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Islets of Langerhans are multicellular microorgans located in the pancreas that play a
central role in whole-body energy homeostasis. Through secretion of insulin and other
hormones they regulate postprandial storage and interprandial usage of energy-rich
nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell
communication is essential for proper function. Electrical coupling between the insulin-
secreting beta cells through gap junctions composed of connexin36 is particularly
important, as it provides the required, most important, basis for coordinated responses
of the beta cell population. The increasing evidence that gap-junctional communication
and its modulation are vital to well-regulated secretion of insulin has stimulated immense
interest in how subpopulations of heterogeneous beta cells are functionally arranged
throughout the islets and how they mediate intercellular signals. In the last decade, several
novel techniques have been proposed to assess cooperation between cells in islets,
including the prosperous combination of multicellular imaging and network science. In the
present contribution, we review recent advances related to the application of complex
network approaches to uncover the functional connectivity patterns among cells within
the islets. We first provide an accessible introduction to the basic principles of network
theory, enumerating the measures characterizing the intercellular interactions and
quantifying the functional integration and segregation of a multicellular system. Then we
describe methodological approaches to construct functional beta cell networks, point out
possible pitfalls, and specify the functional implications of beta cell network examinations.
We continue by highlighting the recent findings obtained through advanced multicellular
imaging techniques supported by network-based analyses, giving special emphasis to the
current developments in both mouse and human islets, as well as outlining challenges
offered by the multilayer network formalism in exploring the collective activity of islet cell
populations. Finally, we emphasize that the combination of these imaging techniques and
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network-based analyses does not only represent an innovative concept that can be used
to describe and interpret the physiology of islets, but also provides fertile ground for
delineating normal from pathological function and for quantifying the changes in islet
communication networks associated with the development of diabetes mellitus.
Keywords: pancreatic islets, beta cells, calcium imaging, intercellular communication, functional networks,
multilayer networks
1In the case of points with only even numbers of lines attached to them, it does not
matter where the walk starts. In the case with two points with odd numbers of lines
attached to them, the walk must start in one of them.
INTRODUCTION

From Isles of Königsberg to
Network Science
Graph theory has its roots in the 18th century. In 1735, Leonhard
Euler became interested in a then popular brainteaser of
Königsberg, today’s Kaliningrad. Kaliningrad´s center was built
on four land masses, two isles on the river Pregel and two
riverbanks. At that time, they were connected by seven bridges
(Figure 1A). The problem was to cross all seven bridges in a
continuous stroll, crossing each bridge exactly once. To solve the
problem, Euler redrew the geographical situation of the city by
constructing a graph with the land masses being represented as
four nodes and the bridges being represented as seven links
between them (Figure 1B). Euler analyzed the possibility of
walking through a graph (city) using each edge (bridge) only
once by considering the degree (number of edges connecting to
each isle) of the vertices (isles). A path in a graph, which contains
each edge only once, is called an Euler’s path. He realized that for
such a walk to be feasible, there must be none or exactly two
nodes with an odd number of links attached to them since any
walker must both enter and leave all nodes, except the ones
where the walk begins and ends1. All four nodes possessed an
odd number of links; thus, the proposed walk was impossible (1).
Interestingly, due to bombing, reconstruction, and construction
of new bridges, today, there are altogether 9 bridges, one node
has 3 links, two have 4 links, and the fourth has 7 links
(Figure 1C). Therefore, a modern walk is possible in theory,
but it must start on one and end on the other isle, making it
hardly feasible in practice (Figure 1C). By solving the brainteaser
in this way, Euler laid the foundation of graph theory and
showed that functional implications of a particular structure
can be understood and even predicted without working out
all particularities.

Since its beginning, graph theory has occupied a place at the
‘pure’ end of pure mathematics. However, during the last
century, analyses of social networks started gaining
prominence apart from the developments in the field of
mathematical graph theory (2, 3). These advances, along with a
data deluge at the turn of the 21st century, have led to the birth of
a new interdisciplinary field that has come to be known as
network science (4, 5). This inherently multidisciplinary new
discipline branch of study is now established as a backbone for
describing various natural, social, and technological systems. It
has catalyzed one of the most striking discoveries in complex
systems research, i.e., that interactions of real-world networks
follow some universal features. In a seminal paper (6), Watts and
n.org 2
Strogatz pointed out the omnipresence of small world
connectivity patterns that are highly clustered and exhibit
small characteristic path lengths. Such topological structures
were identified in electric power grids, neuronal and brain
networks, protein-protein interactions, metabolic pathways,
transportation, social networks, and food webs, to name only a
few (7–10). The next decisive breakthrough was the growth and
preferential attachment model that describes the universal
scaling in degree distributions by Barabási and Albert (11),
along with the notion that highly heterogeneous and scale-free-
like networks likewise pervade biological, social, and
technological systems (12–14). It is clear that the potential of
graph theory to solve real-world problems is only beginning to
be realized.

