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ABSTRACT

Neuroendocrine neoplasms (NENs) are clinically di-
verse and incompletely characterized cancers that
are challenging to classify. MicroRNAs (miRNAs) are
small regulatory RNAs that can be used to classify
cancers. Recently, a morphology-based classifica-
tion framework for evaluating NENs from different
anatomical sites was proposed by experts, with the
requirement of improved molecular data integration.
Here, we compiled 378 miRNA expression profiles
to examine NEN classification through comprehen-
sive miRNA profiling and data mining. Following data
preprocessing, our final study cohort included 221
NEN and 114 non-NEN samples, representing 15 NEN
pathological types and 5 site-matched non-NEN con-
trol groups. Unsupervised hierarchical clustering of
miRNA expression profiles clearly separated NENs
from non-NENs. Comparative analyses showed that
miR-375 and miR-7 expression is substantially higher
in NEN cases than non-NEN controls. Correlation
analyses showed that NENs from diverse anatom-
ical sites have convergent miRNA expression pro-
grams, likely reflecting morphological and functional

similarities. Using machine learning approaches, we
identified 17 miRNAs to discriminate 15 NEN patho-
logical types and subsequently constructed a mul-
tilayer classifier, correctly identifying 217 (98%) of
221 samples and overturning one histological diag-
nosis. Through our research, we have identified com-
mon and type-specific miRNA tissue markers and
constructed an accurate miRNA-based classifier, ad-
vancing our understanding of NEN diversity.

INTRODUCTION

Classifying neuroendocrine neoplasms (NENs) is challeng-
ing due to tumor diversity, inconsistent terminology and
piecemeal molecular characterization. Currently, NENs are
broadly divided into epithelial or non-epithelial groups
based on site of origin and differences in keratin and other
gene expression; each group comprises multiple patholog-
ical types (1–3). To facilitate comparisons between NENs
from different anatomical sites, international experts re-
cently proposed a common classification framework (3).
Here, the terms ‘category’, ‘family’, ‘type’ and ‘grade’, re-
spectively, denote predominant neuroendocrine differenti-
ation, degree of differentiation, diagnostic entity and in-
herent biological activity. While morphological assessment
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and immunohistochemical staining for chromogranin A,
synaptophysin and Ki-67 proteins remain indispensable for
confirming neuroendocrine differentiation and assessing tu-
mor grade, other relevant molecular findings will be inte-
grated into this framework over time. These studies will
unravel many puzzles in NEN biology, including delineat-
ing the molecular differences between well-differentiated
neuroendocrine tumors (NETs) and poorly differentiated
neuroendocrine carcinomas (NECs) and finding regula-
tory molecules that underpin the ‘common neuroendocrine
multigene program’ (3).

MicroRNAs (miRNAs) are small (19–24 nt) regulatory
RNA molecules that can also be used to classify cancer
(4,5). miRNAs are highly informative tissue markers be-
cause of their abundance, cell-type and disease-stage speci-
ficity, and stability in fresh and archived materials (6,7).
These molecules also provide valuable mechanistic insights
into cellular processes due to computationally predictable
interactions with messenger RNAs (mRNAs) (8,9). In ad-
dition, miRNA expression profiles can be used to assess
data reliability and to prioritize mRNA targets through fur-
ther organization into miRNA cluster and sequence fam-
ily datasets (10). To date, multiple miRNA profiling stud-
ies have been performed on single or limited combinations
of NEN pathological types using different RNA isolation,
detection and analysis methods (11). Although these dif-
ferences complicate interstudy comparisons, miRNAs still
hold much promise as multi-analyte markers that better re-
flect the ‘complexity and multidimensionality of the neo-
plastic process’ than current mono-analyte markers (12,13).
Given recent advances in miRNA detection and analysis
(14), we expect that substantial biological and clinically rele-
vant insights into NEN biology will be gained through com-
prehensive miRNA profiling of multiple pathological types.

Through small RNA sequencing and data mining, we
have generated reference miRNA expression profiles for
multiple NEN pathological types and site-matched non-
NEN controls, identified candidate category- and type-
specific miRNAs, found evidence for constitutive and con-
vergent miRNA gene expression in epithelial and non-
epithelial NENs, and established a novel multilayer classi-
fier for discriminating NEN pathological types.

