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Abstract

The North Pacific Ocean (between approximately 0˚N and 50˚N) contains the largest contin-

uous ecosystem on Earth. This region plays a vital role in the cycling of globally important

nutrients as well as carbon. Although the microbial communities in this region have been

assessed, the dynamics of viruses (abundances and production rates) remains understud-

ied. To address this gap, scientific cruises during the winter and summer seasons (2013)

covered the North Pacific basin to determine factors that may drive virus abundances and

production rates. Along with information on virus particle abundance and production, we col-

lected a spectrum of oceanographic metrics as well as information on microbial diversity.

The data suggest that both biotic and abiotic factors affect the distribution of virus particles.

Factors influencing virus dynamics did not vary greatly between seasons, although the

abundance of viruses was almost an order of magnitude greater in the summer. When

considered in the context of microbial community structure, our observations suggest that

members of the bacterial phyla Proteobacteria, Planctomycetes, and Bacteroidetes were

correlated to both virus abundances and virus production rates: these phyla have been

shown to be enriched in particle associated communities. The findings suggest that environ-

mental factors influence virus community functions (e.g., virion particle degradation) and

that particle-associated communities may be important drivers of virus activity.

Introduction

Since the “rediscovery” of the high densities of virus particles in the marine environment [1],

viruses are increasingly recognized as key drivers of ecosystem biology and chemistry. In par-

ticular, viruses are thought to maintain microbial diversity [2] by constraining abundant cell

types in microbial communities and allowing for the division of niches within the marine sys-

tem [3]. This suggestion has been supported by both strain level laboratory studies [4] and in
silico modeling of trophic exclusion in the absence of viruses [3]. Lysis of infected cells releases
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organic carbon and nutrient elements to the residual microbial community, diverting carbon

away from higher trophic levels via a process known as the “viral shunt” [5, 6]. Given the high

estimates for virus-mediated cell lysis in the marine environments, this process is likely impor-

tant in global scale geochemical cycles [7]. Nevertheless, despite the importance of viruses in

marine environments, quantitative data on viral dynamics remain rare for broad swaths of the

ocean.

Prior estimates suggest viral activity results in the lysis of an estimated ~ 20% of marine het-

erotrophs daily [5, 8–10]. Virus production assays have been used to estimate rates at which

viruses contribute to host mortality and subsequent nutrient release in many aquatic systems

[11–13]. Early studies of the environmental constraints on virus dynamics were restricted to

coastal regions [13–15], leaving many open-ocean marine environments underrepresented.

More recently, studies have explored underrepresented environments, including the deep

ocean [16, 17], marine sediments [18, 19], and pelagic ocean regions [20–22]. Despite this

increase in spatial coverage, a complete temporal understanding of virus dynamics is still lack-

ing. Studies examining the seasonality of aquatic virus communities have been primarily

focused on coastal regions [23, 24].

Observations indicate that drivers of, and constraints on, virus activity vary geographically;

therefore major oceanic basins and perhaps even regions within these basins need to be con-

sidered independently. For example, in the Sargasso Sea, chlorophyll concentrations and tem-

perature were shown to correlate with both virus abundance and virus production rates;

however, this was not seen in the temperate region of the North Atlantic Ocean, the South

Pacific Ocean, or the Western Pacific Ocean [20, 22, 25]. In the North Atlantic, virus abun-

dance correlated to cell abundance, a trend not observed in other basin scale studies [22]. In

both the North Atlantic and Western Pacific, no previously measured environmental parame-

ters correlated with virus production rates [21, 22].

In the current study, we aimed to address the role host diversity plays, relative to envi-

ronmental conditions, in shaping virus abundance and production rates. We completed

this study in an understudied oligotrophic region, the eastern portion of the North Pacific

oceanic basin. This region includes the North Pacific subtropical Gyre (NPSG) (Fig 1A),

the Earth’s largest contiguous ecosystem. Viral studies in this region are limited, and pri-

marily focused on sequence-based analysis of virus communities [26, 27]. Our goal was to

exploit natural gradients in temperature, pH, and nutrient chemistry in this region to pro-

vide insight into factors that may vary seasonally and could play a role in shaping virus

dynamics in this region; as many abiotic factors that directly affect viruses likely also influ-

ence microbial diversity as well. Understanding the interaction of these factors is vital to the

understanding of viral populations and dynamics in this region.

Materials and methods

Sample collection and physical parameters

Samples were collected during two cruises aboard the R/V Kilo Moana. No specific permis-

sions or permits are required for these locations/activities and research did not involve endan-

gered or protected species. Cruise KM1301 occurred between January 10, 2013 and February

7, 2013 (hereafter referred to as the “winter cruise”). The cruise transect left from Honolulu,

HI traversed the NPSG and returned to Honolulu (Fig 1B). KM1312 (hereafter referred to as

the “summer cruise”) was conducted between July 1, 2013 and July 28, 2013. This cruise left

from Honolulu, HI crossing the NPSG and followed a 19˚C isotherm to San Diego, CA (Fig

1C).

