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Characterizing a thermostable Cas9 for bacterial
genome editing and silencing
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Mihris I.S. Naduthodi1, Alex Gussak1, Rudolf B.L. Brinkman2, Richard van Kranenburg 1,2 & John van der Oost1

CRISPR-Cas9-based genome engineering tools have revolutionized fundamental research and

biotechnological exploitation of both eukaryotes and prokaryotes. However, the mesophilic

nature of the established Cas9 systems does not allow for applications that require enhanced

stability, including engineering at elevated temperatures. Here we identify and characterize

ThermoCas9 from the thermophilic bacterium Geobacillus thermodenitrificans T12. We show

that in vitro ThermoCas9 is active between 20 and 70 °C, has stringent PAM-preference at

lower temperatures, tolerates fewer spacer-protospacer mismatches than SpCas9 and its

activity at elevated temperatures depends on the sgRNA-structure. We develop

ThermoCas9-based engineering tools for gene deletion and transcriptional silencing at 55 °C

in Bacillus smithii and for gene deletion at 37 °C in Pseudomonas putida. Altogether, our

findings provide fundamental insights into a thermophilic CRISPR-Cas family member and

establish a Cas9-based bacterial genome editing and silencing tool with a broad temperature

range.
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C lustered regularly interspaced short palindromic repeats
(CRISPR) and the CRISPR-associated (Cas) proteins
provide adaptive and heritable immunity in prokaryotes

against invading genetic elements1–4. CRISPR-Cas systems are
subdivided into two classes (1 and 2) and six types (I−VI),
depending on their complexity and signature proteins5. Class
2 systems, including type-II CRISPR-Cas9 and type V CRISPR-
Cas12a (previously called CRISPR- Cpf1) have recently been
exploited as genome engineering tools for both eukaryotes6–10

and prokaryotes11–13. These systems are among the simplest
CRISPR-Cas systems known as they introduce targeted double-
stranded DNA breaks (DSBs) based on a ribonucleoprotein
(RNP) complex formed by a single Cas endonuclease and an
RNA guide.

The guide of Cas9 consists of a crRNA (CRISPR RNA):
tracrRNA (trans-activating-CRISPR-RNA) duplex. For engi-
neering purposes, the crRNA:tracrRNA duplex has been simpli-
fied by generating a chimeric, single guide RNA (sgRNA) to guide
Cas9 upon co-expression14. In addition, cleavage of the target
DNA requires a protospacer adjacent motif (PAM): a 3–8
nucleotide (nt) long sequence located next to the targeted pro-
tospacer that is highly variable between different Cas9
proteins15–17. Cas9 endonucleases contain two catalytic domains,
denoted as RuvC and HNH. Substituting catalytic residues in one
of these domains results in Cas9 nickase variants, and in both
domains in an inactive variant18–20. The inactive or dead Cas9
(dCas9) has been instrumental as an efficient gene silencing
system and for modulating the expression of essential
genes11,21,22.

To date, Streptococcus pyogenes Cas9 (SpCas9) is the best
characterized and most widely employed Cas9 for genome engi-
neering. Although a few other type-II systems have been exploited
for bacterial genome engineering purposes, none of them is
derived from a thermophilic organism23. Characterization of such

CRISPR-Cas systems would be interesting to gain fundamental
insights as well as to develop novel applications.

Although basic genetic tools are available for a number of
thermophiles24–27, the efficiency of these tools is still too low to
enable full exploration and exploitation of this interesting group
of organisms. Based on our finding that SpCas9 is not active
in vivo at or above 42 °C, we have previously developed a SpCas9-
based engineering tool for facultative thermophiles, combining
homologous recombination at elevated temperatures and SpCas9-
based counter-selection at moderate temperatures28. However, a
Cas9-based editing and silencing tool for obligate thermophiles is
not yet available as SpCas9 is not active at elevated tempera-
tures28,29, and to date no thermophilic Cas9 has been adapted for
such purpose. Here we describe the characterization of Ther-
moCas9: an RNA-guided DNA-endonuclease from the CRISPR-
Cas type-IIC system of the thermophilic bacterium Geobacillus
thermodenitrificans T1230. We show that ThermoCas9 is active
in vitro between 20 and 70 °C and demonstrate the effect of the
sgRNA-structure on its thermostability. We apply ThermoCas9
for in vivo genome editing and silencing of the industrially
important thermophile Bacillus smithii ET 13831 at 55 °C, creat-
ing the first, to our knowledge, Cas9-based genome engineering
tool readily applicable to thermophiles. In addition, we apply
ThermoCas9 for in vivo genome editing of the mesophile Pseu-
domonas putida KT2440, for which to date no CRISPR-Cas9-
based editing tool had been described32,33, confirming the wide
temperature range and broad applicability of this novel
Cas9 system.

Results
ThermoCas9 identification and purification. We recently
isolated and sequenced Geobacillus thermodenitrificans strain
T12, a Gram positive, moderately thermophilic bacterium with an
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Fig. 1 The Geobacillus thermodenitrificans T12 type-IIC CRISPR-Cas locus encoding ThermoCas9. a Schematic representation of the genomic locus encoding
ThermoCas9. The domain architecture of ThermoCas9 based on sequence comparison, with predicted active sites residues highlighted in magenta.
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chromatography and gel filtration. The migration of the obtained single band is consistent with the theoretical molecular weight of 126 kD of the apo-
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optimal growth temperature at 65 °C30. Contrary to previous
claims that type-II CRISPR-Cas systems are not present in
thermophilic bacteria34, the sequencing results revealed the
existence of a type-IIC CRISPR-Cas system in the genome of G.
thermodenitrificans T12 (Fig. 1a)35. The Cas9 endonuclease of
this system (ThermoCas9) was predicted to be relatively small
(1082 amino acids) compared to other Cas9 orthologues, such as
SpCas9 (1368 amino acids). The size difference is mostly due to a
truncated REC lobe, as has been demonstrated for other
small Cas9 orthologues (Supplementary Fig. 1)36. Furthermore,
ThermoCas9 was expected to be active at least around the
temperature optimum of G. thermodenitrificans T1230. Using the
ThermoCas9 sequence as query, we performed BLAST-P searches
in the NCBI/non-redundant protein sequences dataset, and found
a number of highly identical Cas9 orthologues (87–99% identity
at amino acid level, Supplementary Table 1), mostly within the
Geobacillus genus, supporting the idea that ThermoCas9 is part of
a highly conserved defense system of thermophilic bacteria
(Fig. 1b). These characteristics suggested it may be a potential
candidate for exploitation as a genome editing and silencing tool
for thermophilic microorganisms, and for conditions at which
enhanced protein robustness is required.