MATERIALS AND METHODS

Study design and clinical materials

Sequencing-based miRNA expression profiles from 378
clinical samples, comprising 239 NEN cases and 139 site-
matched non-NEN controls, were used in this study. Ex-
pression profiles were either compiled from published stud-
ies (7,15–18) (n = 149) or generated through small RNA se-
quencing (n = 229). Diagnostic histopathology, small RNA
cDNA library preparation and the source of each sample
are presented in Supplementary Table S1. The use of de-
identified clinical data and banked or archived clinical ma-
terials was approved through the Research Ethics Board
at Queen’s University, the Institutional Review Boards of
Memorial Sloan Kettering Cancer Center, The Rockefeller
University and Weill Cornell Medicine, and the Medical
Ethics Committee at the Amsterdam University Medical
Center.

RNA isolation and quantitation

Total RNA was isolated from 306 formalin-fixed paraffin-
embedded tissue blocks and 72 fresh-frozen tissue sam-
ples using the Qiagen RNeasy® Mini Kit (n = 258), TRI-
zol™ Reagent (n = 68), the Ambion RecoverAll™ Total Nu-
cleic Acid Isolation Kit (n = 28), Amsbio RNA-Bee™ Iso-
lation Reagent (n = 10) and Qiagen miRNeasy® Mini Kit
(n = 5), according to the manufacturers’ instructions or as
described (7,15–18). Total RNA concentrations were mea-
sured using the Qubit™ fluorometer (n = 258), NanoDrop®

ND-1000 spectrophotometer (n = 61) or Agilent 2100 Bio-
analyzer (n = 28). RNA isolation and quantitation data
were unavailable for 9 (2.4%) and 31 (8.2%) samples, respec-
tively.

Small RNA sequencing and sequence annotation

miRNA expression profiles for all 378 samples were gener-
ated using an established small RNA sequencing approach
and sequence annotation pipeline (10); spiked-in oligori-
bonucleotide calibrator markers enabled miRNA quanti-
tation in each sample. Small RNA cDNA libraries were
sequenced on HiSeq 2500 Illumina platforms in the Ge-
nomics Resource Center, The Rockefeller University, the
McGill University and Génome Québec Innovation Cen-
ter, and the Genomics Core, Albert Einstein College of
Medicine. FASTQ sequence files were annotated through an
automated pipeline (rnaworld.rockefeller.edu) (10), yield-
ing sequencing statistics and merged miRNA, miRNA clus-
ter and calibrator read counts. Merged miRNA refers to
combined counts of multicopy miRNAs from different ge-
nomic locations and miRNA clusters are transcriptional
units as defined (19); the term ‘miRNA’ will hereafter re-
fer to merged miRNA data. Annotated sequencing statistics
for all samples are presented in Supplementary Table S2;
miRNA content was calculated using total RNA and cali-
brator RNA input ratio multiplied by total miRNA and cal-
ibrator count ratio as described (7). miRNA, miRNA clus-
ter and calibrator read counts for all samples are presented
in Supplementary Tables S3–S5, respectively.

Data preprocessing and filtering

Data preprocessing, filtering and subsequent analyses were
performed in MATLAB (Mathworks, Inc., Natick, MA,
USA, version R2019a) as described (18). To report miRNA
abundance independent of sequencing depth, read counts
were normalized against total sequence reads annotated as
miRNAs. Sample outliers and batch effects were identi-
fied through correlation analyses (20) of miRNA expres-
sion profiles and excluded from the final dataset to in-
crease study rigor. These analyses were completed for each
NEN pathological type or site-matched non-NEN control
group prior to preprocessing of the combined sample set.
Sequencing data were of sufficient quality for 221 (92%) of
239 NEN cases and 114 (82%) of 139 non-NEN controls.
Most excluded samples were individual outliers, except for
10 non-NEN samples from a single sequencing run. Fol-
lowing preprocessing, all non-human miRNAs and human
miRNA STAR sequences were excluded from further anal-
yses. To exclude miRNAs or miRNA clusters with low ex-
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pression across samples, a filtering threshold was applied as
described (6); specific filtering thresholds were set as a per-
centile of overall expression as indicated below.

Unsupervised hierarchical clustering of filtered miRNA ex-
pression profiles

To assess sample grouping, unsupervised hierarchical clus-
tering was performed using log2 transformed normalized
read counts of miRNA and miRNA clusters from all pre-
processed samples. Euclidean distance was used as the sim-
ilarity parameter with complete agglomeration clustering
applied in the heatmap.2 function of the R gplots pack-
age (www.rdocumentation.org/packages/gplots/versions/3.
0.1.1). Lowly expressed miRNAs and miRNA clusters were
excluded with the filtering threshold set as the top 75%
abundant miRNA and clusters in at least one sample.