Viral drivers in the North Pacific
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As diel periodicity in cellular physiologies of marine communities have been well docu-

mented (i.e., rRNA concentrations [28], chlorophyll concentration [29] and photosynthetic

capacity [30]); samples were collected prior to sunrise; (04:00 for winter, 02:00 for summer

(local time each day)) in order to capture the community at similar physiological states. All

water was collected from the surface (~ 2 m) using a CTD-Niskin rosette. Subsequently, water

was transferred into opaque, acid-washed polypropylene carboys (Nalgene) rinsed with water

from the same site. Temperature, salinity, in-situ chlorophyll a fluorescence, oxygen and PAR

within the water column were measured using a CTD Sea-bird 911 equipped with ancillary

sensors. Transect maps were created in SeaDas-SeaWiFs Data Analysis System 7.1 [31] using

average sea surface temperatures for the duration of the cruise accessed through NASA Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data (Files A201300012013031.

L3m_MO_SST_9 and A20131822013212.L3m_MOSST_9 [accessed on 2015/04/4]. All meta-

data collected has been uploaded and may be accessed through http://www.bco-dmo.org/

project/2237.

Bacterial abundances, productions, and biomass estimations

A FACSCalibur flow cytometer (Becton Dickinson- Franklin Lakes, NJ, USA) was used to

determine bacterioplankton densities as previously described [32]. Briefly, a 488 nm laser

was used to measure: inelastic side / forward scatter, green fluorescence, orange fluorescence,

and red fluorescence emissions. These measurements were used to differentiate subsets of

the bacterioplankton communities. Phytoplankton communities were defined using the red

autofluorescence profile (chlorophyll excitation) characteristic of the dominant populations

including Prochlorococcus, Synechococcus, and picoeukaryotes as detailed in Johnson et al. [32].

The total bacterial abundances were determined utilizing a SYBR Green I (Molecular Probes

Inc. Eugene, Oregon. United States) staining technique as detailed in Marie et al. [33].

Bacterial production protocols were adapted from Kirchman et al. [34]. Briefly, 20 nM of

tritiated leucine was added to triplicate tubes containing 1.7 mL of raw surface seawater. Sam-

ples were incubated in the dark at in-situ temperatures for 3 h. Killed controls were prepared

prior to incubation via addition of trichloroacetic acid (TCA) to a final concentration of 1%.

Leucine incorporation was stopped via addition of TCA. Cells were then pelleted, rinsed, and

Fig 1. Cruise transects and sampling sites for this study. (A) Color inset indicates location of panels B and C, (B) POWOW 2 (KM1301) cruise

transect, (C) POWOW 3 (KM1312) cruise transect. Represented sea surface temperatures based on average values for duration of the cruises as

determined by SEA-WIFS (see Materials and Methods for more details).

https://doi.org/10.1371/journal.pone.0184371.g001
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dried for 12 h. Samples were resuspended in Ecoscint A (National Diagnostics Atlanta, Geor-

gia. United States) and measured on Packard Bioscience Tri-Carb 2900TR liquid scintillation

counter onboard the ship. Measured activity was converted to μg C L-1D-1 as follows: disinte-

grations per minute (dpm) of the live samples were corrected with data from killed controls to

account for abiotic association of leucine to particles. This value was converted to μCi using

the value 2.22x106 dpms per μCi. Following this conversion sample size, incubation time and

specific activity of the leucine were accounted. Incorporation of tritiated leucine was converted

to moles of carbon through multiplication by a factor of 1.5 [34].

Chlorophyll concentrations were determined by vacuum filtering 100 mL of seawater on

0.22-μm or 0.8-μm polycarbonate filters (Millipore). Chlorophyll was extracted in 100% meth-

anol at -20˚C for 24 h [35]. Following extraction, fluorescence of samples was measured with a

calibrated Turner Designs 10-AU fluorometer as previously described [36].

Nutrient analysis

All samples for nutrient measurement were collected in HCl-cleaned, high-density polyethyl-

ene bottles (VWR#414004–110) and stored at -80˚C until analysis. Subsequent nutrient analy-

sis was performed on technical duplicates of each sample replicate on an Astoria-Pacific A2

autoanalyzer using Certified Reference Materials, (Inorganic Ventures) as follows: Nitrite:

QCP-NT; PO4 and NO3: QCP-NUT-1; SiOH4: CGSI1-1.The limit of detection for nutrients is

as follows. Phosphorus for both cruises was 0.05 μM. A limit of detection of 0.2 μM SiOH4 for

samples from KM1301 while 0.1 μM from KM1312. The detection limits for nitrogen species

are as follows: the detection limit for nitrite was 0.05 μM for both cruises; and nitrate was

0.1 μM for samples collected on the winter cruise and 0.05 μM for samples from the summer

KM1312 cruise.

Samples for ammonium measurements were collected from Niskin bottles as described.