We initially performed in silico prediction of the crRNA and
tracrRNA modules of the G. thermodenitrificans T12 CRISPR-
Cas system using a previously described approach11,36. Based on
this prediction, a 190 nt sgRNA chimera was designed by linking
the predicted full-size crRNA (30 nt long spacer followed by 36 nt

long repeat) and tracrRNA (36 nt long anti-repeat followed by a
88 nt sequence with three predicted hairpin structures).
ThermoCas9 was heterologously expressed in E. coli and purified
to homogeneity. Hypothesizing that the loading of the sgRNA
to the ThermoCas9 would stabilize the protein, we incubated
purified apo-ThermoCas9 and ThermoCas9 loaded with in vitro
transcribed sgRNA at 60 °C and 65 °C, for 15 and 30 min.
SDS-PAGE analysis showed that the purified ThermoCas9
denatures at 65 °C but not at 60 °C, while the denaturation
temperature of ThermoCas9-sgRNA complex is above 65 °C
(Fig. 1c). The demonstrated thermostability of ThermoCas9
implied its potential as a thermo-tolerant CRISPR-Cas9 genome
editing tool, and encouraged us to analyze some relevant
molecular features in more detail.

ThermoCas9 PAM determination. The first step towards the
characterization of ThermoCas9 was the in silico prediction of its
PAM preferences for successful cleavage of a DNA target. We used
the 10 spacers of the G. thermodenitrificans T12 CRISPR locus to
search for potential protospacers in viral and plasmid sequences
using CRISPRtarget37. As only two hits were obtained with phage
genomes (Supplementary Fig. 2A), it was decided to proceed with
an in vitro PAM determination approach. The predicted sgRNA
sequence was generated by in vitro transcription, including a
spacer that should allow for ThermoCas9-based targeting of linear
dsDNA substrates with a matching protospacer. The protospacer
was flanked at its 3′-end by randomized 7-base pair (bp)
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Fig. 2 ThermoCas9 PAM analysis. a Schematic illustrating the in vitro cleavage assay for discovering the position and identity (5′-NNNNNNN-3′) of the
protospacer adjacent motif (PAM). Magenta triangles indicate the cleavage position. b Sequence logo of the consensus 7 nt long PAM of ThermoCas9,
obtained by comparative analysis of the ThermoCas9-based cleavage of target libraries. Letter height at each position is measured by information content.
c Extension of the PAM identity to the eighth position by in vitro cleavage assay. Four linearized plasmid targets, each containing a distinct 5′-CCCCCCAN-
3′ PAM, were incubated with ThermoCas9 and sgRNA at 55 °C for 1 h, then analyzed by agarose gel electrophoresis. Supplementary Fig. 8 shows the
uncropped gel image. d In vitro cleavage assays for DNA targets with different PAMs at 30 and 55 °C. Sixteen linearized plasmid targets, each containing
one distinct 5′-CCCCCNNA-3′ PAM, were incubated with ThermoCas9 and sgRNA, then analyzed for cleavage efficiency by agarose gel electrophoresis.
See also Supplementary Fig. 3. Supplementary Fig. 9 shows the uncropped gel images
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sequences. After performing ThermoCas9-based cleavage assays at
55 °C, the cleaved sequences of the library (together with a non-
targeted library sample as control) were separated from uncleaved
sequences, by gel electrophoresis, and analyzed by deep-
sequencing in order to identify the ThermoCas9 PAM pre-
ference (Fig. 2a). The sequencing results revealed that Thermo-
Cas9 introduces double-stranded DNA breaks that, in analogy
with the mesophilic Cas9 variants, are located mostly between the
third and the forth PAM proximal nucleotides, at the 3′ end of the
protospacer. Moreover, the cleaved sequences revealed that
ThermoCas9 recognizes a 5′-NNNNCNR-3′ PAM, with subtle
preference for cytosine at the first, third, forth, and sixth PAM
positions (Fig. 2b). Recent studies have revealed the importance of
the eighth PAM position for target recognition of some Type-IIC
Cas9 orthologues17,38. For this purpose, and taking into account
the results from the in silico ThermoCas9 PAM prediction
(Supplementary Fig. 2), we performed additional PAM determi-
nation assays. This revealed optimal targeting efficiency in the
presence of an adenine at the eighth PAM position (Fig. 2c).
Interestingly, despite the limited number of hits, the aforemen-
tioned in silico PAM prediction (Supplementary Fig. 2B) also
suggested the significance of a cytosine at the fifth and an adenine
at the eighth PAM positions.

To further clarify the ambiguity of the PAM at the sixth and
seventh PAM positions, we generated a set of 16 different target
DNA fragments in which the matching protospacer was flanked
by 5′-CCCCCNNA-3′ PAMs. Cleavage assays of these fragments
(each with a unique combination of the sixth and seventh
nucleotide) were performed in which the different components
(ThermoCas9, sgRNA guide, dsDNA target) were pre-heated
separately at different temperatures (20, 30, 37, 45, 55, and 60 °C)
for 10 min before combining and incubating them for 1 h at the
corresponding assay temperature. When the assays were
performed at temperatures between 37 and 60 °C, all the different
DNA substrates were cleaved (Fig. 2d, S3). However, the most
digested target fragments consisted of PAM sequences (fifth to
eighth PAM positions) 5′-CNAA-3′ and 5′-CMCA-3′, whereas
the least digested targets contained a 5′-CAKA-3′ PAM. At 30 °C,
only cleavage of the DNA substrates with the optimal PAM
sequences (fifth to eighth PAM positions) 5′-CNAA-3′ and
5′-CMCA-3′ was observed (Fig. 2d). Finally, at 20 °C only the
DNA substrates with (fifth to eighth PAM positions) 5′-CVAA-3′
and 5′-CCCA-3′ PAM sequences were targeted (Supplementary
Fig. 3), making these sequences the most preferred PAMs. Our
findings demonstrate that at its lower temperature limit,
ThermoCas9 only cleaves fragments with a preferred PAM.
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This characteristic could be exploited during in vivo editing
processes, for example to avoid off-target effects.