Assessment and comparative analyses of abundant miRNAs
in NEN and non-NEN samples

To identify candidate miRNA markers for all NENs and
for each NEN pathological type, we ranked miRNAs and
miRNA clusters by abundance and considered the top 1%.
These abundant miRNAs and miRNA clusters were com-
pared and correlated between NEN cases and non-NEN
controls, as well as between each pathological type and
site-matched non-NEN control group. To highlight sub-
stantial differences in miRNA expression, only compar-
isons with 20-fold or greater difference are discussed. For
single-member miRNA clusters, abundance measures ap-
proximate the abundance of the single miRNA, and are not
separately discussed.

Discovery analyses for miRNA-based NEN classification

To identify miRNAs or miRNA clusters that accurately
discriminate between or within epithelial or non-epithelial
NENs, we used an established feature selection algorithm
that is an ensemble of 12 different machine learning tech-
niques with 5-fold cross-validation (20). To prioritize high
expression, we set the filtering threshold to the 90th per-
centile; miRNAs or miRNA clusters expressed above this
threshold in >5% of samples were retained. Next, we ranked
miRNAs and miRNA clusters that discriminate epithe-
lial from non-epithelial NENs (comparison A). We subse-
quently ranked miRNA markers that successively identified
epithelial NENs, including parathyroid adenoma (PTA), pi-
tuitary adenoma (PitNET), Merkel cell carcinoma (MCC),
medullary thyroid carcinoma (MTC) and lung NENs from
gastrointestinal–pancreatic (GEP) NENs (comparisons B–
F), respectively. Lastly, we identified miRNA markers that
discriminated neuroblastoma (NB), pheochromocytoma
(PCC) and extra-adrenal paraganglioma (PGL) from each
other (comparisons G and H) within the non-epithelial
group. Only the top-ranking 3% miRNAs and miRNA clus-
ters in these comparisons were assessed for classification be-
low.

Construction and cross-validation of multilayer classifier

Scaling our existing approach to miRNA-based NEN clas-
sification (18,20), we constructed and cross-validated a mul-

tilayer classifier for discriminating NEN pathological types
based on selected miRNAs. For each decision layer, all
available algorithms (n = 23) in the MATLAB Classi-
fication Learner App were evaluated using 5-fold cross-
validation. In each case, the classification model with high-
est accuracy was a support vector machine (SVM) classi-
fier that was used to identify the smallest subset of miRNAs
with the most discriminatory power for comparisons A–H
above. Based on these subsets, we constructed a multilayer
classifier through which miRNA profiles were first assigned
as epithelial or non-epithelial prior to assignment to a spe-
cific pathological type.

Assessment of classifier performance and transferability

To assess the performance and transferability of our multi-
layer classifier, we used t-stochastic neighbor embedding (t-
SNE) to visualize sample grouping patterns based on miR-
NAs selected for classification. We also determined overall
classifier accuracy, evaluated the impact of miRNA cluster
member substitutions on classifier accuracy and inspected
the expression levels of the selected miRNAs.

Statistical analyses

Statistical analyses of clinical parameters were performed
using SPSS Statistics (IBM, Armonk, NY, USA, version 25)
and MATLAB. Differences in miRNA content and normal-
ized miRNA expression were evaluated between NEN and
non-NEN samples, and within NEN pathological types us-
ing the non-parametric Kruskal–Wallis (K–W) test (21); a
two-sided P-value of <0.05 was considered significant. Sim-
ilarities in miRNA expression between samples were deter-
mined using Spearman’s correlation (22).

RESULTS

Anatomical distribution and histopathological diagnoses of
study samples

To characterize and compare miRNA expression between
NEN and non-NEN samples, we collected relevant study
materials, generated comprehensive miRNA expression
profiles through barcoded small RNA sequencing, qual-
ity controlled profiles through data preprocessing and per-
formed downstream analyses using statistical and ma-
chine learning approaches. Following data preprocessing
for quality control, our final study cohort comprised 221
NEN cases and 114 site-matched non-NEN controls, here-
after termed study samples (Table 1). NEN cases comprised
15 distinct pathological types, arising in seven anatom-
ical sites, including the gastrointestinal tract and pan-
creas, lung, parathyroid gland, pituitary gland, skin, thy-
roid gland, and the adrenal gland and extra-adrenal sites.
Site-matched non-NEN controls comprised non-diseased
tissues and non-NEN cancers from five anatomical sites,
including the pancreas, lung, parathyroid gland, skin and
thyroid gland.