Ammonium concentrations were determined using the fluorometric method described in

Holmes et al. 1999 [37] and verified using CRMs (Inorganic Ventures: QCP-NUT-1). The

limit of detection was 5 nM.

Virus abundance and production

Virus samples for enumeration were collected from Niskin bottles and fixed with 0.5% (v/v,

final concentration) glutaraldehyde and flash frozen in liquid nitrogen for shipping. Upon

delivery to the lab, all samples were stored at -80˚C until processed. Enumeration of virus par-

ticles was performed using a protocol adapted from Ortmann and Suttle [38]. Briefly, 1 mL of

sample was vacuum filtered on a 0.02-μm filter Anodisc filter (Whatman). Filters were stained

with SYBR green for 20 min, after which excess stain was rinsed from the filter. Viruses were

enumerated on a Leica Epifluorescent microscope (Model DM5500 B) using the L5 filter cube

at 1000x magnification. Twenty grids or 200 viruses per sample were counted. This protocol is

accessible at https://dx.doi.org/10.17504/protocols.io.iptcdnn.

Virus production assays were conducted using the dilution and reoccurrence technique

previously described [13,14] and available at https://dx.doi.org/10.17504/protocols.io.dsp6d

(Approach 1). Virus-depleted surface water was generated daily using a tangential flow filtration

device (Millipore Labscale™ TFF) equipped with a 30kDa filter (Millipore Pellicon XL Filter).

Unattached virus particles were reduced in the sample by rinsing the bacterial community three

times with virus-free water over a 47 mm diameter 0.2-μm polycarbonate filter (Millipore). Fol-

lowing unattached virus reduction, the bacterial community was resuspended in 500 mL of

virus depleted seawater and divided into 3 polycarbonate bottles which were incubated at in situ
temperature and light levels (screened with neutral density filters to reduce light to ~ 37%
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ambient) for 12 h. Samples were collected and preserved using 0.5% glutaraldehyde, flash frozen

in liquid nitrogen and stored at -80˚C until enumeration. For enumeration of virus like particles

(VLPs) samples were vacuum filtered onto 0.02-μm pore-size, 20-mm diameter Anodisc filters

(Whatman Little Chalfont, Kent, United Kingdom). Filters were stained with SYBR Green I for

30 min in the dark. Slides were preserved with PBS and o-phenylenediamine.

Following staining and preservation, 20 images per slide were acquired using the Leica

MM AF Acquisition software within the Leica Application Suite X. Virus-like particles were

counted using the Leica MM Analysis Software with thresholds limiting analysis of samples

with fewer than 100 virus-like particles per grid or greater than 600 virus-like particles per

grid. Samples were enumerated automatically using the thresholds of size greater than 10 pix-

els and less than 0.55-μm and a border within 5% of a perfect circle. This was compared to

manual counts and shown to be statistically similar (data not shown).

Statistical analysis of viral distribution and production was completed in Sigmaplot using

Systat functions (ver 12.5). The Shapiro-Wilk test was used to determine the normality of data.

If data was non-normally distributed, a Mann-Whitney Rank Sum test was used to determine

statistically significant differences between seasons. If data was normally distributed a two

tailed t-test was used to determine statistical difference. As a majority of data was non-nor-

mally distributed, Spearman correlations were used to determine correlations of factors. Cor-

relations were considered significant if the p-values were less than 0.05.

Microbial community analyses

Water was collected from the CTD as described above. Cells from 350 mL of seawater were

collected onto 47-mm diameter, 0.2-μm nominal pore-size polycarbonate filters (Millipore

Billerica, Massachusetts United States) by vacuum filtration. Following collection, samples

were placed in 1 mL cryovials and stored in liquid nitrogen for transport back to the lab.

After being returned to the laboratory, samples were stored at -80˚C until extraction. DNA

was extracted using the PowerWater1 DNA Isolation Kit (Mo Bio) according to manufac-

turer’s protocol. The V4 region (E. coli bases 515–806) of bacterial 16S rRNA genes was

amplified and sequenced. Hudson Alpha Genomic Services Laboratory (Huntsville, AL,

USA) performed 250-bp paired end sequencing on the Illumina Miseq platform using V2

chemistry. Only reads which reached a Q-score of 30 with no ambiguous bases were used

in subsequent analysis. Sequences have been depostited and are available from the NCBI

under Bioproject PRJNA394135.

For OTU classification, reads were clustered at 97% similarity and taxonomy was assigned

in MOTHUR [39] using the Silva ribosomal database [40]. OTUs identified as being mito-

chondrial were removed from analysis. Eukaryotic chloroplast DNA was left in libraries as this

has been shown to be an effective proxy for eukaryotic phototroph diversity [41]. OTU abun-

dance tables were further analyzed using PRIMER7 [42]. Libraries were normalized based on

library size and OTUs were fourth root transformed to achieve normal distribution of counts.