Metal ion dependency. Previously characterized, mesophilic Cas9
endonucleases employ divalent cations to catalyze the generation
of DSBs in target DNA14,39. To determine the ion dependency of
ThermoCas9 cleavage activity, plasmid cleavage assays were
performed in the presence of one of the following divalent
cations: Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, and Zn2+; an assay
with the cation-chelating agent EDTA was included as negative
control. As expected, target dsDNA was cleaved in the presence of
divalent cations and remained intact in the presence of EDTA
(Supplementary Fig. 5A). The DNA cleavage activity of Ther-
moCas9 was the highest when Mg2+ and Mn2+ was added to the
reaction consistent with other Cas9 variants14,20,40. Addition of
Fe2+, Co2+, Ni2+, or Zn2+ ions also mediated cleavage. Ca2+ only
supported plasmid nicking, suggesting that with this cation only
one of the endonuclease domains is functional.

Thermostability and truncations. The predicted tracrRNA
consists of the anti-repeat region followed by three hairpin
structures (Fig. 3a). Using the tracrRNA along with the crRNA to
form a sgRNA chimera resulted in successful guided cleavage of
the DNA substrate. It was observed that a 41-nt long deletion of
the spacer distal end of the full-length repeat-anti-repeat hairpin
(Fig. 3a), most likely better resembling the dual guide’s native
state, had little to no effect on the DNA cleavage efficiency. The
effect of further truncation of the predicted hairpins (Fig. 3a) on
the cleavage efficiency of ThermoCas9 was evaluated by per-
forming a cleavage time-series in which all the components
(sgRNA, ThermoCas9, substrate DNA) were pre-heated

separately at different temperatures (37–65 °C) for 1, 2 and 5 min
before combining and incubating them for 1 h at various assay
temperatures (37–65 °C). The number of predicted stem-loops of
the tracrRNA scaffold seemed to play a crucial role in DNA
cleavage; when all three loops were present, the cleavage efficiency
was the highest at all tested temperatures, whereas the efficiency
decreased upon removal of the 3′ hairpin (Fig. 3b). Moreover, the
cleavage efficiency drastically dropped upon removal of both
the middle and the 3′ hairpins (Supplementary Fig. 4). Whereas
pre-heating ThermoCas9 at 65 °C for 1 or 2 min resulted in
detectable cleavage, the cleavage activity was abolished after 5 min
incubation. The thermostability assay showed that sgRNA var-
iants without the 3′stem-loop result in decreased stability of the
ThermoCas9 protein at 65 °C, indicating that a full length
tracrRNA is required for optimal ThermoCas9-based DNA
cleavage at elevated temperatures. Additionally, we also varied the
lengths of the spacer sequence (from 25 to 18 nt) and found that
spacer lengths of 23, 21, 20, and 19 cleaved the targets with the
highest efficiency. The cleavage efficiency drops significantly
when a spacer of 18 nt is used (Fig. 3c).

In vivo, the ThermoCas9:sgRNA RNP complex is probably
formed within minutes. Together with the above findings,
this motivated us to evaluate the activity and thermostability of
the RNP. Pre-assembled RNP complex was heated at 60, 65, and
70 °C for 5 and 10 min before adding pre-heated DNA and
subsequent incubation for 1 h at 60, 65, and 70 °C. Strikingly, we
observed that the ThermoCas9 RNP was active up to 70 °C, in
spite of its pre-heating for 5 min at 70 °C (Fig. 3d). This finding
confirmed our assumption that the ThermoCas9 stability strongly
correlates with the association of an appropriate sgRNA guide41.

Proteins of thermophilic origin generally retain activity at
lower temperatures. Hence, we set out to compare the
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ThermoCas9 temperature range to that of the Streptococcus
pyogenes Cas9 (SpCas9). Both Cas9 homologues were subjected to
in vitro activity assays between 20 and 65 °C. Both proteins were
incubated for 5 min at the corresponding assay temperature prior
to the addition of the sgRNA and the target DNA molecules. In
agreement with previous analysis28,29, the mesophilic SpCas9 was
active only between 25 and 44 °C (Fig. 3e); above this temperature
SpCas9 activity rapidly decreased to undetectable levels. In
contrast, ThermoCas9 cleavage activity could be detected between
25 and 65 °C (Fig. 3). This indicates the potential to use
ThermoCas9 as a genome editing tool for both thermophilic and
mesophilic organisms.

Based on previous reports that certain type-IIC systems were
efficient single stranded DNA cutters40,41, we tested the activity of
ThermoCas9 on ssDNA substrates. However, no cleavage was
observed, indicating that ThermoCas9 is a dsDNA nuclease
(Supplementary Fig. 5B).

Spacer-protospacer mismatch tolerance. The targeting specifi-
city and spacer-protospacer mismatch tolerance of a Cas9
endonuclease provide vital information for the development of
the Cas9 into a genome engineering tool. To investigate the tar-
geting specificity of ThermoCas9 toward a selected protospacer,
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thermocas9 gene was introduced either to the pNW33n (B. smithii) or to the pEMG (P. putida) vector. Homologous recombination flanks were introduced
upstream thermocas9 and encompassed the 1 kb (B. smithii) or 0.5 kb (P. putida) upstream and 1 kb or 0.5 kb downstream region of the gene of interest (goi)
in the targeted genome. A sgRNA-expressing module was introduced downstream the thermocas9 gene. As the origin of replication (ori), replication
protein (rep), antibiotic resistance marker (AB) and possible accesory elements (AE) are backbone specific, they are represented with dotted outline.
b Agarose gel electrophoresis showing the resulting products from genome-specific PCR on ten colonies from the ThermoCas9-based pyrF deletion
process from the genome of B. smithii ET 138. All ten colonies contained the ΔpyrF genotype and one colony was a clean ΔpyrF mutant, lacking the wild-
type product. Supplementary Fig. 13 shows the uncropped gel image. c Schematic overview of the basic pThermoCas9i_goi construct. Aiming for the
expression of a catalytically inactive ThermoCas9 (ThermodCas9: D8A, H582A mutant), the corresponding mutations were introduced to create the
thermodcas9 gene. The thermodcas9 gene was introduced to the pNW33n vector. A sgRNA-expressing module was introduced downstream the
thermodcas9. d Graphical representation of the production, growth and RT-qPCR results from the ldhL silencing experiment using ThermodCas9.
The graphs represent the lactate production, optical density at 600 nm and percentage of ldhL transcription in the repressed cultures compared to the
control cultures. Average values from three biological replicates are shown, with error bars representing S.D
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we constructed a target plasmid library by introducing either
single-mismatches or multiple-mismatches to the previously
employed protospacer (Fig. 4a). Each member of the plasmid
library, and its PCR-linearized derivative, was separately used as
substrate for in vitro ThermoCas9 cleavage assays in three
independent experiments, both at 37 and 55 °C.