Small RNA sequencing of study samples

We generated comprehensive miRNA expression profiles
for all samples through barcoded small RNA sequencing.

http://www.rdocumentation.org/packages/gplots/versions/3.0.1.1
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Table 1. Anatomical distribution and histopathological diagnoses of study
samples

NENs
Number of

samples, n (%) non-NENs
Number of

samples, n (%)

Total 221 114
Epithelial
Gastrointestinal
tract and pancreas
PanNET 28 (13%) PAAD 10 (9%)
INET 31 (14%)
AppNET 15 (7%)
RNET 7 (3%)
Lung
TC 13 (6%) LAC 9 (8%)a

AC 15 (7%) LUNG 15 (12%)a

SCLC 11 (5%)
LCNEC 13 (6%)
Parathyroid gland
PTA 9 (4%) PTG 15 (13%)
Pituitary gland
PitNET 10 (5%)
Skin
MCC 17 (8%) SK 10 (9%)

Thyroid
MTC 9 (4%) TG 10 (9%)b

TN 45 (39%)b

Non-epithelial
Adrenal gland and
extra-adrenal sites
NB 25 (11%)
PCC 10 (5%)
PGL 8 (4%)

aFor lung NENs, neoplastic (LAC) and non-diseased (LUNG) tissue con-
trols were available.
bFor MTC, neoplastic (TN) and non-diseased (TG) tissue controls were
available.
Anatomical location and diagnostic histopathological information are pre-
sented for 221 NEN cases, comprising 15 pathological types from seven
anatomical sites, and 114 site-matched non-NEN controls, comprising
seven diagnostic entities from five anatomical sites. Sample abbreviations:
AC, atypical carcinoid; AppNET, appendiceal NET; INET, ileal NET;
LCNEC, large-cell NEC; MCC, Merkel cell carcinoma; MTC, medullary
thyroid carcinoma; NB, neuroblastoma; PanNET, pancreatic NET;
PCC, pheochromocytoma; PGL, paraganglioma; PitNET, pituitary ade-
noma; PTA, parathyroid adenoma; RNET, rectal NET; SCLC, small-
cell lung carcinoma; TC, typical carcinoid. Non-NEN samples comprise
lung (LUNG), lung adenocarcinoma (LAC), pancreatic adenocarcinoma
(PAAD), parathyroid gland (PTG), skin (SK), thyroid gland (TG) and thy-
roid neoplasm (TN).

Following sequence annotation, we obtained a median of
4 386 727 (range: 53 516–40 305 4453) total small RNA
reads and 258 932 (range: 1312–3 723 507) calibrator reads
(Supplementary Table S2). For miRNAs, we detected a
median of 2 322 722 (range: 1740–34 781 174) miRNA
sequence reads, representing a median of 63.1% total se-
quence reads; miRNA, miRNA cluster and calibrator ex-
pression profiles for each sample were subsequently gener-
ated from these reads. Median miRNA content was 26.4
(range: 0.0–2048.4) fmol/�g total RNA (Supplementary
Table S2).

Abundant miRNA composition in NEN and non-NEN sam-
ples

To better understand miRNA composition in NEN and
non-NEN samples, we assessed and correlated abundant

miRNAs and miRNA clusters within and between sam-
ple sets. Abundant miRNA and miRNA cluster compo-
sition was similar within all NEN cases or all non-NEN
controls. The number of members in each miRNA cluster
is indicated in parentheses following the cluster name, e.g.
cluster-hsa-mir-98(13). Among all NEN cases, miR-375, -
21, -143, -let-7a, -26a, -7, -let-7f and -125b and cluster-mir-
375(1), -98(13), -21(1) and -23a(6) were the most abundant
miRNAs and miRNA clusters, with the median relative fre-
quency ranging 1.5–10.6% and 3.6–10.6% of respective total
read counts (Supplementary Table S6). Within this group,
miR-375, -21, -143, -let-7a, -26a, -7, -let-7f, -125b and -141
and cluster-mir-98(13), -mir-375(1), -mir-7-1(3) and -mir-
143(2) were highly expressed in five or more pathological
types (Supplementary Table S6). In comparison, among all
non-NEN controls, miR-21, -125b, -let-7a, -143, -let-7f, -
30a, -26a and -29a and cluster-mir-98(13), -21(1), -30a(4)
and -23a(6) were the most abundant miRNA and miRNA
clusters, ranging 2.5–10% and 5.2–15.9% of respective to-
tal miRNA-annotated read counts (Supplementary Table
S7). Within this group, miR-21, -let-7a, -143, -30a, -let-
7b and -30d and cluster-mir-98(13), -mir-21(1), -mir-23a(6)
and -mir-30a(4) were highly expressed in five or more non-
NEN entities (Supplementary Table S7). Correlation analy-
ses highlighted the similarities in abundant miRNA compo-
sition within epithelial and non-epithelial NENs; with the
exception of PTA, NEN cases were less correlated with site-
matched non-NEN controls (Supplementary Figure S1).