A Bray-Curtis resemblance matrix was created, and utilized for multivariate analysis including

BEST analysis. To determine the role viruses may play in shaping microbial community struc-

ture, a BEST analysis was conducted with all environmental parameters. To determine micro-

bial taxa that may play a role in shaping virus dynamics, a Bray-Curtis resemblance matrix was

created including virus abundance and virus production rate. An OTU table was limited to

microbial taxa that comprised more than 0.5% of the total bacterial community. Subsequently,

a BEST analysis was done to determine which OTUs distribution patterns most closely resem-

bled that of changing virus abundances and production rates. This analysis was done with 500

iterations of stepwise addition of OTUs to determine which were most strongly linked to

Viral drivers in the North Pacific
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changing virus abundances and production rates. P-values were determined through 999

permutations.

Analysis of sub-ecotypic diversity of Prochlorococcus has been described by Larkin et al.

[10]. Briefly, microbial cells were collected from surface water across both transects. DNA was

extracted and the internally transcribed spacer region was PCR amplified using Prochlorococ-
cus specific primers tRNA_789-F and 23S-R. Amplicon libraries were sequenced using a 454

+ GS FLX+Titanium platform (Roche, Basel, Switzerland) and deposited under SRP065205.

Identification of environmental parameters correlated to changes in Prochlorococcus commu-

nity structure was conducted in R (R software, v.3.1.2, Vienna, Austria).

Results

Although the two cruise transects varied geographically within the NPSG, similar physical

parameters were observed in surface waters of both winter and summer seasons. Temperatures

on the winter cruise ranged from 10–23˚C, and in the summer ranged from 11.1–25.5˚C; cov-

ering largely the same range (Shapiro-Wilk P = 0.582, t-test P = 0.06) (Fig 1). This similar tem-

perature range was achieved through sampling temperatures at varying latitudes between

seasons. Furthermore when comparing summer and winter, nutrient concentrations including

silica (Mann-Whitney P = 0.177), NO2 (Mann-Whitney P = 0.596), NO3 (Mann-Whitney

P = 0.991), NH4 (Mann-Whitney P = 0.932), and PO4 (Mann-Whitney P = 0.199) were statisti-

cally similar.

Total bacterial densities were statistically similar for both cruises, with abundances ranging

from 6 x105 to 8.4 x105 cells mL-1 in winter and 4.6 x105 to 1.0 x106 in summer (Mann-Whit-

ney P = 0.343). However, the average abundance of Prochlorococcus varied between seasons

(Mann-Whitney P = 0.022), with populations ranging from 775 to 2 x 105 cells mL-1 in winter

and 418 to 2.25 x 105 cells mL-1 in the summer, in each case with cell density decreasing with

increasing latitude. Picoeukaryote densities (Mann-Whitney P = 0.001) were statistically dif-

ferent between cruises as well, with higher abundances measured in the winter. In contrast,

Synechococcus abundances were not different between cruises (Mann-Whitney P = 0.918), (Fig

2A and 2B).

Average virus abundance was statistically lower in the winter (Mann-Whitney P<0.001),

where virus-like particles (VLPs) per milliliter ranged from 7.33 x105 to 3.26 x 106 while in the

summer abundances were 7.64 x 106 to 4.98 x 107 (Fig 3). Although the range of production

rates were narrower in the summer (1.31 x 105−3.51 x 107 VLPs/mL/h) than in the winter

(6.56 x 105 to 1.29 x 108 VLPs/L/d), this difference was not statistically significant (Mann-

Whitney, P = 0.095), Fig 2C and 2D.

Spearman rank correlation analysis was employed to determine factors that related to virus

abundance and production rates. Due to strong covariance of abiotic factors and their inextri-

cable links, latitude was used as a generalized descriptor for not only geographical changes, but

also these covarying physical parameters. These include covarying factors: temperature (win-

ter: Rs = - 0.979, P =< 0.001; summer: Rs = -0.804, P =< 0.001), pH (winter: Rs = - 0.925,

P =< 0.001; summer: Rs = -0.804, P =< 0.001), salinity (winter: Rs = -0.967, P =< 0.001; sum-

mer: Rs = -0.778, P =< 0.001), and light (winter: Rs = 0.727, P =< 0.001; summer: Rs = 0.794,

P =< 0.001). None of the factors we measured correlated to virus production rates in the

NPSG, with the exception of chlorophyll a concentrations in the 0.8-μm fraction of during the

summer cruise. Many correlations were seen in relation to viral abundances, a majority of

which occurred in both seasons (Fig 4). The virus-like particle distribution in surface waters

was strongly correlated to geographical and physical parameters in both seasons, as exhibited

by latitude (Fig 4 and S1 Table). Nutrient concentrations of the surface oceans related to virus

Viral drivers in the North Pacific
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abundances similarly in both seasons, with virus particle abundances increasing with higher

concentrations of most nutrients (the exception being ammonium, which was not correlated

to viral abundances in winter).