The ThermoCas9:sgRNA activity on linear dsDNA targets was
abolished at 37 °C for most of the single-mismatch targets
(Fig. 4b). Noteworthy exceptions were the targets with single-
mismatches at the PAM proximal position 2 and PAM distal
position 20, which allowed for weak cleavage (Fig. 4b). At 55 °C,
the cleavage efficiency for single-mismatch linear targets was
higher than at 37 °C; however, it was strongly hampered for most
of the tested targets, especially for single-mismatches at the PAM
proximal positions 4, 5, and 10 (Fig. 4c). On the contrary, single-
mismatches at positions 1, 2, and 20 were the most tolerated for
cleavage (Fig. 4c).

In complete contrast to the linear targets with single-
mismatches, all the corresponding plasmid targets were cleaved
by the ThermoCas9:sgRNA complex at 37 °C, regardless the
position of the mismatch, with preference for the targets with
single-mismatches at the PAM proximal positions 2, 6−10, 15,
and 20 (Fig. 4b). At 55 °C, a similar trend was observed, with
elevated cleavage rates (Fig. 4c). Remarkably, the ThermoCas9:
sgRNA activity was impeded for both linear and plasmid targets
with multiple-mismatches as there was no detectable cleavage for
most of these targets at the tested temperatures (Fig. 4b, c).
Notable exception was the target with a double mismatch at
positions 19 and 20 which was cleaved at both tested
temperatures but more prominently at 55 °C (Fig. 4b, c).

ThermoCas9-based gene deletion in the thermophile B. smithii.
We set out to develop a ThermoCas9-based genome editing tool
for thermophilic bacteria. This group of bacteria is of great
interest both from a fundamental as well as from an applied
perspective. For biotechnological applications, their thermophilic
nature results in for example less cooling costs, higher reaction
rates and less contamination risk compared to the widely used
mesophilic industrial work horses such as E. coli24,25,42,43. Here
we show a proof of principle study on the use of ThermoCas9 as
genome editing tool for thermophiles, employing B. smithii ET
138 cultured at 55 °C. Its wide substrate utilization range, ther-
mophilic and facultative anaerobic nature, combined with its
genetic amenability make this an organism with high potential as
platform organism for the production of green chemicals in a
biorefinery24,28,31,44. In order to use a minimum of genetic parts,
we followed a single plasmid approach. We constructed a set of
pNW33n-based pThermoCas9 plasmids containing the thermo-
cas9 gene under the control of the native xylL promoter (PxylL), a
homologous recombination template for repairing Cas9-induced
double-stranded DNA breaks within a gene-of-interest, and a
sgRNA expressing module under control of the constitutive pta
promoter (Ppta) from Bacillus coagulans (Fig. 5a).

The first goal was the deletion of the full length pyrF gene from
the genome of B. smithii ET 138. The pNW33n-derived plasmids
pThermoCas9_bsΔpyrF1 and pThermoCas9_bsΔpyrF2 were
used for expression of different ThermoCas9 guides with spacers
targeting different sites of the pyrF gene, while a third plasmid
(pThermoCas9_ctrl) contained a random non-targeting spacer in
the sgRNA expressing module. Transformation of B. smithii ET
138 competent cells at 55 °C with the control plasmids pNW33n
(no guide) and pThermoCas9_ctrl resulted in the formation of
~200 colonies each. Out of 10 screened pThermoCas9_ctrl
colonies, none contained the ΔpyrF genotype, confirming
findings from previous studies that, in the absence of appropriate

counter-selection, homologous recombination in B. smithii ET
138 is not sufficient to obtain clean mutants28,44. In contrast,
transformation with the pThermoCas9_bsΔpyrF1 and pThermo-
Cas9_bsΔpyrF2 plasmids resulted in 20 and 0 colonies,
respectively. Out of the ten pThermoCas9_ΔpyrF1 colonies
screened, one was a clean ΔpyrF mutant whereas the rest had a
mixed wild-type/ΔpyrF genotype (Fig. 5b), proving the applic-
ability of the system, as the designed homology directed repair of
the targeted pyrF gene was successful. Contrary to eukaryotes,
most prokaryotes including B. smithii do not possess a functional
NHEJ system, and hence DSBs induced by Cas9 have been shown
to be lethal in the absence of a functional HR system and/or of an
appropriate HR template11,28. Hence, Cas9 functions as stringent
counter-selection system to kill cells that have not performed the
desired HR prior to Cas9 cleavage11,28,45. The combination of
lack of NHEJ and low HR-frequencies found in most prokaryotes
provides the basis for the power of Cas9-based editing but also
creates the need for tight control of Cas9 activity11,28,45. As the
promoter we use here for thermocas9 expression is not sufficiently
controllable and HR is inefficient in B. smithii28,44, the low
number (pyrF1) or even complete lack (pyrF2) of colonies we
observed here in the presence of an HR template confirms the
high in vivo activity of ThermoCas9 at 55 °C. In the SpCas9-based
counter-selection system, we previously developed for B. smithii,
the activity of Cas9 was very tightly controlled by the growth
temperature rather than by gene expression. This allowed for
extended time for the cells to perform HR prior to Cas9 counter-
selection, resulting in a higher pyrF deletion efficiency28. We
anticipate that the use of a tightly controlled promoter will
increase efficiencies of the ThermoCas9-system.

ThermoCas9-based gene deletion in the mesophile P. putida.
To broaden the applicability of the ThermoCas9-based genome
editing tool and to evaluate whether our in vitro results could be
confirmed in vivo, we next evaluated its activity in the mesophilic
Gram-negative bacterium P. putida KT2440. This soil bacterium
is well-known for its unusual metabolism and biodegradation
capacities, especially of aromatic compounds. Recently, interest in
this organism has further increased due to its potential as plat-
form host for biotechnology purposes using metabolic engineer-
ing46,47. However, to date no CRISPR-Cas9-based editing system
has been reported for P. putida whereas such a system would
greatly increase engineering efficiencies and enhance further
study and use of this organism32,33. Once more, we followed a
single plasmid approach and combined homologous recombina-
tion and ThermoCas9-based counter-selection. We constructed
the pEMG-based pThermoCas9_ppΔpyrF plasmid containing the
thermocas9 gene under the control of the 3-methylbenzoate-
inducible Pm-promoter, a homologous recombination template
for deletion of the pyrF gene and a sgRNA expressing module
under the control of the constitutive P3 promoter. After trans-
formation of P. putida KT2440 cells and PCR confirmation of
plasmid integration, a colony was inoculated in selective liquid
medium for overnight culturing at 37 °C. The overnight culture
was used for inoculation of selective medium and ThermoCas9
expression was induced with 3-methylbenzoate. Subsequently,
dilutions were plated on non-selective medium, supplemented
with 3-methylbenzoate. For comparison, we performed a parallel
experiment without inducing ThermoCas9 expression with
3-methylbenzoate. The process resulted in 76 colonies for the
induced culture and 52 colonies for the non-induced control
culture. For the induced culture, 38 colonies (50%) had a clean
deletion genotype and 6 colonies had mixed wild-type/deletion
genotype. On the contrary, only 1 colony (2%) of the non-
induced culture had the deletion genotype and there were no
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colonies with mixed wild-type/deletion genotype retrieved (Sup-
plementary Fig. 6). These results show that ThermoCas9 can be
used as an efficient counter-selection tool in the mesophile P.
putida KT2440 when grown at 37 °C.

