IV models with multiple endogenous variables. J Econom. 2016; 
190(2): 212–221. 
PubMed Abstract | Publisher Full Text | Free Full Text 

34.	 Sanderson E, Spiller W, Bowden J: Testing and correcting 
for weak and pleiotropic instruments in two-sample 
multivariable Mendelian randomization. Stat Med. 2021; 40(25): 
5434–5452. 
PubMed Abstract | Publisher Full Text | Free Full Text 

35.	 Burgess S, Davey Smith G: How humans can contribute to 
Mendelian randomization analyses. Int J Epidemiol. 2019; 48(3): 
661–664. 
PubMed Abstract | Publisher Full Text | Free Full Text 

36.	 Burgess: MendelianRandomization package version 0.9.0 
(0.9.0). [Source code], Zenodo. 2023. 
http://www.doi.org/10.5281/zenodo.8305056

Page 12 of 21

Wellcome Open Research 2023, 8:449 Last updated: 30 NOV 2023

http://www.ncbi.nlm.nih.gov/pubmed/19509388
http://dx.doi.org/10.1001/jama.2009.812
http://www.ncbi.nlm.nih.gov/pmc/articles/3457799
http://www.ncbi.nlm.nih.gov/pubmed/30148040
http://dx.doi.org/10.1007/s40471-018-0152-1
http://www.ncbi.nlm.nih.gov/pmc/articles/6096851
http://www.ncbi.nlm.nih.gov/pubmed/26961927
http://dx.doi.org/10.3945/ajcn.115.118216
http://www.ncbi.nlm.nih.gov/pmc/articles/4807699
http://www.ncbi.nlm.nih.gov/pubmed/26661904
http://dx.doi.org/10.1002/sim.6835
http://www.ncbi.nlm.nih.gov/pmc/articles/4832315
http://www.ncbi.nlm.nih.gov/pubmed/28114746
http://dx.doi.org/10.1002/sim.7221
http://www.ncbi.nlm.nih.gov/pmc/articles/5434863
http://www.ncbi.nlm.nih.gov/pubmed/25773750
http://dx.doi.org/10.1007/s10654-015-0011-z
http://www.ncbi.nlm.nih.gov/pmc/articles/4516908
http://dx.doi.org/10.1101/2020.08.10.244293
http://www.ncbi.nlm.nih.gov/pubmed/28398548
http://dx.doi.org/10.1093/ije/dyx034
http://www.ncbi.nlm.nih.gov/pmc/articles/5510723
http://www.ncbi.nlm.nih.gov/pubmed/33381656
http://dx.doi.org/10.12688/wellcomeopenres.16374.2
http://www.ncbi.nlm.nih.gov/pmc/articles/7745186
http://dx.doi.org/10.12688/wellcomeopenres.15555.1
http://www.ncbi.nlm.nih.gov/pubmed/34214446
http://dx.doi.org/10.1016/j.ajhg.2021.05.014
http://www.ncbi.nlm.nih.gov/pmc/articles/8322939
http://www.ncbi.nlm.nih.gov/pubmed/36948188
http://dx.doi.org/10.1016/j.ajhg.2023.02.014
http://www.ncbi.nlm.nih.gov/pmc/articles/10119150
http://www.ncbi.nlm.nih.gov/pubmed/20864672
http://dx.doi.org/10.1161/ATVBAHA.109.201020
http://www.ncbi.nlm.nih.gov/pmc/articles/3891568
http://dx.doi.org/10.1214/20-AOS2027
http://www.ncbi.nlm.nih.gov/pubmed/35942938
http://dx.doi.org/10.1111/biom.13732
http://www.ncbi.nlm.nih.gov/pmc/articles/9538932
https://www.econometricsociety.org/publications/econometrica/1982/07/01/large-sample-properties-generalized-method-moments-estimators
http://dx.doi.org/10.1111/j.1468-0262.2005.00632.x
http://dx.doi.org/10.1101/2023.07.20.23292958
http://www.ncbi.nlm.nih.gov/pubmed/36736292
http://dx.doi.org/10.1016/j.ajhg.2022.12.017
http://www.ncbi.nlm.nih.gov/pmc/articles/9943784
http://www.ncbi.nlm.nih.gov/pubmed/28944551
http://dx.doi.org/10.1002/gepi.22077
http://www.ncbi.nlm.nih.gov/pmc/articles/5725678
http://www.ncbi.nlm.nih.gov/pubmed/35638254
http://dx.doi.org/10.1002/gepi.22462
http://www.ncbi.nlm.nih.gov/pmc/articles/9541575
http://www.ncbi.nlm.nih.gov/pubmed/36273411
http://dx.doi.org/10.1002/gepi.22506
http://www.ncbi.nlm.nih.gov/pmc/articles/7614127
http://dx.doi.org/10.2307/1392442
http://www.ncbi.nlm.nih.gov/pubmed/32879951
http://dx.doi.org/10.1093/ije/dyaa149
http://www.ncbi.nlm.nih.gov/pubmed/21414999
http://dx.doi.org/10.1093/ije/dyr036
http://dx.doi.org/10.2307/2171753
http://www.ncbi.nlm.nih.gov/pubmed/27625185
http://dx.doi.org/10.1002/gepi.21998
http://www.ncbi.nlm.nih.gov/pmc/articles/5082560
http://dx.doi.org/10.48550/arXiv.2203.08668
http://www.ncbi.nlm.nih.gov/pubmed/29129953
http://dx.doi.org/10.1016/j.jeconom.2015.06.004
http://www.ncbi.nlm.nih.gov/pmc/articles/5669336
http://www.ncbi.nlm.nih.gov/pubmed/34338327
http://dx.doi.org/10.1002/sim.9133
http://www.ncbi.nlm.nih.gov/pmc/articles/9479726
http://www.ncbi.nlm.nih.gov/pubmed/31326987
http://dx.doi.org/10.1093/ije/dyz152
http://www.ncbi.nlm.nih.gov/pmc/articles/6739231
http://www.doi.org/10.5281/zenodo.8305056