Comparative analyses of abundant miRNAs in NEN and non-
NEN samples

To better understand meaningful differences in miRNA
composition between NEN and non-NEN samples, we
compared abundant miRNAs and miRNA clusters for all
NEN samples and for each pathological type with rele-
vant controls. Comparative analyses indicated that miR-
375 and miR-7 were 216- and 48-fold higher in all NEN
cases compared to all non-NEN controls, respectively. Fold
changes ranged 59–816- and 41–69-fold higher for miR-375
and miR-7 in specific NEN pathological types compared to
site-matched non-NEN controls (Supplementary Table S6
and Figure 1). The only exception was observed in PTA,
which showed the lowest miR-375 and miR-7 expression of
all NENs; in fact, higher expression was observed in non-
neoplastic parathyroid glands. Other notable miRNA over-
expression among NENs included miR-127, with 86-fold
higher expression in typical carcinoids (TC) compared to
lung non-NEN tissues (Supplementary Table S6); cluster-
mir-127(8) was also 78-fold higher in TC compared to lung
non-NEN tissues (data not shown). In addition, miR-203
and miR-205 expression was 143- and 366-fold higher in
non-NEN skin controls than MCC, respectively (Supple-
mentary Table S7).

Unsupervised hierarchical clustering of filtered miRNA ex-
pression profiles

To assess the classificatory potential of miRNA expres-
sion profiling, we first explored our data using unsuper-
vised hierarchical clustering. With the exception of all PTA
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Figure 1. miR-375 and miR-7 expression in NEN and non-NEN samples. Normalized miR-375 and miR-7 expression was examined between 15 NEN
pathological types and 7 site-matched non-NEN control groups. Site-matched NEN and non-NEN groups were designated by anatomical site in the
color bar: pancreas (blue), lung (red), parathyroid (purple), skin (orange) and thyroid (green); NENs without a site-matched control were left blank. Both
miR-375 and miR-7 were higher expressed in NEN cases than non-NEN controls. With the exception of PTA, miR-375 expression was higher in NEN
pathological types than in site-matched non-NEN controls. With the exception of PTA, miR-7 was also higher in NEN pathological types compared to site-
matched non-NEN controls. Abbreviation: log2 RF, log2 normalized relative frequency. Sample abbreviations are provided in Table 1 and Supplementary
Table S1.
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Figure 2. Unsupervised hierarchical clustering of study samples based on miRNA expression. Unsupervised hierarchical clustering using Euclidean dis-
tance and complete agglomeration clustering was performed using filtered (union of top 75% abundance) log2 normalized miRNA sequence reads for all
NEN cases (n = 221) and non-NEN controls (n = 114). Anatomical groupings comprise the following pathological types described in Table 1 and Supple-
mentary Table S1: thyroid (MTC, TG, TN), skin (MCC, SK), pituitary gland (PitNET), parathyroid gland (PTA, PTG), lung (AC, TC, SCLC, LCNEC,
LAC, LUNG), GEP (AppNET, INET, PNET, RNET), and adrenal and extra-adrenal (PCC, PGL). With noted exceptions, NEN cases and non-NEN
controls, and epithelial and non-epithelial samples, clustered distinctly and NEN pathological types preferentially clustered with each other than with
site-matched non-NEN controls.

samples and one large-cell NEC (LCNEC) sample, NEN
cases and non-NEN controls clustered separately (Figure
2). In addition, epithelial samples clustered distinctly from
non-epithelial samples with the exception of one pancre-
atic NET (PanNET). NEN pathological types preferentially
clustered together rather than with site-matched non-NEN
controls. Unsupervised hierarchical clustering of filtered
miRNA cluster expression from the same samples clustered
as above (Supplementary Figure S2).

Discovery analyses for miRNA-based NEN classification

Next, we identified candidate miRNA markers for NEN
classification using an established approach comprising fea-
ture selection and validation (18). Using this approach,
we selected effective miRNA markers from the top-ranked

3% miRNAs or miRNA clusters discriminating between or
within epithelial or non-epithelial NENs (Supplementary
Tables S8 and S9). These comparisons were used to con-
struct and assess the reliability of the multilayer classifier
below.