From Network Science to Islets
of Langerhans
Complex networks are widely applicable because they can
represent and study the relationships between individual
components in virtually any discrete system. In the last two
decades, along with the advances in high-throughput
technologies, including increasing computational power,
biometric data acquisition, imaging techniques, and
bioinformatics , network concepts have become an
indispensable tool in biomedical research (15–23). In
biomedicine, network science allows us to analyze, integrate
and interpret several types of data, as well as to link them
together in novel ways. Therefore, it complements the
reductionist approach of systems biology, which focuses on
identifying the key elements and their role in isolation. In
addition to studies of gene-gene interactions (24), network
science is also being used to analyze interactions between
individual molecules, proteins (25, 26), signaling pathways, and
more recently, to study the underlying pathophysiology of
various disease processes (27–29), both at the level of the
individual organs and at the systemic level. Network analyses
nowadays allow the study of complex signaling pathways in
health and disease, with the integrative concept being especially
valuable in complex diseases with different comorbidities and
multiple phenotypes (30). By understanding the bigger picture, it
allows, on the one hand, the detection of potential drug targets,
while at the same time offering the possibility of a systems
approach to diagnosis and therapy (21, 27, 31, 32).
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Furthermore, under the framework of the recently emerging field
of network physiology, network approaches have proven
valuable to describe the structural organization and functional
interrelations between different physiological and organ systems
on the whole-organism level (18, 22, 33–35). Noteworthy, in the
last decade perhaps the most remarkable breakthroughs of
complex network analysis were achieved in neuronal
physiology, where these approaches are used to quantify the
brain’s functional and anatomical organization and have reached
the maturity to be translated into clinical practice (36–39).

Of most importance for our present review is the fact that in
recent years, network theory has been used to assess intercellular
interactions in multicellular systems where nodes represent
individual cells, and their locations correspond to physical
positions of cells in the tissue. Functional connections between
cells are created based on the temporal similarity of the measured
cellular dynamics, as evaluated through the calculation of the
correlation coefficient or other metrics for statistical similarity of
time series. Multicellular recordings of membrane potential or
intracellular calcium concentration are typically used as input
signals. Network principles have thus been used to elucidate the
connectivity patterns in neurons (40–44), astrocytes (45),
pituitary endocrine cells (46, 47), lens epithelium cells (48, 49),
hepatocytes (50), mammary epithelium cells (51), endothelial
cells (52), and pancreatic acinar cells (53). Network analyses were
Frontiers in Endocrinology | www.frontiersin.org 3
introduced to the islet community a decade ago and are
increasingly seen as a valuable tool to examine and quantify
collective activity patterns in the pancreatic islets of Langerhans
(18, 54–69). In these microorgans, communication among a
variety of cells with unique functions and characteristics must
occur to ensure proper control of metabolic homeostasis (70–
73). The most prevalent cell type are the insulin-secreting beta
cells, which are electrically coupled through gap junctions
composed of connexin36 (Cx36) to ensure mediation of
intercellular signals (74, 75). Because beta cells are intrinsically
highly heterogeneous and operate in a continuously changing
environment, they exhibit complex yet coherent activity patterns,
that are essential to tightly controlled insulin secretion. Inspired
by and contributing to the increasing awareness that both
synchronized islet activity and cell-to-cell communication are
altered during the pathogenesis of diabetes (76–80), tools from
the armamentarium of the complex network theory are now
recognized as a powerful computational framework to assess the
multicellular activity in islets and to study the progression of islet
dysfunction in diabetes. Therefore, we review the recent
advances related to the application of network theory to study
islet physiology. We first provide a comprehensible introduction
to the basic principles of network theory to introduce
physiologists to this rather new theoretical paradigm. Then, we
demonstrate how the complex network approaches can be used
A B

C

FIGURE 1 | The “Königsberg bridge problem” as a graph. (A) In Euler’s time, one part of Königsberg (a) was connected with two bridges to the smaller isle (b) in
the Pregel River and with one bridge to the larger isle (d). The same was true for the other part of the city (c). The problem was to create a path that would cross
each bridge only once. (B) Euler solved the problem by representing the system as a graph in which the isles were represented as nodes and the bridges as links
between them. (C) Euler´s path is shown on the current map of Kaliningrad.
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to uncover the functional connectivity patterns among cells
within the islets and specify their functional implications. We
conclude by pointing out some challenges and possible directions
for future investigation of islets and the multicellular dynamics of
endocrine cells in general.
TYPES OF NETWORKS AND
NETWORK METRICS