Open Peer Review
Current Peer Review Status:   

Version 2

Reviewer Report 30 November 2023

https://doi.org/10.21956/wellcomeopenres.22678.r70304

© 2023 Yamazaki H. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Hajime Yamazaki   
Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of 
Medicine, Kyoto University, Kyoto, Japan 

No further comments.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clinical epidemiology, Gastroenterology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 23 November 2023

https://doi.org/10.21956/wellcomeopenres.22678.r70305

© 2023 Costeira R. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Ricardo Costeira   
Department of Twin Research and Genetic Epidemiology, King's College London, London, England, 
UK 

No further comments.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics

 
Page 13 of 21

Wellcome Open Research 2023, 8:449 Last updated: 30 NOV 2023

https://doi.org/10.21956/wellcomeopenres.22678.r70304
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9034-4370
https://doi.org/10.21956/wellcomeopenres.22678.r70305
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8316-5219


I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 23 Nov 2023
Stephen Burgess 

Thank you Ricardo for the fast and positive response, and for your previous comments on 
this article, which have helped improve the work.  

Competing Interests: No competing interests were disclosed.

Version 1

Reviewer Report 30 October 2023

https://doi.org/10.21956/wellcomeopenres.22141.r68639

© 2023 Yamazaki H. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Hajime Yamazaki   
Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of 
Medicine, Kyoto University, Kyoto, Japan 

This article describes the updated functions of the MendelianRandomization package, which is 
widely used to conduct Mendelian randomization analyses. I believe that the updated functions 
and their detailed descriptions in this article will be immensely beneficial for researchers. 
 
To enhance the readability and comprehensibility of the article, I propose the following 
suggestions:

At the beginning of the Methods section, the authors introduce ‘three instrumental variable 
assumptions.’ It would be prudent to both explicate these assumptions in the Introduction 
section and explain why genetic variants can serve as a proxy for random assignment. 
 

1. 

This article utilizes data pertaining to LDL cholesterol, HDL cholesterol, triglycerides, and 
coronary heart disease risk as an illustrative example. It would be beneficial to clearly 
articulate the research question associated with this example, incorporate a graphical 
representation to delineate the relationship between genetic variants and these variables, 
and provide a brief overview of the selection process of these genetic variants within a 
multivariable Mendelian randomization context. 
 