Several biological parameters correlated with virus abundance independent of cruise sea-

son. The density of Prochlorococcus cells, as determined by flow cytometry, was negatively cor-

related to the density of viruses across transects (Fig 4A). Other cyanobacterial populations (i.
e., Synechococcus) were correlated to virus abundance only in winter (winter R = 0.549

P = 0.015; summer R = 0.035 P = 0.873), a trend also seen when observing total bacterial cell

counts (winter R = 0.676 p = 0.004; summer R = -0.082, p = 0.773). The reverse was seen in an

examination of picoeukaryotic density, which was positively associated with viral abundances

only in the summer (Fig 4B). Chlorophyll concentrations were the only factor that correlated

with virus production rates, and this correlation only occurred in the summer. In winter, only

virus abundances correlated to chlorophyll concentrations, possibly indicating a link between

microbial primary production and viruses.

Fig 2. Biological parameters in relationship with latitude. Cell abundances for Prochlorococcus (●), Synechococcus (�), Picoeukaryotes (▼),

and total bacterioplankton (including cyanobacteria) (4) across the latitudes investigated in winter (A) and summer (B). Virus abundances (●) and

virus production rates (5) for winter (C) and summer (D).

https://doi.org/10.1371/journal.pone.0184371.g002
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To determine whether microbial community diversity influenced virus particle distribu-

tion, we explored 16S rRNA gene amplicon libraries collected from surface waters at each sta-

tion. Alpha diversity metrics (i.e., OTU richness, Shannon’s Diversity Index, etc.) of sample

sites were correlated with viral abundance or production rates, regardless of season. Beta diver-

sity however was linked to viral abundances. Briefly, the SIMPROF analysis within Primer7

determined communities that were statistically indistinguishable from one another. Unsur-

prisingly, numerous microbial communities clustered into SIMPROF groupings of two or

more stations. SIMPROF groups shared similar viral abundances. Subsequently the BEST anal-

ysis was used to determine what environmental factors co-vary with microbial community

composition. This analysis indicated changes in microbial community structure were most

strongly linked to viral abundances and temperature, (Rs = 0.157, P = 0.001).

As viruses are likely dependent on the composition of the microbial host communities, we

asked if certain microbial taxa (OTUs) were linked to changes in virus production or virus

abundances in the North Pacific, and if these taxa changed seasonally. Virus abundance and

production rates are inextricably linked, therefore we utilized a similarity matrix to determine

how “related” sampling locations were based on these two metrics. A BEST analysis was done

to determine which microbial taxa were most strongly correlated (spearman) to this similarity

matrix. Taxa were limited to those which comprised at least 0.5% of any library. BEST analysis

was run stepwise with 500 iterations, and p-values determined through 999 permutations. As

viral dynamics have been shown to differ between seasons, this analysis was done for each sea-

son separately. Surprisingly, taxa which most strongly correlate to changes in viral dynamics in

both seasons are not necessarily the most abundant taxa across the transects, or at a given loca-

tion. BEST analysis was also used to determine which grouping of OTUs describes the largest

Fig 3. Relationship between temperature and virus abundances. Relationship between virus

abundances and temperature for winter (●) and summer (�). Inset indicates average virus densities during

the winter and summer cruises. * indicates a p-value <0.01.

https://doi.org/10.1371/journal.pone.0184371.g003
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variance in virus dynamics. In summer 72% of the variation was described by 14 OTUs

(p = 0.001), while in winter 59.2% of the variation was described by 18 OTUs (p = 0.02). (Fig

5). The OTUs which best described virus abundance and production rates changed between

seasons with only a single chloroplast signature which was most closely related to Braarudo-
sphaera bigelowii shown to be important in both seasons (winter: Rs = 0.313, p = 0.02; summer:

Rs = 0.26, p = 0.036).

Overwhelmingly, the taxa linked to changes in virus concentration and production rates

were heterotrophic in nature; 76% and 79% in the winter and summer, respectively (S2 and S3

Tables). In both seasons, OTUs within the phylum Proteobacteria were correlated to virus

abundance and production, however, the classes within these differed between seasons. In

summer, a majority of OTUs that correlated with virus dynamics belonged to the Alphapro-

teobacteria phylum. Further, the strongest correlative OTU was an Alphaproteobacterial taxon

belonging to the OM75 clade of the family Rhodospirillaceae (Rs = 0.389, P = 0.007). This

clade is ubiquitous in the world’s oceans. However, there are no cultured representatives of

this clade so information on its metabolism is limited. Inferences from distributional patterns

indicate it is likely an oligotrophic bacterium with a slow growth cycle [43, 44]. Two other

Alphaproteobacteria were also associated with changing virus dynamics in the North Pacific in

the summer, an unclassified Rhodospirillales and an uncultured member of the E6AD10 clade.