The birth of modern network science began with the objective of
characterizing the topology of real-world systems consisting of
many interacting units. In its purest form, a graph or a network is
an abstract mathematical object consisting of nodes (or vertices)
which are connected by links (or edges or connections). Because
of this rather simple definition, complex networks represent a
general and very useful framework to describe a large variety of
social (3, 8, 81), biological (17, 18, 82–85), and technological
systems (86–88). Nodes and edges can be regarded as a
manifestation of some properties of a system and the
corresponding network is a simplified mathematical
representation of the relationships (edges) between variables
(nodes), that does not necessarily encompass all the details of
the underlying system. For example, in online social platforms,
people (nodes) are connected through friendships (links);
studying these social networks can allow the study of how
information spreads without knowing details about each
specific person in the network. Similarly, protein-protein
interaction networks, where nodes in networks represent
proteins and links represent interactions between them, can
Frontiers in Endocrinology | www.frontiersin.org 4
lead to a systems level understanding of the cell. Furthermore,
data abstraction in networks facilitates the identification of
general topological characteristics in interaction patterns. The
observation of small-world characteristics, universal scaling, and
heterogeneity in the degree distributions, as well as the existence
of community structure, are the most important features
observed in a plethora of empirical networks (6, 11, 89–91).

Small-world networks can be divided into three structural
classes: (i) single-scale networks, (ii) broad-scale networks, and
(iii) scale-free networks (8). This classification relies on the
computation of the degree distribution, meaning the
proportion of nodes that have a certain degree or number of
edges (8, 92). Figure 2 shows three different types of networks
along with their degree distributions that were obtained from the
SNAP database (93). Figure 2A represents the road network in
California, which is a homogeneous single-scale network that is
characterized by a degree distribution with a fast decay, i.e., there
are no nodes with a very high degree, meaning there are no cities
or towns with extremely high numbers of roads connecting to
them. Figures 2B, C represent a disease network and the air
transport network in the USA, respectively. Both of these
networks are heterogeneous, as evidenced by the heavy-tailed
degree distributions, indicating thereby that there are a few nodes
with a very high number of connections, i.e., hub nodes.
However, only the air transportation network exhibits a scale-
free structure with a clear power-law degree distribution. In
contrast, despite being heterogeneous, the disease network
structure deviates from the pure power-law behavior.
Therefore, it can be categorized as a broad-scale or a weakly
scale-free network. Notably, such structures are much more
A B C

D E F

FIGURE 2 | Examples of real-world networks along with their corresponding degree distributions. Road network in California (A), disease-disease network in which
nodes represent inherited, developmental, or acquired diseases and links represent associations between them (B), and air transport network in the US (C). In
panels (A-C) highly connected nodes, i.e., hubs, are colored purple, all other nodes are colored yellow. The lower panels feature the corresponding degree
distributions of networks which are categorized as single-scale (D), broad-scale or weakly scale-free (E), and scale-free (F).
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common in real-world networks than rigorous scale-free
networks. More specifically, due to different constraints and
finite sizes, scale freeness of networks is not a ubiquitous
phenomenon and therefore the term scale free network is in
the literature sometimes loosely applied to different types of
heterogeneous networks with heavy-tailed degree distributions
(14). Nevertheless, from the functional point of view, when
dealing with real-life networks, it is much more important to
know whether a network´s degree distribution is heavy-tailed, so
that we are aware of the existence of hub nodes, than whether it
exactly follows a power-law (94, 95).

The most commonly used network metrics applicable to
studying multicellular networks are schematically presented in
Figure 3 (for more details see (18, 96)). By simply counting the
number of links of a node, we define its degree ki, and by
averaging the degrees of all nodes, we can calculate the average
degree of the network. The degree of a node is an indicator of its
importance. By drawing a degree distribution, we can then
distinguish between different types of networks, as already
outlined above. To estimate whether nodes in the network are
connected in a more segregated or a more integrated way, we can
calculate the so-called local clustering coefficient Ci, which is a
measure of how well adjacent nodes are interconnected, while
the average clustering coefficient is defined as the average of all
local clustering coefficients and indicates the overall
interconnectedness. From a functional point of view, high
clustering imparts resilience to removal of nodes since a signal
will reach all neighbors of a removed cell if they are connected
with each other. A metric for evaluating the quality of integration
is the global efficiency of the networks, which is defined as the
inverse sum of all shortest path lengths between all accessible
pairs of nodes. Higher values of global efficiency (i.e., shorter
average path lengths) indicate better communication capability
between nodes. Importantly, the trade-off between clustering
coefficient and the global efficiency is also used to measure the
degree of small-worldness in the network, small-world networks
are expected to simultaneously display both high integration and
segregation, i.e., high global efficiency and clustering (97).
Moreover, it is sometimes important to find communities or
subsets of nodes that are densely connected, and the extent to
which the network is divided into communities can also be
evaluated using the so-called modularity metric. A well-
pronounced community structure in a network indicates a
functional specialization of specific regions or subnetworks. In
islets of Langerhans, this could indicate presence of islets within
islets or islets that merged during ontogenesis. Lastly, network
analysis can be used to identify connected components, defined
as a subset of nodes that can reach any other node by traversing
links with the goal of describing the reachability of the network
structure and finding isolated subnetworks. Of particular
importance is the network’s largest component Smax, i.e., the
maximal set of mutually connected nodes, which reflects the
degree of integration and resilience of the network. All network
measures described here and in Figure 3 can easily be applied to
intercellular interaction patterns within the pancreatic islets once
multicellular networks are established from experimental data.
Frontiers in Endocrinology | www.frontiersin.org 5
DESIGNING FUNCTIONAL BETA
CELL NETWORKS