Construction and cross-validation of multilayer classifier

We subsequently constructed and assessed the accuracy of
a multilayer miRNA-based classifier for predicting NEN
pathological types with 5-fold cross-validation (Figure 3).
The resulting classifier consisted of eight decision layers,
using the linear or cubic SVM model at each layer (Sup-
plementary Table S10). In the first layer, miR-200a ex-
pression was significantly higher in epithelial than non-
epithelial NENs (K–W P-value <0.01); miR-10b provided
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Figure 3. Multilayer miRNA-based classifier for predicting NEN pathological types. A multilayer classifier for predicting NEN pathological types was
developed using supervised machine learning models. In the first layer, NEN miRNA profiles were classified as epithelial or non-epithelial based on miR-
10b and miR-200a expression. In subsequent layers, epithelial and non-epithelial NENs were successively identified using the selected miRNAs as indicated.
Sample abbreviations are provided in Table 1 and Supplementary Table S1.

additional prediction power (K–W P-value <0.01). When
combined, these two miRNAs discriminated epithelial and
non-epithelial NENs with only one sample misclassification
(Figure 4A), which was found to be a histological misiden-
tification (see below). In subsequent layers, sample profiles
were successively assigned to other pathological types us-
ing the least number of miRNAs required. Within epithe-
lial NENs, PTA, PitNET, MCC and MTC were, respec-
tively, discriminated from remaining NENs based on ex-
pression of miR-30a, miR-10a and miR-212-3p, miR-15b
and miR-660, and miR-335-5p, miR-29a and miR-222 (Fig-
ure 4B–E). Lung NENs and GEP NENs were discriminated
based on expression of miR-760, miR-1224-5p, miR-139,
miR-205 and miR-9 with three misclassifications (Figure 4F
and G). Within non-epithelial NENs, NB and PCC/PGL,
and PCC or PGL, were accurately discriminated based
on expression of miR-93, and miR-10b and miR-397, re-
spectively (Figure 4H and I). Decision node level accuracy
ranged from 97% to 100% (Supplementary Table S10).

Assessment of classifier performance and transferability

Using the 17 miRNAs selected for multilayer classification,
t-SNE analysis indicated clear separation of epithelial and
non-epithelial NENs with one notable exception (Figure

5), which was found to be a histological misidentification
(see below). NEN pathological types also grouped together
within epithelial and non-epithelial clusters. With 217 of
221 samples accurately classified, the overall accuracy of
our multilayer classifier was 98% (Table 2). miRNA clus-
ter substitutions had little to no effect on overall and deci-
sion node level accuracy (data not presented). At each de-
cision node of the classifier, selected miRNAs were always
more highly expressed in one comparison group (0.40%;
range: 0.01–7.82%) versus the other (0.03%; range: 0.00–
2.35%; Supplementary Table S11), highlighting their poten-
tial as translatable tissue markers of specific NEN patholog-
ical types.

Detection of histological misidentification by miRNA-based
NEN classifier

The unusual finding of an epithelial PanNET within the
cluster of non-epithelial NENs (Figures 4A and 5), in ad-
dition to miRNA-based classification of this PanNET as
a PGL (Table 2), prompted us to review the histopathol-
ogy of this case. Upon review, the tumor was a small (<1
cm in size) low-grade NET at the tail of the pancreas, with
histological features overlapping both PanNET and PGL.
Immunohistochemical analysis showed that the tumor cells
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Figure 4. Scatter plot assessment of miRNAs selected for classification. Epithelial and non-epithelial NENs are effectively discriminated based on miR-
10b and miR-200a expression with one misclassification (A). Within epithelial NENs, PTA, PitNET, MCC and MTC were accurately discriminated from
the remaining NENs based on miR-30a expression (B), miR-10a and miR-212-3p expression (C), miR-15b and miR-660 expression (D), and miR-335-5p,
miR-29a and miR-222 expression (E); lung NENs and GEP NENs were discriminated based on miR-760, miR-1224-5p, miR-139, miR-205 and miR-9
expression (F, G). Within non-epithelial NENs, NB was accurately discriminated from PCC/PGL based on miR-93 expression (H), and PCC and PGL were
separated based on miR-10b and miR-379 expression (I). Similar results were generated using relevant miRNA cluster data and are not presented. Arrows
indicate misclassified samples. Abbreviation: log2 RF, log2 normalized relative frequency. Sample abbreviations are provided in Table 1 and Supplementary
Table S1.

were diffusely positive for synaptophysin, chromogranin A
and GATA3, and negative for cytokeratin (AE1/AE3 an-
tibodies). This phenotype diagnosed this tumor as a PGL,
as predicted by the miRNA classifier, and not a PanNET,
which should be cytokeratin-positive and GATA3-negative
(23,24). The unusual case was misidentified based on initial
histology, but was correctly diagnosed by molecular profil-
ing and miRNA-based classification.

DISCUSSION

Accurate NEN classification is essential for understanding
tumor biology and guiding clinical care. NEN pathologi-
cal classification is modified by experts on an ongoing ba-

sis as updated clinical, pathological, biological and molecu-
lar data become available. Recently, these experts proposed
a common classification framework for evaluating NENs,
clarifying terminology to reduce confusion and harmoniz-
ing concepts to facilitate comparisons between pathological
types (3). Although morphology-based, this framework is
designed to incorporate ‘equally solid genetic studies across
all anatomical sites (3)’ over time. Here, we generate biolog-
ical and clinical insights into NENs through miRNA-based
classification.