ThermoCas9-based gene silencing. An efficient thermoactive
transcriptional silencing CRISPRi tool is currently not available.
Such a system could greatly facilitate metabolic studies of ther-
mophiles. A catalytically dead variant of ThermoCas9 could serve
this purpose by steadily binding to DNA elements without
introducing dsDNA breaks. To this end, we identified the RuvC
and HNH catalytic domains of ThermoCas9 and introduced the
corresponding D8A and H582A mutations for creating a dead (d)
ThermoCas9. After confirmation of the designed sequence,
ThermodCas9 was heterologously produced, purified and used
for an in vitro cleavage assay with the same DNA target as used in
the aforementioned ThermoCas9 assays; no cleavage was
observed confirming the catalytic inactivation of the nuclease.

Toward the development of a ThermodCas9-based CRISPRi
tool, we aimed for the transcriptional silencing of the highly
expressed ldhL gene from the genome of B. smithii ET 138. We
constructed the pNW33n-based vectors pThermoCas9i_ldhL and
pThermoCas9i_ctrl. Both vectors contained the thermodCas9
gene under the control of PxylL promoter and a sgRNA expressing
module under the control of the constitutive Ppta promoter
(Fig. 5c). The pThermoCas9i_ldhL plasmid contained a spacer for
targeting the non-template DNA strand at the 5′ end of the 138
ldhL gene in B. smithii ET 138 (Supplementary Fig. 7). The
position and targeted strand selection were based on previous
studies18,48, aiming for the efficient downregulation of the ldhL
gene. The pThermoCas9i_ctrl plasmid contained a random non-
targeting spacer in the sgRNA-expressing module. The constructs
were used to transform B. smithii ET 138 competent cells at 55 °C
followed by plating on LB2 agar plates, resulting in equal amounts
of colonies. Two out of the ~700 colonies per construct were
selected for culturing under microaerobic lactate-producing
conditions for 24 h44. The growth of the pThermoCas9i_ldhL
cultures was 50% less than the growth of the pThermoCas9i_ctrl
cultures (Fig. 5d). We have previously shown that deletion of the
ldhL gene leads to severe growth retardation in B. smithii ET 138
due to a lack of LDH-based NAD+-regenerating capacity under
microaerobic conditions44. Thus, the observed decrease in growth
is likely caused by the transcriptional inhibition of the ldhL gene
and subsequent redox imbalance due to loss of NAD+-regenerat-
ing capacity. Indeed, HPLC analysis revealed 40% reduction in
lactate production of the ldhL silenced cultures, and RT-qPCR
analysis showed that the transcription levels of the ldhL gene were
significantly reduced in the pThermoCas9i_ldhL cultures com-
pared to the pThermoCas9i_ctrl cultures (Fig. 5d).

Discussion
Most CRISPR-Cas applications are based on RNA-guided DNA
interference by Class 2 CRISPR-Cas proteins, such as Cas9 and
Cas12a6–13. Prior to this work, there were only a few examples of
Class 1 CRISPR-Cas systems present in thermophilic bacteria and
archaea5,49, which have been used for genome editing of ther-
mophiles34. As a result, the application of CRISPR-Cas technol-
ogies was mainly restricted to temperatures below 42 °C, due to
the mesophilic nature of the employed Cas-endonucleases28,29.
Hence, this has excluded application of these technologies in
obligate thermophiles and in experimental approaches that
require elevated temperatures and/or improved protein stability.

In the present study, we have characterized ThermoCas9, a
Cas9 orthologue from the thermophilic bacterium G. thermo-
denitrificans T12 that has been isolated from compost30. Data

mining revealed additional Cas9 orthologues in the genomes of
other thermophiles, which were nearly identical to ThermoCas9,
showing that CRISPR-Cas type-II systems do exist in thermo-
philes, at least in some branches of the Bacillus and Geobacillus
genera. We showed that ThermoCas9 is active in vitro in a wide
temperature range of 20–70 °C, which is much broader than the
25–44 °C range of its mesophilic orthologue SpCas9. The exten-
ded activity and stability of ThermoCas9 allows for its application
in molecular biology techniques that require DNA manipulation
at temperatures of 20–70 °C, as well as its exploitation in harsh
environments that require robust enzymatic activity. Further-
more, we identified several factors that are important for con-
ferring the thermostability of ThermoCas9. First, we showed that
the PAM preferences of ThermoCas9 are very strict for activity in
the lower part of the temperature range (≤30 °C), whereas more
variety in the PAM is allowed for activity at the moderate to
optimal temperatures (37–60 °C). Second, we showed that Ther-
moCas9 activity and thermostability strongly depends on the
association with an appropriate sgRNA guide. This stabilization
of the multi-domain Cas9 protein is most likely the result of a
major conformational change from an open/flexible state to a
rather compact state, as described for SpCas9 upon guide bind-
ing50. Additionally, we showed that the ThermoCas9 activity on
linear DNA targets is very sensitive to spacer-protospacer mis-
matches. At 55 °C, cleavage is affected of all linear fragments with
single-mismatches ranging from position 1 (PAM proximal) to
position 20 (PAM distal). Interestingly, positions 4, 5, and 10 are
most important, whereas base pairing at position 2 appears less
important. The same cleavage pattern is observed with plasmid
targets. The elevated cleavage efficiencies of these targets suggest
that the negatively supercoiled configuration of the used plasmids
improves the target accessibility, as has been described before for
the E. coli Type I-E CRISPR-Cas system51. Interestingly, despite
overall lower activities, similar trends are observed in the case of
cleavage assays of both linear fragments and plasmids with single-
mismatches at 37 °C. The analysis of multiple mismatches reveals
that the ThermoCas9 nuclease is extremely sensitive to four or
more mismatches at the PAM distal end: at both temperatures
cleavage is completely abolished of all tested targets. Even with
two mismatches at positions 19–20, a severe drop of cleavage
efficiency is observed. These results indicate a lower in vitro
spacer-protospacer mismatch tolerance of ThermoCas9 com-
pared to SpCas914 and highlight its potential as a genome editing
tool for eukaryotic cells with enhanced target specificity. Eluci-
dation of the ThermoCas9 crystal structure is required to gain
insight on the molecular basis of the ThermoCas9 cleavage
mechanism.