Networks are a convenient abstraction tool for exploring how
relationships and interactions between individual components
give rise to emergent dynamics. When mapping cellular
associations, an important distinction must be drawn between
how cells are physically connected and how the actual
information transfer occurs, affecting the collective activity of
cellular populations. Formally, we distinguish between structural
and functional networks, even though it is known that the
structure and function in networks are closely intertwined (98).
Structural intercellular networks describe the patterns of cellular
morphology arrangement and provide the mechanistic substrate
for intercellular signal transfer. Structural network analysis has
already been utilized to study the cytoarchitecture of the islets.
Specifically, network-based methods have been used to assess the
spatial organization of cells and their homo- and hetero-typic
contacts (99–104), to elucidate the principles of beta cell
arrangement in normal and diabetic islets (105), to infer the
structural basis for paracrine regulation of delta cells (106), and
to study the arrangement of endocrine cells regarding the
vascular network in the islets (107). While structural network
analysis represents a vibrant topic in the islet community, it is
beyond the scope of this review.

Here, we focus exclusively on functional multicellular
networks, which derive from the system’s dynamics. In
functional connectivity maps, nodes represent individual beta
cells and connections between them are established based on the
temporal similarity of the measured cellular dynamics, as
typically assessed by statistical similarity of calcium signals
(18). The creation of functional beta cell networks has become
feasible with the development of functional multicellular calcium
imaging techniques. Two earliest adopters of these techniques in
conjunction with network-based analysis were Hodson et al. (54)
in isolated islets and our group in tissue slices (62), where we
represented cells as network nodes and functional connections
between cells as network edges. In both studies as well as in most
studies that followed, a thresholding of the correlation matrix
was used to construct functional networks, where two cells were
deemed functionally connected if their correlation coefficient
exceeded a preset threshold level. The procedure is schematically
presented in Figure 4 and encompasses the processing of the
recorded Ca2+ time series. In most of our previous works, we
focused exclusively on the fast Ca2+ oscillations that propagate
across the islets in the form of intercellular waves. To this aim,
the signals were band-pass filtered and smoothed to remove
noise and variations in basal Ca2+ levels. We will discuss how
preprocessing of recorded traces affects the network
characteristics in the next chapter.

The methodology to create such functional connectivity maps
originates from neuroscience, where similar approaches have
been used to study functional associations between brain regions
or neurons (36, 108). However, a drawback of the method is that
it relies on a somewhat arbitrary connectivity threshold selection
(109–112). As one of the criteria it was suggested that the selected
June 2022 | Volume 13 | Article 922640
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threshold value should be chosen at R>0.7, such that more than
half of variance is explained by the correlation (R2>0.49).
Alternatively, one can fix the average node degree, such that it
reflects a physiologically relevant value (i.e., the expected number
of connections in the observed tissue). By this means, the
correlation threshold value for intercellular connectivity is
iteratively adjusted until the resulting network has the desired
edge density. In this context, the average node degree itself no
longer has any descriptive meaning when comparing different
networks, however, the underlying network parameters and
degree distributions can differ greatly. If, for example,
individual nodes of a network are poorly correlated, the
resulting network will have more random-network-like
attributes (high efficiency, very low clustering, high
modularity), compared to highly correlated nodes which result
in a more ordered network structure (high clustering, lower
efficiency, and lower modularity). Therefore, this methodology
should not be used when the signals in different islets differ
substantially. As an alternative, the minimum spanning tree
network can be used. This method represents an unbiased
network construction method which relies on the fully
Frontiers in Endocrinology | www.frontiersin.org 6
connected, weighted and undirected graph of the system and
extracts only the sub-network which contains N-1 strongest
connections (N – total number of nodes) with no disconnected
nodes or circular connections. It has been, for example,
successfully applied in brain research (113) and in assessing
the collective dynamics of cryptocurrencies (114) or energy
consumption profiles (115). The lack of disconnected nodes
and the simple, barebone representation are the main
advantages of this method, since disconnected nodes can
represent a problem for previously described approaches. The
main drawback is the lack of circular connections, consequently
zero clustering coefficient and an overall poorer description of
the underlying system. Networks can also be constructed from
binarized time series and in this case the so-called coactivity
coefficient is used to evaluate synchronicity between cells (64, 66,
116). While this method does objectively capture the level of
synchronicity between cell pairs, it should not be used when
there are notable differences in the activities of individual cells, as
it might lead to spurious results. Another approach, popular in
neuroscience for inferring the connectivity between brain
regions, is the Granger causality (117). As the name suggests,
A B C