The strength of our study stems from comparing multiple
NEN pathological types and site-matched non-NEN con-
trols using comprehensive miRNA detection through bar-
coded small RNA cDNA library sequencing (25) and ac-
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Figure 5. t-SNE for selected classificatory miRNAs. Sample grouping was visually assessed using miRNAs selected for multilayer classification and t-SNE
analysis. With one notable exception, samples clustered as epithelial or non-epithelial NENs and tended to group by pathological type. The exception was
a misdiagnosed PanNET later found to be a PGL on further testing. Sample abbreviations are provided in Table 1 and Supplementary Table S1.

curate sequence annotation (19). Advanced computational
approaches for miRNA feature selection (20) and classi-
fier construction (18) further bolstered our approach. We
carefully assessed data reliability through knowledge of
miRNA cluster composition (10), evaluated classifier per-
formance and transferability by determining overall and de-
cision node level accuracy, gauged the impact of miRNA
cluster substitutions on accuracy and inspected the abun-
dance of selected classificatory miRNAs. Throughout the
study, miRNA clusters measured data quality and transfer-
ability of miRNAs as clinical markers; we then focused on
miRNAs to build a streamlined prototype of a tool for NEN
classification. The identified miRNAs can be used as mono-
analyte or multi-analyte markers as needed (12).

Unsupervised hierarchical clustering of filtered miRNA
expression profiles confirms existing knowledge and pro-
vides new knowledge of NEN grouping. With the exception
of all PTA and one LCNEC sample, NEN cases and non-
NEN controls clustered separately. Based on these find-
ings, we speculate that all PTA have a distinct gene expres-
sion pattern linked to their indolent behavior; the LCNEC
sample showed areas of possible squamous cell differenti-
ation (data not shown) that may explain peculiar cluster-
ing patterns. Within NENs, two major groups correspond-
ing to epithelial and non-epithelial NENs are evident; in-
terestingly, one epithelial NEN clusters with non-epithelial
NEN samples. Here, we show that these epithelial and non-
epithelial NENs can be discriminated through miR-200a
(26) and miR-10b expression, and confirm that our ep-
ithelial PanNET sample is actually a non-epithelial PGL
based on additional cytokeratin and GATA-3 immunos-
taining (23,24). Within non-NENs, samples group mostly
by anatomical site of origin as expected (6). Visual inspec-
tion of cluster diagrams indicates similarities and differ-

ences in abundant miRNA composition in NEN and non-
NEN samples.

Similarities in abundant miRNA composition between
samples provide coarse insights into cellular gene expres-
sion programs. Within NENs, miR-375, -21, -143, -let-7a,
-26a, -7, -let-7f, -125b and -141 were highly expressed in
five or more pathological types; known oncogenic or tu-
mor suppressor functions for these miRNAs are reviewed
elsewhere (8,27). miR-375, the most abundant miRNA in
NENs, is believed to regulate lineage-specific differentiation
(28–31), growth (32,33) and function (32,34) of neuroen-
docrine cells. Correlation analyses highlighted similarities
in abundant miRNA composition for all NENs, including
epithelial or non-epithelial NENs. These findings indicate
that all NENs have a constitutive miRNA gene expression
program that likely directly or indirectly maintains the neu-
roendocrine cell phenotype. Given the different cellular ori-
gins of epithelial and non-epithelial NENs (35), convergent
miRNA gene expression likely implies functional similari-
ties. Within non-NEN samples, miR-21, -let-7a, -143, -30a,
-let-7b and -30d were highly expressed in five or more non-
NEN entities; their cancer-related functions are reviewed
elsewhere as above. While mechanistic insights into cellu-
lar processes can be gained through predictable targeting
of mRNAs by abundant miRNAs, this topic is beyond the
scope of the present study (36).

Differences in abundant miRNA composition between
samples can also be used to identify new and confirm
known miRNA markers. miR-375 expression was substan-
tially higher in all NEN cases compared to non-NEN con-
trols. Where comparisons allowed, miR-375 was consis-
tently higher in NEN pathological types compared to site-
matched non-NEN controls. Based on current miRNA ex-
pression tissue atlases, miR-375 is currently thought to be
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Table 2. Overall accuracy of multilayer classifier for discriminating NENs

Established diagnosis

GEP NET Lung NET MTC MCC PitNET PTA PCC PGL NB

Multilayer classifier
designation

GEP NET 80 3

Lung NET 49
MTC 9
MCC 17

PitNET 10
PTA 9
PCC 10
PGL 1 8
NB 25

Decision-level accuracy 80/81
(99%)