The remainder of the Proteobacteria linked to virus dynamics include an unclassified Gamma-

proteobacterium as well as a Deltaproteobacterium within the family Oligoflexaceae (S3

Table). In winter, key Proteobacterial taxa included three Gammaproteobacteria. Two of these

belonged to the order Oceanspirillales: one Pseudospirillum (Rs = 0.1, p = 0.098), and one ten-

tatively assigned to Kangiella (although for this taxon, sufficient permutations could not be

achieved to assign a statistical weight within the BEST analysis). The third gamaproteobacteria

was an Alteramonadales belonging to the genus Colwellia (Rs = 0.145, p = 0.217). Other Pro-

teobacterial representatives include an unclassified Rhodobacteraceae (Rs = 0.1, p = 0.098),

and an unclassified Betaproteobacterium (Rs = 0.272, p = 0.04).

The second most represented heterotrophic phylum differed between seasons. In the sum-

mer Planctomycetes was determined to be important in differentiating virus abundance and

rates of production (3 OTUs identified). Bacteroidetes, with 2 OTUs identified, was the second

most identified phylum in winter. In the summer, the abundances of 3 genera belonging to the

order Planctomycetaceae contributed to the taxa which correlated to changes in virus dynam-

ics: one Rubripirellula (Rs = 0.037, p = 0.322), one Pirellula (Rs = 0.255, p = 0.077), and one

belonging to the FS140-16B-02marine group (Rs = -0.041, p = -0.563). In winter only a single

Planctomycete belonging to the genus Bythopirellula (Rs = 0.175, p = 0.061) correlated to virus

dynamics. In winter 2 OTUs belonging to phylum Bacteroidetes were correlative; one belong-

ing to the family Saprospiraceae (NA), and one belonging to the genus Ulvibacter (Rs = 0.289,

p = 0.042).

Although in both seasons a majority of correlated OTUs were heterotrophic, photo-

trophic organisms were correlated to virus dynamics as well (S2 and S3 Tables). In winter

an OTU assigned to Family 1 of cyanobacteria correlated with changes in virus dynamics

between sites (Rs = 0.315, p = 0.032); while in summer a member of the nitrogen-fixing

Fig 4. Correlations between virus abundance and productions and environmental parameters.

Spearman correlation coefficient shown on the x-axis and p-values indicated on the y-axis. Parameters were

separated according to classifications including: physical (A), biological (B) and nutrient(c) data. Circles

indicate spearman correlations of virus abundances while virus production correlations are indicated by

triangles. Closed symbols = summer samples and open symbols = winter samples. Horizontal dash line (i)

shows a p-value of 0.05; solid line (ii) shows a Bonferonni adjusted p-value of 0.002.

https://doi.org/10.1371/journal.pone.0184371.g004
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cyanobacterial genus Cyanothece was the only cyanobacterial OTU correlated to these

changes (Rs = 0.255, p = 0.063). In our analysis Prochlorococcus, was not identified as a taxa

driving changes in virus abundance and production across the transects. However, analysis

Prochlorococcus community structure at the ecotypic level indicates that virus abundance

and rates of virus production may be important in shaping the community structure of high

light adapted strains of Prochlorococcus (R2 of 0.58 and 0.54, respectively). Although viral

parameters were correlated to sub-ecotypic community structure, viruses had less of an

effect on shaping these host communities than the environmental variables we measured

(S1 Fig). For more in-depth analysis of Prochlorococcus community and factors that shape

subecotypic diversity of Prochlorococcus communities in the North Pacific see Larkin et al.

(2016) [10].

Fig 5. OTU abundance and contribution to variation in viral abundance and production. Plots

comparing rank order abundance for individual OTUs and contribution to the proportion of variation in virus

abundance and production rates that each OTU contributes. Pairwise data are presented, rank order;

contribution to virus dynamics, winter (A; B) and summer (C; D), respectively. Phyla indicated as follows:

Chloroplast (i), Proteobacteria (ii), Cyanobacteria (iii), Planctomycetes (iv), Firmicutes (v), Unclassified

bacteria (vi), Bacteroidetes (vii). Statistical significance indicated as follows: * = 0.001–0.01, ** = 0.01–0.05,

*** = 0.05–0.1, + = > 0.1

https://doi.org/10.1371/journal.pone.0184371.g005
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Discussion

In this study we examined basin-wide drivers of virus dynamics (production and abundance)

in the North Pacific Ocean. While similar work has been undertaken over the last decade in

this region [45], we present this information in the new light of large scale- pelagic seasonal

surveys across a temperature gradient, which was further complemented with bacterial diver-

sity information. Moreover, we complemented this effort with measurements of microbial

diversity across these stations to assess whether physiochemistry or host diversity was a greater

driver of virus particle abundance and production rates.

Global distribution of many viral types has long been theorized [46], and while this has

been shown with respect to richness, metaviromic studies indicate virus population structure

changes between oceanic provinces [26, 47]. Viruses are distributed passively through ocean

currents; as such, local virus community structural changes are likely due to selection by abi-

otic parameters, as reviewed in Mojica et al. (2014) [48]; but also through presence of the

microbial hosts. In our work, temperature was negatively correlated with virus abundance: this

is likely due to enhanced decay rates that occur during higher temperatures [49]. Virus abun-

dances correlated positively with both dissolved nitrogen as well as dissolved phosphorus,

likely because virus particles make up a large portion of these pools in marine systems [50].