D E F

FIGURE 3 | Quantifying intercellular connectivity patterns with conventional network metrics. (A) Schematic representation of a multicellular system as a network composed
of nodes (cells) and edges (connections or functional associations between cells). (B) Nodes are scaled based on the number of the neighbors to which they are directly
connected, i.e., their degree. This feature is shown schematically for the yellow node, with the direct neighbors colored purple. (C) The clustering coefficient describes the
tendency of nodes to cluster together and is defined as the number of existing connections between the neighbors of that node divided by the number of all possible
connections between them. This property is illustrated by the example of the yellow-colored node, to which non-existing yellow edges between the purple neighboring
nodes have been added. (D) The shortest path length between any two nodes is the number of edges that form the shortest path between them. Lower average shortest
paths of a network indicate more efficient communication abilities. This feature is highlighted by two yellow nodes representing the source and destination nodes and the
purple-colored nodes forming the shortest path. (E) A community consists of a group of nodes that have a higher connection density compared to the whole network. A
well-pronounced community structure implies an internal network organization into functional modules. In panel (E), nodes are color-coded according to their membership in
a community. (F) A group of nodes that are directly or indirectly connected to each other forms a connected component and stands for reachability within the network. The
relative largest connected component representing the fraction of nodes that are connected either directly or indirectly is denoted by Smax.
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this method is not only used for determining functional
connectivity between brain regions, but also for the direction
(causality) of these connections and was also successfully utilized
in beta cell research for identifying first responder cells in mouse
islets following glucose stimulation (67). Finally, it should be
noted that particularly in neuroscience more advanced methods
to quantify statistical interdependencies between active nodes are
gaining attention, such as the partial cross-correlation (114, 118,
119), dynamic time warping (120, 121), and minimum jump cost
(122, 123).
TOPOLOGICAL ANALYSIS OF
FUNCTIONAL BETA CELL NETWORKS

Beta cells respond to stimulation with tightly coupled oscillations
in membrane potential and intracellular calcium concentration
[Ca2+]IC leading to insulin secretion (124–128). At present, Ca2+

oscillations can be observed in two distinct time domains: i) fast
Ca2+ oscillations under 20 s long, appearing with a frequency of
about 5 min-1 and corresponding to beta cell bursting electrical
activity (55, 124, 129, 130), and ii) the underlying slow
oscillations with a frequency of around 0.1-0.2 min-1 (56, 131,
132). Gap junctional coupling of beta cells via Cx36 allows for
the electrical linkage as well as the exchange of small molecules
between neighboring cells and mediates principally the
coherence of fast Ca2+ dynamics (133, 134). Correlations
Frontiers in Endocrinology | www.frontiersin.org 7
between slow Ca2+ oscillations can be driven by metabolic
coupling of neighboring cells, via feedback onto the slow
dynamics by the fast dynamics due to same electrical coupling
(77, 135–139), as well as by intrinsic metabolic characteristics of
beta cells (61). Since both fast and slow oscillations are
synchronized among the cells in an islet, they both contribute
to functional connectivity networks derived from Ca2+ signals
(56, 133, 140, 141).

In our first study in which we employed network analysis to
investigate functional connectivity we showed that beta cells are
most synchronized and densely connected during the activation
phase following the administration of stimulatory levels of
glucose and during the deactivation phase after glucose
stimulation has ceased. During these periods, the functional
connections were mostly independent of the Euclidean
distance between cells within the islet. This behavior may be
because beta cells individually yet synchronously move from
basal [Ca2+]IC to the much higher “plateau” level required to
trigger insulin secretion upon stimulation, and back to baseline
upon termination of stimulation, yielding highly correlated
signals. Notably, similar observations were later also made in
measurements on zebrafish islets in vivo (67). Furthermore, in
the phase of sustained activity (plateau phase), an intermediate
level of synchronization was observed, and the length of
functional connections was considerably lower, suggesting that
the cells are predominantly synchronized via calcium waves
which spread across the islet (62). Moreover, initial studies of
A B C

D E F

FIGURE 4 | Workflow of functional beta cell network extraction. (A) Confocal image of islet of Langerhans in acute tissue slice with three indicated beta cells (gray,
yellow and violet dots) and indicated islet outline (white curve), exported raw Ca2+ signals of the three beta cells (B) and processed Ca2+ signals (C) of the same
three cells. (D) Pearson correlation coefficient matrix based on filtered and smoothed Ca2+ signals of all cell pairs in the islet. (E) Extracted binary connectivity matrix
based on the thresholded correlation matrix; only cell pairs whose correlations exceeded Rth = 0.82 were considered connected. (F) The corresponding functional
beta cell network. Blue dots denote individual beta cells and gray lines represent functional connections between highly synchronized cells.
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beta cell networks have revealed that functional beta cell
connectivity patterns are small-world networks dominated by a
small subset of cells with a high degree of functional connectivity,
i.e., hub cells (62, 64). The high level of heterogeneity and the
presence of long-range correlations were perhaps the most
striking observations of the earliest studies. The existence of
hub cells was also linked with metabolic profiles, which will be
addressed in more detail in section 5. The presence of long-range
connections that give rise to small-world characteristics was
attributed to various reasons associated with a complex
multicellular dynamics, whereby heterogeneity and a
heterogeneous coupling were highlighted also in theoretical
models (142, 143).