2. 

It would be beneficial to include a small portion of the example dataset, comprising the 
correlation matrix, within the article along with a reference to its availability in the 

3. 

 
Page 14 of 21

Wellcome Open Research 2023, 8:449 Last updated: 30 NOV 2023

https://doi.org/10.21956/wellcomeopenres.22141.r68639
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9034-4370


MendelianRandomization package. 
 
The authors draw a distinction between the variant correlation matrix and the exposure 
correlation matrix. A more detailed explanation on how to estimate each of these, as well as 
guidance on which correlation matrix is pertinent for use with the MendelianRandomization 
package, would be beneficial. 
 

4. 

The “Principal Component Generalized Method of Moments” section is extensive and could 
be made more readable by dividing it into two distinct subsections, each with its own 
subheading.

5. 

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clinical epidemiology, Gastroenterology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 12 Nov 2023
Stephen Burgess 

Response to reviewers for “MendelianRandomization v0.9.0: updates to an R package 
for performing Mendelian randomization analyses using summarized data” 
 
We would like to express thanks to the reviewers for their time and comments. Replies to 
points are indicated by angle brackets, and changes to the paper as a result of these 
comments are clearly indicated. We have numbered the comments for reference as A0, A1, 
A2, … for the first reviewer; and B0, B1, B2, … for the second reviewer. 

 
Page 15 of 21

Wellcome Open Research 2023, 8:449 Last updated: 30 NOV 2023



 
Reviewer 2: Hajime Yamazaki, Section of Clinical Epidemiology, Department of Community 
Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan 
 
B0. This article describes the updated functions of the MendelianRandomization package, 
which is widely used to conduct Mendelian randomization analyses. I believe that the 
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for researchers. 
 
> We thank the reviewer for their kind comments and positive view of their manuscript. < 
 
To enhance the readability and comprehensibility of the article, I propose the following 
suggestions: 
 
B1. At the beginning of the Methods section, the authors introduce ‘three instrumental 
variable assumptions.’ It would be prudent to both explicate these assumptions in the 
Introduction section and explain why genetic variants can serve as a proxy for random 
assignment. > We have added a brief description of the three classical instrumental variable 
assumptions required to identify a causal effect, as well as a brief motivation as to why 
genetic variants are often suitable candidate instrumental variables. < 
 
B2. This article utilizes data pertaining to LDL cholesterol, HDL cholesterol, triglycerides, and 
coronary heart disease risk as an illustrative example. It would be beneficial to clearly 
articulate the research question associated with this example, incorporate a graphical 
representation to delineate the relationship between genetic variants and these variables, 
and provide a brief overview of the selection process of these genetic variants within a 
multivariable Mendelian randomization context. 
 
> We have added a brief description of how these genetic variants were chosen. While we 
appreciate the reviewer’s point, we would not want to give the impression that the data 
included in the Mendelian randomization package are anything other than illustrative. They 
are not the ideal data to optimally address any research question. < 
 
B3. It would be beneficial to include a small portion of the example dataset, comprising the 
correlation matrix, within the article along with a reference to its availability in the 
MendelianRandomization package. 
 
> We have added the calcium and fasting glucose data to the manuscript, as well as their 
correlation matrix (see also point A2). < 
 
B4. The authors draw a distinction between the variant correlation matrix and the exposure 
correlation matrix. A more detailed explanation on how to estimate each of these, as well as 
guidance on which correlation matrix is pertinent for use with the MendelianRandomization 
package, would be beneficial. > There are various tools to estimate the variant correlation 
matrix. If you have access to individual-level genetic data (that is, allele counts for each 
SNP), you can calculate the variant correlation matrix using the correlation (cor) function in 
R. Alternatively, some pre-computed correlation matrices are available for download, for 
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example using the LDlink webtool (https://ldlink.nci.nih.gov/?tab=ldmatrix) or the ld_extract 
function in the TwoSampleMR package. Variant correlation matrices for UK Biobank 
participants of European ancestries are available at 
https://aws.amazon.com/marketplace/pp/prodview-4bhcvjnh4b4cs#resources. > We have 
listed some of these sources in the manuscript. > Exposure correlation estimates are 
required by some methods when genetic associations with any two exposures are 
measured from the same sample. Exposure correlation estimates may be more difficult to 
obtain than variant correlation estimates, but they could be estimated using individual-level 
data on the exposures from the same sample or an external sample used to measure 
genetic variant–exposure associations. In general, we have found estimation and inferences 
to be quite insensitive to mis-specified exposure correlations, and in practice we would 
recommend performing a sensitivity analysis that varies the inputted exposure correlations 
to assess sensitivity of findings to the specification of this matrix. 
 