Increased access to nitrogen and phosphorus sources could result in increased primary pro-

duction, and subsequently higher virus particle abundances in the North Pacific due to

increased host abundance. Interestingly negative correlations were seen between dissolved

nitrate and reactive phosphorus with virus production rates in the South Pacific. This may be

due to differences in microbial community dynamics, as the South Pacific samples were col-

lected during a spring phytoplankton bloom/ bust cycle while the North Pacific Gyre repre-

sented a more stable (or non-bloom community) [20].

Given that viruses are obligate parasites, the dynamics of viruses must at least in part, be

shaped by the genetic richness and / or diversity of available hosts within the microbial com-

munities. In our study, chlorophyll a was highly correlated with virus density, suggesting that

photosynthetic members of North Pacific microbial communities are, at least in part, driving

virus dynamics. Chlorophyll concentration has been previously shown to correlate strongly to

virus abundance in the Beaufort Sea [51]; as well as the Sargasso Sea, in which virus production

rate was also a correlate [21]. This may indicate a possible link between the amount of inor-

ganic carbon being fixed and the abundances of virus at a given site, supported by chloroplast

DNA correlating to virus abundances.

The abundance of Prochlorococcus cells showed a weak, but statistically significant, negative

relationship with viral abundances (Fig 4B); this may be due to these cells being lysed by

viruses, resulting in a decrease in cell abundance while increasing the occurrence of virus. A

secondary explanation however suggests that Prochlorococcus cell abundances decreased at

lower temperatures [10, 52], in conjunction with a decrease in viral decay (and thus an

increase in abundance) at these lower temperatures. Indeed, until a mechanism supporting it

is resolved, this correlation must be considered spurious, at best. When sub-ecotype variation

in the Prochlorococcus community was examined, the high light (HL)-II.4 clade was the only

sub-ecotype for which a large proportion of variation in diversity was explained by virus abun-

dance (Data not shown). This clade largely represents the Prochlorococcus community which

dominates in oligotrophic waters in the summer [10].

The only parameter that viral production rates were correlated to, in this region, was the

large phytoplankton fraction (as estimated by the> 0.8 μm fraction chlorophyll concentra-

tions). This preliminarily indicates that large phytoplankton, such as large eukaryotic algae

and even picoeukaryotes, could be important drivers of virus production rates in the North
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Pacific. This may be due to either an indirect relationship, such as their contribution to organic

carbon concentrations or their potential role as a platform for attached bacteria. However, we

cannot rule out a direct relationship due to their own infection and lysis. To this end, our

efforts here may be underestimating the importance of large eukaryotic phytoplankton and

archaea in viral dynamics in the North Pacific [41,53]. Indeed we do show several eukaryotic

phototrophs to be important (S2–S4 Tables) One taxon which may be important in both sea-

sons, Braarudospaera bigelowii, is a marine algae recently shown to harbor nitrogen-fixing

endosymbionts [54]. This is particularly interesting as the only cyanobacterial signature deter-

mined to correlate to virus dynamics in the North Pacific is a member of the genus Cyanothece,
a diazotrophic marine cyanobacterium [55]. This may indicate that phototrophic organisms

capable of nitrogen fixation could influence viral dynamics.

Unlike other pelagic regions, bacterial production rates in our study were not correlated

with viral abundance or viral production rates, further supporting the idea that photosynthetic

members of the community may be important drivers in this region. Targeted (16S rRNA

gene) metagenomes were sampled in coordination with viral measurements that allowed for

the linkage of virus abundance to bacterial community structure. A variety of new hypotheses

for how certain members of the bacterial community could drive concentrations of virus in

the environment exist: these range from effects of burst size differences to decreased competi-

tion due to viral lysis of other bacterial phylotypes [2]. Interestingly, viral production rates did

not correlate to overall microbial community structure: this is likely due to the confounding

effects of multiple environmental factors (including those influencing virus decay rates).

There were, however, some bacterial members of the microbial community that did corre-

late to the viral parameters measured, with a majority being heterotrophic in nature (Win-

ter = 76%, Summer = 79%). Most of these OTUs were classified as Proteobacteria, which may

indicate that this phylum is an important player in the density and rates at which viruses are

being produced in the North Pacific. Furthermore, the OTUs that correlated to the viral

parameters we measured changed between seasons, indicating that although Proteobacteria

may be important regardless of season, the specific taxa that influence virus abundances and

production rates change seasonally. Furthermore, members of the phyla Bacteroidetes and

Planctomycetes were important in winter and summer, respectively. Unfortunately, for many

of the important OTUs there are very few, if any, cultured representatives, so information on

their potential metabolisms are limited. However, many of these taxa have been shown to be

disproportionately associated with marine particles, including Alphaproteobacteria, Gamma-

proteobacteria, Planctomycetacia and Bacteroidetes [53, 56–58].