The structure of functional networks depends heavily on the
type of the input signal. As explained above, the measured Ca2+
Frontiers in Endocrinology | www.frontiersin.org 8
dynamics comprises different temporal domains (Figure 5A),
whose activity is coordinated across the islets in a different
manner. In other words, beta cells have fluctuations in
intracellular calcium concentrations at both faster and slower
oscillatory rates, and the networks constructed from these
separate temporal domains have differing properties.
Figure 5A shows a representative beta cell response, where the
raw, unfiltered [Ca2+]IC dynamics is shown in gray and yellow
and violet traces represent the filtered signal with only the slow
and only the fast oscillatory component, respectively. In
Figure 5B, the corresponding raster plots of the binarized fast
and slow activity are presented and it can be noticed that both
types of oscillatory dynamics display coordination across the
islet. With these different input signals, three different functional
networks can be constructed and characterized (Figure 5C).
A

B

C

FIGURE 5 | Constructing functional beta cell networks from different types of Ca2+ signals. (A) Raw average Ca2+ signal of a representative islet (gray line) with
extracted slow (yellow line) and fast (blue line) signal components. (B) Raster plots showing the activity of the slow (left, yellow dots) and fast (right, blue dots) Ca2+

signals of all cells in the islet. (C) Correlation-based functional networks constructed from unprocessed (left), slow- (middle) and fast (right) Ca2+ signals. Networks
were constructed with a fixed average network node degree kavg = 8.3. The following parameters for each functional network are provided: average correlation
coefficient (Ravg), average clustering coefficient (Cavg), global efficiency (Eglob), largest connected component (Smax), small-world coefficient (SW), average physical
length of functional connections (Davg) and the number of communities (Ncom).
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Metabolically driven slow dynamic component gives rise to
substantially longer functional connections, due to global slow
Ca2+ waves occurring on a broader temporal scale (56). The slow
component gives rise to a higher average correlation (Ravg), while
the fast component results in higher clustering (Cavg), pointing
out a denser interconnectivity between neighboring cells.
Moreover, the network built upon the fast Ca2+ component
results in a lower global efficiency (Eglob) compared to both the
slow and the unfiltered signal, denoting a longer characteristic
path length between beta cells. Despite the higher clustering in
the fast component, the lack of long-range connections leads to a
decreased measure of small-worldness (SW). This indicates that
the slow component importantly contributes to the level of
small-worldness of the beta cell functional connectivity
networks, which is an important aspect to consider when
unprocessed signals are used for the analysis. Therefore, in
addition to the insights gained by separating Ca2+ signals into
various components (fast vs. slow vs. a combination of both),
further methodological steps, i.e., signal filtration, affect the
characteristics of functional networks and their implications in
islet function. Finally, it should be emphasized that functional
connectivity describes a statistical relationship between the
measured signals and therefore long enough intervals should
be used to obtain relevant results, particularly when slow
oscillations are analyzed, which display a relatively low
temporal density of events (typically on the order of
magnitude of 0.1 min-1).

In what follows we focus on the fast component of Ca2+

response. Beta cells respond to glucose stimulation in a biphasic
manner (144–146). Following exposure to, there is an activation
phase with a transient rise in [Ca2+]IC and fast Ca2+ oscillations,
during which beta cells are progressively recruited and begin to
operate more synchronously. Heterogeneous activation of beta
cell clusters during activation is reflected in local Ca2+ waves that
are heterogeneous in size (55, 145, 147). Activation is then
followed by a stable plateau phase with synchronized, regular
oscillations and islet-wide activation of beta cells, as indicated
with the replacement of local Ca2+ waves with global Ca2+ waves
(55, 147). This behavior is demonstrated in Figures 6A, B. The
corresponding temporal evolution of functional networks
throughout stimulation is reflected in its characteristics
(Figure 6C), with a higher average node degree, clustering
coefficient, largest component, and a smaller number of
communities during the plateau phase. In other words, with
the increase in activity and coordination cells become more
connected, the network becomes denser and more integrated,
with fewer and bigger communities.