Based on the here described characterization of the novel
ThermoCas9, we successfully developed genome engineering
tools for strictly thermophilic prokaryotes. We showed that
ThermoCas9 is active in vivo at 55 °C and 37 °C, and we adapted
the current Cas9-based engineering technologies for the ther-
mophile B. smithii ET 138 and the mesophile P. putida KT2440.
Due to the wide temperature range of ThermoCas9, it is antici-
pated that the simple, effective and single plasmid-based Ther-
moCas9 approach will be suitable for a wide range of
thermophilic and mesophilic microorganisms that can grow at
temperatures from 37 °C up to 70 °C. This complements the
existing mesophilic technologies, allowing their use for a large
group of organisms for which these efficient tools were thus far
unavailable.

Screening natural resources for novel enzymes with desired
traits is unquestionably valuable. Previous studies have suggested
that the adaptation of a mesophilic Cas9 orthologue to higher
temperatures, with directed evolution and protein engineering,
would be the best approach toward the construction of a
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thermophilic Cas9 protein34. Instead, we identified a clade of
Cas9 in some thermophilic bacteria, and transformed one of these
thermostable ThermoCas9 variants into a powerful genome
engineering tool for both thermophilic and mesophilic organisms.
With this study, we further stretched the potential of the Cas9-
based genome editing technologies and open new possibilities for
using Cas9 technologies in novel applications under harsh con-
ditions or requiring activity over a wide temperature range.

Methods
Bacterial strains and growth conditions. The moderate thermophile B. smithii
ET 138 ΔsigF ΔhsdR28 was used for the gene editing and silencing experiments
using ThermoCas9. It was grown in LB2 medium44 at 55 °C. For plates, 30 g of agar
(Difco) per liter of medium was used in all experiments. If needed chloramphenicol
was added at the concentration of 7 μg mL−1. For microaerobic lactate-producing
conditions, B. smithii strains were grown in 25 mL TVMY medium44 in a 50 mL
Greiner tube for 24 h at 55 °C and 120 rpm after transfer from an overnight cul-
ture44. For protein expression, E. coli Rosetta (DE3) was grown in LB medium in
flasks at 37 °C in a shaker incubator at 120 r.p.m. until an OD600 nm of 0.5 was
reached after the temperature was switched to 16 °C. After 30 min, expression was
induced by addition of isopropyl-1-thio-β-D-gal-actopyranoside (IPTG) to a final
concentration of 0.5 mM, after which incubation was continued at 16 °C. For
cloning PAM constructs for sixth, and seventh, and eighth positions, DH5-alpha
competent E. coli (NEB) was transformed according to the manual provided by the
manufacturer and grown overnight on LB agar plates at 37 °C. For cloning
degenerate 7-nt long PAM library, electro-competent DH10B E. coli cells were
prepared and transformed using standard protocol52 and grown on LB agar plates
at 37 °C overnight. Chemically competent E. coli DH5α λpir (Invitrogen) was
prepared and used for P. putida plasmid construction according to standard pre-
paration and transformation protocols52, 53. For all E. coli strains, if required
chloramphenicol was used in concentrations of 25 mg L−1 and kanamycin in
50 mg L−1. P. putida KT2440 (DSM 6125) strains were cultured at 37 °C in LB
medium unless stated otherwise. If required, kanamycin was added in concentra-
tions of 50 mg L−1 and 3-methylbenzoate in a concentration of 3 mM.

ThermoCas9 expression and purification. ThermoCas9 was PCR amplified from
the genome of G. thermodenitrificans T12, then cloned and heterologously
expressed in E. coli Rosetta (DE3) and purified using FPLC by a combination of
Ni2+-affinity, ion exchange and gel filtration chromatographic steps. The gene
sequence was inserted into plasmid pML-1B (obtained from the UC Berkeley
MacroLab, Addgene #29653) by ligation-independent cloning using oligonucleo-
tides (Supplementary 2) to generate a protein expression construct encoding the
ThermoCas9 polypeptide sequence (residues 1–1082) fused with an N-terminal tag
comprising a hexahistidine sequence and a Tobacco Etch Virus (TEV) protease
cleavage site. To express the catalytically inactive ThermoCas9 protein (Thermo-
dCas9), the D8A and H582A point mutations were inserted using PCR and verified
by DNA sequencing.

The proteins were expressed in E. coli Rosetta 2 (DE3) strain. Cultures were
grown to an OD600 nm of 0.5–0.6. Expression was induced by the addition of IPTG
to a final concentration of 0.5 mM and incubation was continued at 16 °C
overnight. Cells were collected by centrifugation and the cell pellet was
resuspended in 20 mL of Lysis Buffer (50 mM sodium phosphate pH 8, 500 mM
NaCl, 1 mM DTT, 10 mM imidazole) supplemented with protease inhibitors
(Roche cOmplete, EDTA-free) and lysozyme. Once homogenized, cells were lysed
by sonication (Sonoplus, Bandelin) using a using an ultrasonic MS72 microtip
probe (Bandelin), for 5–8 min consisting of 2 s pulse and 2.5 s pause at 30%
amplitude and then centrifuged at 16,000×g for 1 h at 4 °C to remove insoluble
material. The clarified lysate was filtered through 0.22 micron filters (Mdi
membrane technologies) and applied to a nickel column (Histrap HP, GE
Lifesciences), washed and then eluted with 250 mM imidazole. Fractions
containing ThermoCas9 were pooled and dialyzed overnight into the dialysis buffer
(250 mM KCl, 20 mM HEPES/KOH, and 1 mM DTT, pH 8). After dialysis, sample
was diluted 1:1 in 10 mM HEPES/KOH pH 8, and loaded on a heparin FF column
pre-equilibrated in IEX-A buffer (150 mM KCl, 20 mM HEPES/KOH pH 8).
Column was washed with IEX-A and then eluted with a gradient of IEX-C (2M
KCl, 20 mM HEPES/KOH pH 8). The sample was concentrated to 700 μL prior to
loading on a gel filtration column (HiLoad 16/600 Superdex 200) via FPLC (AKTA
Pure). Fractions from gel filtration were analyzed by SDS-PAGE; fractions
containing ThermoCas9 were pooled and concentrated to 200 μL (50 mM sodium
phosphate pH 8, 2 mM DTT, 5% glycerol, 500 mM NaCl) and either used directly
for biochemical assays or frozen at −80 °C for storage.