> We have expanded the discussion about exposure correlation matrices in the manuscript. 
< 
 
B5. The “Principal Component Generalized Method of Moments” section is extensive and 
could be made more readable by dividing it into two distinct subsections, each with its own 
subheading. 
 
> We have added separate sections marked “Correlated variants” and “Variant correlation 
matrix and exposure correlation matrix” that includes much of the text previously included 
in the “Principal Component Generalized Method of Moments” section, and hence breaking 
up this previously over-long section. <  
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In this manuscript, the authors describe updates to the MendelianRandomization package 
implemented in R. In the package’s latest version (v0.9.0), users can find functions to perform 
newer robust methods of MR (such as debiased and penalised IVW MR), consider variant 
correlation, and obtain F-statistics to estimate the strength of instrument variables. 
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The authors provide good rationale for when and how to implement the newer MR methods. 
Examples of code are abundant throughout the manuscript, and the package’s functions are 
explained in detail. The authors set guidelines for implementing genetic correlation in MR and 
highlight potential caveats of the analysis. Altogether, the manuscript is useful to understand the 
newer functions available in MendelianRandomization v0.9.0 and has valuable insights into the 
practical considerations of applying more complex MR methods. Interpretation of newer output 
(the F-statistic) is included. 
 
Minor comments: 
Under the section of “Principal component generalized method of moments methods”:  

“where calcium, calciumse, fastgluc, fastglucse, and calc.rho are data on six correlated 
variants from the CASR gene region provided with the package” – please reword to clarify 
the meaning of the calcium, calciumse, fastgluc and fastglucse variables. 
 

○

Is “flip = c(+1, +1, -1, +1, -1, +1)” length = 6 because “calc.rho” is a matrix of 6 variants? Please 
show “calc.rho” before and after applying the function “calc.rho*flip%o%flip”. This can help 
understand the structure and signs of “calc.rho” going into the MR analysis. 
 

○

Regarding the correlation matrix coming from linkage disequilibrium data or exposure 
correlation: “However, our investigations have indicated that estimates are generally 
insensitive to the correct specification of this matrix.” – Please expand on this comment.

○

Under the section “Instrument Strength”:
“We note that although weak instrument bias is typically in the direction of the null for two-
sample univariable Mendelian randomization, this is not necessarily the case for two-
sample multivariable Mendelian randomization.” and “This is generally a bigger concern for 
two-sample multivariable, rather than two-sample univariable, Mendelian randomization 
analyses since weak instrument biases in estimation are not necessarily toward the null of 
no causal effect, and hence inferences can suffer from inflated type I error rates.” Please 
explain why this is the case. Additionally, please comment on how weak instrument bias can 
affect other types of MR.

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
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findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
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expertise to confirm that it is of an acceptable scientific standard.

Author Response 12 Nov 2023
Stephen Burgess 

We would like to express thanks to the reviewers for their time and comments. Replies to 
points are indicated by angle brackets, and changes to the paper as a result of these 
comments are clearly indicated. We have numbered the comments for reference as A0, A1, 
A2, … for the first reviewer; and B0, B1, B2, … for the second reviewer. 
 