The node degree distribution during the plateau phase
decreases roughly potentially with a cut-off in the tail, i.e.,
following an exponentially truncated power law signifying the
broad-scale nature of functional networks (Figure 6D) (55, 62).
We wish to point out that physical limitations prevent the
emergence of truly scale-free networks, i.e., a cell cannot be
functionally connected to more cells than there are in a tissue,
and consequently, they are not as ubiquitous in real world as is
often presumed (14). It is worth emphasizing that the noted
Frontiers in Endocrinology | www.frontiersin.org 9
heterogeneity in the degree distribution implies the existence of
highly connected beta cells, i.e., hub cells that are in this islet
connected to more than 20% of other cells. While some studies
have demonstrated a particular importance of this highly
connected subpopulation of beta cells in orchestrating
collective beta cell activity in healthy islets (148), as well as
their crucial role in pathogenesis of diabetes (54, 58, 64), the
evidence is not unanimous and many details about their
characteristics and the part they play in islet coordination
remain to be elucidated (55, 149–151).
FUNCTIONAL IMPLICATIONS OF BETA
CELL NETWORK ANALYSIS

From Classical Physiological Parameters
to Functional Connectivity
Collective activity of beta cells achieved through tightly regulated
electrical coupling of neighboring beta cells (and perhaps also
other cell types) via Cx36 is vital to well-regulated insulin
secretion (152). Functional multicellular imaging has allowed
deeper insight into the importance of multicellular cooperation
and functional connectivity of beta cells within an islet (73, 153–
155). The response of islets to glucose depends on the level of
stimulation. With increasing glucose concentration from
substimulatory (< 6 mM) to supraphysiological glucose
concentrations (> 10mM), the delays to activation of cells
shorten (advancement), and the fraction of beta cell population
involved in the response increases (recruitment) (55, 145, 156–
159). Also, the delay between the activation of cells that respond
first (called first responders) and beta cells in the same islet that
activate later is shortened (55, 156, 160). Compared with
dissociated or uncoupled cells, the probability density of cell
activation in coupled beta cells in islets is narrower and thus the
dose response curve is much steeper. Importantly, all of these
features of the activation phase agree with model predictions, as
excellently reviewed recently by Peercy and Sherman (60). In the
plateau phase, the glucose dependency or the dose response is
evident as an increase in active time or so-called duty cycle,
which is in good agreement with insulin secretion (55, 160–164).
During deactivation, the delay before cells turn off is longer for
higher preceding glucose stimulation, however, the heterogeneity
between cells is less than during activation (55, 156, 160).
Importantly, a coordinated cessation of activity is important, as
it prevents hypoglycemia. Data suggest that this last phase of
response may be disrupted in uncoupled beta cells and under
diabetogenic conditions (66, 152). Looking at the functional
connectivity of beta cells, a clear transition from more
segregated to more integrated networks can be observed with
increasing glucose concentrations (55, 63). These changes in
activity and functional connectivity are accompanied by a switch
from more local to more global [Ca2+]IC waves (58, 147).
However, despite the highly integrated functional connectivity
in high glucose, an islet cannot be regarded as a uniform
supercell sharing identical activity in all its parts. Rather, based
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on differences in activation times, activity during the plateau
phase, the origin of [Ca2+]IC waves, and the number of
connections in functional networks, distinct beta cell
subpopulations presumed to have distinct impacts on islet
activity have been defined (54, 55, 59, 62, 64, 67, 165).

Beta Cell Subpopulations and Functional
Heterogeneity
Beta cells with a high number of links in functional networks have
been termed hub cells. They were suggested to govern the
functioning of islet networks by initiating [Ca2+]IC waves (64, 67).
According to this view, non-hub cells are believed to only follow
metabolic, electrical, and other signaling cues from the hub cells
(166). Advanced optogenetic and photopharmacological
investigations indicated that hub cells are metabolically highly
active, exhibit hyperpolarized mitochondria and have a lower
Frontiers in Endocrinology | www.frontiersin.org 10
insulin content, thus resembling a transcriptionally immature
phenotype due to the low expression levels of signature beta cell
transcription factors. Notably, energetic demands of the functionally
most connected cells can also be estimated by analyzing details of
[Ca2+]IC dynamics. More specifically, we employed methods of
nonlinear time series analysis to reconstruct the phase space and to
compute the dissipative characteristics of individual cells within the
network (167). Hub cells exhibit the highest energy dissipation rates,
which was also predicted theoretically. This concept is
demonstrated in Figure 7, where we show an exemplary islet
with color-coded energy dissipation rates of individual beta cells.
In addition, the coordinated collective response of beta cells to
elevated glucose was blunted after silencing the hubs, and restored
after specific stimulation, thus suggesting that theymay be necessary
for coordinated islet [Ca2+]IC dynamics (64, 67). At present, these
findings cannot be completely reconciled with electrophysiological
A