49/52
(94%)

9/9
(100%)

17/17
(100%)

10/10
(100%)

9/9
(100%)

10/10
(100%)

8/8
(100%)

25/25
(100%)

Overall accuracy 217/221 (98%)

Using our multilayer classifier, NEN miRNA profiles were assigned to one of nine pathological subgroups or pathological types. Cases of GEP NENs
(AppNET, INET, PNET, RNET) or lung NENs (TC, AC, SCLC, LCNEC) were not assigned to individual pathological types because we previously
developed miRNA-based classifiers for these subgroups (18) (Wong et al., in preparation). By comparing classifier designations to established histopatho-
logical diagnoses, we determined our overall classifier accuracy to be 98%. Additional measures of classifier performance were also calculated: precision
(0.98), recall (0.99) and Matthews correlation coefficient (0.98). Sample abbreviations are provided in Table 1 and Supplementary Table S1.

an endocrine gland specific marker (6,37). However, the
presence of miR-375 in enteroendocrine cells (30,38), pan-
creatic beta cells (32,33), thyroid C cells (39), and MCC
(7,31,40), NB (15) and SCLC cell lines (29) suggests that
miR-375 is a neuroendocrine cell marker. Given the speci-
ficity and distribution of miR-375 in our samples and its
reported abundance in seemingly disparate NEN patholog-
ical types (7,18,38,41–43), we propose that miR-375 is a uni-
versal marker of neuroendocrine cell differentiation. miR-
375 appears to be highly expressed in NENs, in amounts
proportional to the number of normal neuroendocrine cells
and/or the degree of neuroendocrine differentiation within
control tissues or tumors; neuroendocrine differentiation of
tumors is more common than currently appreciated (44).
More systematic studies are required to confirm this pro-
posal.

Although less abundant than miR-375, miR-7 expres-
sion was also elevated in all NEN cases compared to non-
NEN controls. Where comparisons allowed, miR-7 was of-
ten higher in NEN pathological types compared to site-
matched non-NEN controls. Other than expression in the
pituitary gland, atlas studies provide limited information on
miR-7 expression (6,37). However, the presence of miR-7 in
enteroendocrine cells (30), pancreatic islet cells (33,45), thy-
roid C cells (46), but not controls suggests that this miRNA
also has some degree of neuroendocrine specificity. Given
their specificity, some tissue profiling studies may have in-
advertently interpreted miR-375 or miR-7 reduction in ex-
pansile cancer lesions as miRNA reduction rather than neu-
roendocrine cell destruction. Although miR-127 was higher
in TC than non-NEN controls, the significance of this dif-
ference is unclear. Conversely, comparisons of abundant
miRNA composition between non-NEN and NEN sam-
ples identified known tissue-specific miRNA markers such
as miR-203 and miR-205 (6).

As with other cancers (4), miRNAs can be used for NEN
classification. Using our feature selection algorithm, we
identified 17 miRNAs to discriminate 15 NEN pathologi-
cal types; t-SNE analyses using these miRNAs clearly sep-
arated epithelial and non-epithelial NENs and suggested

clustering by pathological type. Given their classificatory
potential, we subsequently constructed and validated a mul-
tilayer classifier for discriminating NEN pathological types,
correctly identifying 217 (98%) of 221 samples. Three of
the four misclassified samples occurred at the GEP NEN
versus lung NEN decision node, suggesting model over-
fitting and the need for additional samples for validation.
On further testing, the fourth ‘misclassified’ sample turned
out to be a PGL as indicated by miRNA expression profil-
ing. We also introduced criteria for evaluating classifier per-
formance and transferability, including determining over-
all and decision node level accuracy, assessing the impact
of miRNA cluster substitutions on classifier accuracy and
showing the relative abundance of miRNAs selected for
classification.

This study does have limitations that are commonly en-
countered in rare cancer and miRNA research. Compre-
hensive clinical information is challenging to obtain, limited
sample numbers preclude hold out validation and miRNA
content measurements can vary widely due to technical
challenges. Nonetheless, we provide compelling evidence
that miRNAs are useful for NEN classification and should
be included in further multi-omic studies of these neo-
plasms.

Through comprehensive miRNA expression profiling, we
have identified candidate universal and classificatory mark-
ers that may be useful as adjunct tissue markers, constructed
a multilayer classifier for discriminating NENs and pro-
vided reference profiles for hypothesis generation or inter-
study comparisons. Our next steps involve confirming our
findings in well-annotated sample sets, evaluating miRNAs
as circulating markers and investigating upstream promoter
activity and downstream targeting events.
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