Reviewer 1: Ricardo Costeira, Department of Twin Research and Genetic Epidemiology, 
King's College London, London, England, UK 
 
A0. In this manuscript, the authors describe updates to the MendelianRandomization 
package implemented in R. In the package’s latest version (v0.9.0), users can find functions 
to perform newer robust methods of MR (such as debiased and penalised IVW MR), 
consider variant correlation, and obtain F-statistics to estimate the strength of instrument 
variables. The authors provide good rationale for when and how to implement the newer 
MR methods. Examples of code are abundant throughout the manuscript, and the 
package’s functions are explained in detail. The authors set guidelines for implementing 
genetic correlation in MR and highlight potential caveats of the analysis. Altogether, the 
manuscript is useful to understand the newer functions available in 
MendelianRandomization v0.9.0 and has valuable insights into the practical considerations 
of applying more complex MR methods. Interpretation of newer output (the F-statistic) is 
included. 
 
> We thank the reviewer for their kind comments and positive view of this manuscript. < 
 
Minor comments: Under the section of “Principal component generalized method of 
moments methods”:  
 
A1. “where calcium, calciumse, fastgluc, fastglucse, and calc.rho are data on six correlated 
variants from the CASR gene region provided with the package” – please reword to clarify 
the meaning of the calcium, calciumse, fastgluc and fastglucse variables. 
 
> We have clarified that calcium represents the genetic associations with serum calcium 
levels, and fastgluc the genetic associations with fasting glucose levels (calciumse and 
fastglucse are the standard errors respectively). < 
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A2. Is “flip = c(+1, +1, -1, +1, -1, +1)” length = 6 because “calc.rho” is a matrix of 6 variants? 
Please show “calc.rho” before and after applying the function “calc.rho*flip%o%flip”. This 
can help understand the structure and signs of “calc.rho” going into the MR analysis. 
 
> We have clarified that the entries in the flip vector correspond to the six genetic variants in 
turn. We have added to the manuscript a representation of the correlation matrix before 
and after orientation. < 
 
A3. Regarding the correlation matrix coming from linkage disequilibrium data or exposure 
correlation: “However, our investigations have indicated that estimates are generally 
insensitive to the correct specification of this matrix.” – Please expand on this comment. 
 
> We have clarified that this sentence refers to the exposure correlation matrix. < 
 
Under the section “Instrument Strength”: 
 
A4. “We note that although weak instrument bias is typically in the direction of the null for 
two-sample univariable Mendelian randomization, this is not necessarily the case for two-
sample multivariable Mendelian randomization.” and “This is generally a bigger concern for 
two-sample multivariable, rather than two-sample univariable, Mendelian randomization 
analyses since weak instrument biases in estimation are not necessarily toward the null of 
no causal effect, and hence inferences can suffer from inflated type I error rates.” Please 
explain why this is the case. Additionally, please comment on how weak instrument bias can 
affect other types of MR. 
 
> Weak instrument bias is analogous to classical measurement error bias in a regression 
model. With a single regressor, error in the regressor leads to underestimation of the 
regression coefficient; this is known as regression dilution bias. With multiple regressors, 
bias due to measurement error can be in any direction. For example, suppose we have two 
regressors that are highly correlated, one of which is a causal risk factor for the outcome, 
and the other is not. Further, one is measured with substantial error, whereas the other is 
measured with no error. In a regression model, the coefficient for the regressor measured 
with error tends towards zero regardless of which is truly the causal risk factor. This could 
lead the coefficient for the precisely measured exposure being either over- or 
underestimated, depending on its true value and the true value for the coefficient of the 
imprecisely measured regressor. In a prediction model, this may be of little consequence, as 
the predicted values of the outcome may be insensitive to the exposure coefficients – which 
is large, which is close to zero. However, if the model coefficients have a causal 
interpretation, then the coefficients matter, as the regressor with the non-zero coefficient is 
identified as the causal factor. 
 
> Generally speaking, bias towards the null in Mendelian randomization is of lesser 
consequence, as the primary goal of Mendelian randomization is not estimation. Bias 
towards the null may reduce power to detect a true causal effect, but it will not incorrectly 
suggest a false causal effect (which is regarded in the Neyman—Pearson hypothesis 
framework as a more serious error). 
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> As this explanation is fairly involved, we do not think it is appropriate to include in this 
manuscript. However, given that this journal performs open peer review, it can be found by 
the interested reader. <  
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