In vitro synthesis of sgRNA. The sgRNA module was designed by fusing the
predicted crRNA and tracrRNA sequences with a 5′-GAAA-3′ linker. The sgRNA-
expressing DNA sequence was put under the transcriptional control of the T7
promoter. It was synthesized (Baseclear, Leiden, The Netherlands) and provided in
the pUC57 backbone. All sgRNAs used in the biochemical reactions were syn-
thesized using the HiScribe T7 High Yield RNA Synthesis Kit (NEB). PCR

fragments coding for sgRNAs, with the T7 sequence on the 5′ end, were utilized as
templates for in vitro transcription reaction. T7 transcription was performed for
4 h. The sgRNAs were run and excised from urea-PAGE gels and purified using
ethanol precipitation.

In vitro cleavage assay. In vitro cleavage assays were performed with purified
recombinant ThermoCas9. ThermoCas9 protein, the in vitro transcribed sgRNA
and the DNA substrates (generated using PCR amplification using primers
described in Supplementary Table 2) were incubated separately (unless otherwise
indicated) at the stated temperature for 10 min, followed by combining the com-
ponents together and incubating them at the various assay temperatures in a
cleavage buffer (100 mM sodium phosphate buffer (pH= 7), 500 mM NaCl,
25 mM MgCl2, 25 (V/V%) glycerol, 5 mM dithiothreitol (DTT)) for 1 h. Each
cleavage reaction contained 160 nM of ThermoCas9 protein, 4 nM of substrate
DNA, and 150 nM of synthetized sgRNA. Reactions were stopped by adding 6X
loading dye (NEB) and run on 1.5% agarose gels. Gels were stained with SYBR safe
DNA stain (Life Technologies) and imaged with a Gel DocTM EZ gel imaging
system (Bio-rad).

Library construction for in vitro PAM screen. For the construction of the PAM
library, a 122-bp long DNA fragment, containing the protospacer and a 7-bp long
degenerate sequence at its 3′-end, was constructed by primer annealing and Kle-
now fragment (exo-) (NEB) based extension. The PAM-library fragment and the
pNW33n vector were digested by BspHI and BamHI (NEB) and then ligated (T4
ligase, NEB). The ligation mixture was transformed into electro-competent E. coli
DH10B cells and plasmids were isolated from liquid cultures. For the 7 nt-long
PAM determination process, the plasmid library was linearized by SapI (NEB) and
used as the target. For the rest of the assays the DNA substrates were linearized by
PCR amplification.

PAM screening assay. The PAM screening of thermoCas9 was performed using
in vitro cleavage assays, which consisted of (per reaction): 160 nM of ThermoCas9,
150 nM in vitro transcribed sgRNA, 4 nM of DNA target, 4 μl of cleavage buffer
(100 mM sodium phosphate buffer pH 7.5, 500 mM NaCl, 5 mM DTT, 25% gly-
cerol) and MQ water up to 20 μl final reaction volume. The PAM containing
cleavage fragments from the 55 °C reactions were gel purified, ligated with Illumina
sequencing adaptors and sent for Illumina HiSeq 2500 sequencing (Baseclear).
Equimolar amount of non-ThermoCas9 treated PAM library was subjected to the
same process and sent for Illumina HiSeq 2500 sequencing as a reference. HiSeq
reads with perfect sequence match to the reference sequence were selected for
further analysis. From the selected reads, those present more than 1000 times in the
ThermoCas9 treated library and at least 10 times more in the ThermoCas9 treated
library compared to the control library were employed for WebLogo analysis54.

Library construction for in vitro mismatch tolerance screen. For the con-
struction of the spacer-protospacer mismatch target library, twenty pairs of 40-nt
long complementary ssDNA fragments, containing the mismatch-protospacers,
were annealed. The annealing products were designed to have overhangs compa-
tible for their directional ligation (T4 ligase, NEB) into the pNW33n backbone,
upon BspHI and BamHI (NEB) digestion of the vector. The ligation mixtures were
transformed into chemically competent E. coli DH5α cells (NEB), plasmids were
isolated from liquid cultures and verified by sequencing. Both plasmids and PCR-
linearized DNA substrates were employed for the mismatch tolerance assays.

B. smithii and P. putida editing and silencing constructs. All the primers and
plasmids used for plasmid construction were designed with appropriate overhangs
for performing NEBuilder HiFi DNA assembly (NEB), and they are listed in
Supplementary Tables 2, 3, respectively. The fragments for assembling the plasmids
were obtained through PCR with Q5 Polymerase (NEB) or Phusion Flash High-
Fidelity PCR Master Mix (ThermoFisher Scientific), the PCR products were sub-
jected to 1% agarose gel electrophoresis and they were purified using Zymogen gel
DNA recovery kit (Zymo Research). The assembled plasmids were transformed to
chemically competent E. coli DH5α cells (NEB), or to E. coli DH5α λpir (Invi-
trogen) in the case of P. putida constructs, the latter to facilitate direct vector
integration. Single colonies were inoculated in LB medium, plasmid material was
isolated using the GeneJet plasmid miniprep kit (Thermo Fisher Scientific) and
sequence verified (GATC-biotech) and 1 μg of each construct was transformed to
B. smithii ET 138 electro-competent cells44. The MasterPure Gram Positive DNA
Purification Kit (Epicentre) was used for genomic DNA isolation from B. smithii
and P. putida liquid cultures. For the construction of the pThermoCas9_ctrl,
pThermoCas9_bsΔpyrF1 and pThermoCas9_bsΔpyrF2 vectors, the pNW33n
backbone together with the ΔpyrF homologous recombination flanks were PCR
amplified from the pWUR_Cas9sp1_hr vector28 (BG8191and BG8192). The native
PxylA promoter was PCR amplified from the genome of B. smithii ET 138 (BG8194
and BG8195). The thermocas9 gene was PCR amplified from the genome of G.
thermodenitrificans T12 (BG8196 and BG8197). The Ppta promoter was PCR
amplified from the pWUR_Cas9sp1_hr vector28 (BG8198 and BG8261_2/
BG8263_nc2/ BG8317_3). The spacers followed by the sgRNA scaffold were PCR
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amplified from the pUC57_T7t12sgRNA vector (BG8266_2/BG8268_nc2/8320_3
and BG8210).