Although this data must be interpreted carefully, this study indicates a potentially impor-

tant role for Proteobacteria-infecting viruses in the regeneration of nutrients in the North

Pacific. It is important to note that microbial community structure is generally stable in oligo-

trophic gyres, therefore the most dominant taxa are similar across our transects, thus implying

that these taxa may be infected at similar rates across these transects. To this end, while these

taxa may be important drivers of abundance and production they will not be identified by this

analysis. Instead, we identified taxa whose changing abundances correlated with increased

concentration or production of viruses. In our analysis these changes correlated with taxa that

are enriched in particle-associated fractions of metagenomes [53, 56–58]. This indicates that in

the North Pacific Ocean particle association may lead to increased rates of viral lysis, as pro-

posed by Bettarel et al (2016) [59].

Summer viral abundances were found to be comparable to previous studies in the region

(ranging from 1.5x106 to 1.5x107 particles mL-1) despite slight differences in seasonal sam-

pling, sample collection methodology and VLP enumeration protocols [45]. Our observations

of lower viral abundances in winter relative to summer (Fig 3E) have also been reported in
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coastal systems of Norway, the Gulf of Mexico, and the Western Pacific ocean, indicating that

seasonality of viral abundances is an important consideration in understanding virus dynamics

in the global oceans [60, 61]. Although limited, open ocean studies of these dynamics strongly

support seasonality in viral distributions as well [57–59]. Parsons et al. (2012) measured a

strong seasonality in virioplankton abundances at the Bermuda Atlantic Time-series Study

(BATS); with counts peaking in September and being most depleted in January.[62]. Although

our temporal coverage is limited, the data suggest this pattern may be also exhibited in the

North Pacific. Furthermore, our data suggest that the North Pacific exhibits higher viral abun-

dances in summer than reported in other pelagic regions, with the exception of the Western

Pacific [21,22,25]. The ranges of viral abundances in winter were similar to those in the Sar-

gasso Sea (1.4 to 18.9 x105 VLPs mL-1 d-1) and North Atlantic (8.2 to 28.0 x 105 VLPs mL-1 d-1)

[22].

Our observations support previous findings that the factors that constrain viral dynamics

can differ between oceanic basins [21]. Although similar environmental factors correlated to

virus abundances in the North Pacific as reported in the Sargasso Sea, North Atlantic, and

Western Pacific [22], our data indicate that the suite of factors that affect these dynamics dif-

fers. When compared to these regions, the North Pacific shared many of the same correlations

with the Sargasso Sea. The North Pacific and the Sargasso Sea have a similar latitude range and

both exhibit oligotrophic conditions. Additionally, biotic factors such as chlorophyll concen-

trations and total bacterial cell abundances were correlated with other pelagic regions.

The observation that factors related to viral abundance vary between regions is unsurpris-

ing given that virus particle distribution is likely not influenced by a singular parameter, but

likely by environmental interactions. Furthermore, it has been noted that environmental

parameters that affect decay rates of viruses (i.e., UV-B) may vary across different oceanic

regions [63]. As such, it is important to note that virus abundance at a given location repre-

sents the balance of both production as well as decay/removal rates [48]. Beyond this balance,

disconnects in correlations between environmental parameters and abundances are likely due

to the treatment of the virus community as one particle type. In actuality, total virus abun-

dances are representative of subsets of viruses that infect different hosts that respond differ-

ently to environmental parameters [26]. Therefore, host diversity at least partially drives

observations between environmental parameters and virus concentrations and production

rates. This study also supports the importance of basin scale investigations of viral dynamics to

gain a clearer understanding of factors that may be important in constraining the activity of

viruses in ecosystems covering a majority of the Earth’s surface biome.
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S1 Table. Spearman correlation values for virus abundance and virus production. Spear-

man correlation values related to volcano plots in Fig 4. BDL–Below detection limit.
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S2 Table. OTUs identified by BEST analysis (winter). OTUs Identified by BEST analysis as

explaining the most variance in virus abundance and production rates over the winter transect.

BEST analysis was conducted stepwise with 500 random restarts; P-values were determined

using 999 permutations. OTUs which increased spearman’s rho of>0.01 were included in the

analysis.
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transect. BEST analysis was conducted stepwise with 500 random restarts; P-values were deter-

mined using 999 permutations. OTUs included must increase spearman’s rho by>0.01 to be

identified in the analysis.
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S4 Table. Taxonomic assignments of chloroplast DNA. Top 50 most abundant OTUs identi-

fied as chloroplast DNA in Mothur. A representative sequence was chosen from the OTU and

top cultured BLAST hit is reported.

(PDF)

S1 Fig. nMDS plot of high light Prochlorococcus ecotype diversity as determined by the 16S

ITS region. Numbers in parentheses are R2 values which indicate the correlation strength
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