A four-fragment assembly was designed and executed for the construction of
the pThermoCas9i_ldhL vectors. Initially, targeted point mutations were
introduced to the codons of the thermocas9 catalytic residues (mutations D8A and
H582A), through a two-step PCR approach using pThermoCas9_ctrl as template.
During the first PCR step (BG9075, BG9076), the desired mutations were
introduced at the ends of the produced PCR fragment and during the second step
(BG9091, BG9092) the produced fragment was employed as PCR template for the
introduction of appropriate assembly-overhangs. The part of the thermocas9
downstream the second mutation along with the ldhL silencing spacer was PCR
amplified using pThermoCas9_ctrl as template (BG9077 and BG9267). The sgRNA
scaffold together with the pNW33n backbone was PCR amplified using
pThermoCas9_ctrl as template (BG9263 and BG9088). The promoter together with
the part of the thermocas9 upstream the first mutation was PCR amplified using
pThermoCas9_ctrl as template (BG9089, BG9090).

A two-fragment assembly was designed and executed for the construction of
pThermoCas9i_ctrl vector. The spacer sequence in the pThermoCas9i_ldhL vector
was replaced with a random sequence containing BaeI restriction sites at both ends.
The sgRNA scaffold together with the pNW33n backbone was PCR amplified using
pThermoCas9_ctrl as template (BG9548, BG9601). The other half of the construct
consisting of thermodcas9 and promoter was amplified using pThermoCas9i_ldhL
as template (BG9600, BG9549).

A five-fragment assembly was designed and executed for the construction of the
P. putida KT2440 vector pThermoCas9_ppΔpyrF. The replicon from the suicide
vector pEMG was PCR amplified (BG2365, BG2366). The flanking regions of pyrF
were amplified from KT2440 genomic DNA (BG2367, BG2368 for the 576-bp
upstream flank, and BG2369, BG2370 for the 540-bp downstream flank). The
flanks were fused in an overlap extension PCR using primers BG2367 and BG2370
making use of the overlaps of primers BG2368 and BG2369. The sgRNA was
amplified from the pThermoCas9_ctrl plasmid (BG2371, BG2372). The
constitutive P3 promoter was amplified from pSW_I-SceI (BG2373, BG2374). This
promoter fragment was fused to the sgRNA fragment in an overlap extension PCR
using primers BG2372 and BG2373 making use of the overlaps of primers BG2371
and BG2374. ThermoCas9 was amplified from the pThermoCas9_ctrl plasmid
(BG2375, BG2376). The inducible Pm-XylS system, to be used for 3-
methylbenzoate induction of ThermoCas9 was amplified from pSW_I-SceI
(BG2377, BG2378).

Editing protocol for P. putida. Transformation of the plasmid to electrocompetent
P. putida was performed according to standard protocols55. After transformation
and selection of integrants, overnight cultures were inoculated. 10 μl of overnight
culture was used for inoculation of 3 ml fresh selective medium and after 2 h of
growth at 37 °C ThermoCas9 was induced with 3-methylbenzoate. After an addi-
tional 6 h, dilutions of the culture were plated on non-selective medium supple-
mented with 3-methylbenzoate. For the control culture the addition of 3-
methylbenzoate was omitted in all the steps. Confirmation of plasmid integration
in the P. putida chromosome was done by colony PCR with primers BG2381 and
BG2135. Confirmation of pyrF deletion was done by colony PCR with primers
BG2381 and BG2382.

RNA isolation. RNA isolation was performed by the phenol as follows extraction
based on a previously described protocol56: overnight 10 mL cultures were cen-
trifuged at 4 °C and 4816×g for 15 min and immediately used for RNA isolation.
After removal of the medium, cells were suspended in 0.5 mL of ice-cold TE buffer
(pH 8.0) and kept on ice. All samples were divided into two 2 mL screw-capped
tubes containing 0.5 g of zirconium beads, 30 μL of 10% SDS, 30 μL of 3M sodium
acetate (pH 5.2), and 500 μL of Roti-Phenol (pH 4.5−5.0, Carl Roth GmbH). Cells
were disrupted using a FastPrep-24 apparatus (MP Biomedicals) at 5500 r.p.m. for
45 s and centrifuged at 4 °C and 9400×g for 5 min. 400 μL of the water phase from
each tube was transferred to a new tube, to which 400 μL of chloroform−isoamyl
alcohol (Carl Roth GmbH) was added, after which samples were centrifuged at 4 °C
and 18,400×g for 3 min. 300 μL of the aqueous phase was transferred to a new tube
and mixed with 300 μL of the lysis buffer from the high pure RNA isolation kit
(Roche). Subsequently, the rest of the procedure from this kit was performed
according to the manufacturer’s protocol, except for the DNase incubation step,
which was performed for 45 min. The concentration and integrity of cDNA was
determined using Nanodrop-1000 Integrity and concentration of the isolated RNA
was checked on a NanoDrop 1000.

Quantification of mRNA by RT-qPCR. First-strand cDNA synthesis was per-
formed for the isolated RNA using SuperScriptTM III Reverse Transcriptase
(Invitrogen) according to manufacturer’s protocol. qPCR was performed using the
PerfeCTa SYBR Green Supermix for iQ from Quanta Biosciences. Quantity of
40 ng of each cDNA library was used as the template for qPCR. Two sets of primers
were used; BG9665:BG9666 amplifying a 150-nt long region of the ldhL gene and
BG9889:BG9890 amplifying a 150-nt long sequence of the rpoD (RNA polymerase
sigma factor) gene which was used as the control for the qPCR. The qPCR was run
on a Bio-Rad C1000 Thermal Cycler.

High-pressure liquid chromatography. A high-pressure liquid chromatography
(HPLC) system ICS-5000 was used for lactate quantification. The system was
operated with Aminex HPX 87H column from Bio-Rad Laboratories and equipped
with a UV1000 detector operating on 210 nm and a RI-150 40 °C refractive index
detector. The mobile phase consisted of 0.16 N H2SO4 and the column was
operated at 0.8 mLmin−1. All samples were diluted 4:1 with 10 mM DMSO in
0.01 N H2SO4.

Data availability. Plasmids expressing ThermoCas9 or ThermodCas9, together
with the corresponding sgRNA, are available on Addgene (#100981 & #100982).
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