B

C D

FIGURE 6 | Characteristics of the functional beta cell network in response to stimulation. (A) Average Ca2+ signal of an islet subjected to a 6-9-6 mM glucose stimulation
protocol. Black line represents the unprocessed Ca2+ signal and the gray line represents the extracted fast component of cellular activity. Colored horizontal arrows
indicate the selected activation and plateau phases for further analysis. (B) Raster plots showing the binarized fast component of beta cell activity for the activation (left)
and plateau (right) phase as indicated in panel (A). (C) Functional beta cell networks constructed for both phases (left, activation phase; right, plateau phase) based on
fast signal components of all cells with a correlation coefficient threshold for connectivity Rth = 0.8. The following parameters for each functional network are provided:
average correlation coefficient (Ravg), average clustering coefficient (Cavg), average network node degree (kavg), global efficiency (Eglob), largest connected component (Smax)
and the number of communities (Ncom). (D) Node degree distributions for the networks extracted in the activation (yellow dots) and plateau phase (blue dots).
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and modelling findings, for reasons that arguably originate in
different methodological approaches [for a recent review see (60)].
Our current understanding suggests that in a system of coupled cells
of which all are intrinsically able to oscillate, silencing a small
proportion of cells with the highest number of functional
connections cannot prevent or importantly change the activity of
the remaining cells, except close to the threshold for stimulation
where the majority of cells would otherwise not be active by
themselves (60, 143, 148, 149). Further experiments in a near-
threshold glucose milieu with ablation of hub cells rather than their
silencing may further aid to our understanding of the role of hub
cells in the islet syncytium. Importantly, similar strategies could be
used in future studies to assess the importance of other
subpopulations of cells discussed below.

Second, a large degree of beta cell heterogeneity is also evident
from coordinated [Ca2+]IC waves that propagate across islets and
seem to consistently emerge from specific subpopulations of beta
cells named wave initiators or pacemakers. These cells could
correspond to highly glucose responsive beta cells that have
increased glucokinase activity (165, 168, 169). Interestingly,
depending on the model employed, they can also exhibit a
lower NAD(P)H response and a faster natural oscillation
frequency than other cells in the islet, including hub cells.
Therefore, they are more likely to depolarize first in response
to stimulating glucose concentrations and send depolarizing
currents to neighboring cells (165, 170). At present, it is
undisputable that the great majority of [Ca2+]IC waves are
initiated in a limited number of cells or regions, which do not
necessarily overlap with the regions with most functional
connections (58, 170). Also, it remains to be shown, whether
their removal critically impacts the islet as a whole and which
mechanistic substrates make them initiate the waves.

Third, analyzing with single cell resolution also the activation
phase enables a comparison of behavior during this phase with
Frontiers in Endocrinology | www.frontiersin.org 11
the one on the plateau. Recent data suggest that the so-called
leaders or first responders tend to cluster in groups that become
larger in higher glucose and that tend to be more active, i.e., have
longer active times, also during the plateau phase (55). Their
removal seems to be able to delay the onset and diminish the
amplitude of subsequent oscillations (67), but they are
dispensable in the sense that if they are ablated another cell
will become a first responder (68). Similarly, in human islets,
during the first phase of glucose response, small clusters of beta
cells with high activity govern the response, whereas during the
second phase, the electrical coupling becomes more important to
synchronize large multicellular functional clusters (146).
Moreover, from the network point of view, cells with the most
functional connections tend to activate sooner (55), but not
necessarily be the first responders (68). Interestingly, the ability
of cells to activate first in response to glucose seems to depend
less on glucokinase activity than on the resting KATP and
junctional conductance, which may in addition to intra-islet
differences between cells (60, 68) also explain some inter-strain
differences in activation (152, 160). At present, there is not
enough consistent evidence for a significant overlap between
hubs, first responders, and wave initiators. However, one feature
which is consistently present in both experimental and modeling
studies in hub cells is their higher-than-average active time or
duty cycle. This may be due to the fact that the hub cells
participate in the great majority of [Ca2+]IC waves and that
their [Ca2+]IC oscillations may be a bit longer and perhaps more
stable than the ones in other cells, which is also able to explain
why their signals are similar to signals from many other cells and
thus their functional connectivity is high (55, 58, 60, 68, 170).

Final ly , functional differences between beta cel l
subpopulations may change with time and experimental
conditions. For instance, heretofore, the described functional
roles have not been tracked over long periods of time and are
A B

FIGURE 7 | Functional network architecture of beta cells and the corresponding energy dissipation rates. (A) Each circle represents the physical position of a cell
inside the islet and the connections signify functional connections. Colors of circles denote the average dissipation rates calculated as the sum of Lyapunov
exponents (see Ref (167). for further details). (B) The average dissipation rate reflecting the rate of energy consumption of individual cells as a function of the node
degree, i.e., number of functional connections. The grey line denotes the linearly decreasing trend showing that highly connected nodes exhibit higher dissipation and
energy consumption rates.
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thus not necessarily stable properties. Additionally, the cells that
are first responders to glucose may not necessarily be first
responders to some other secretagogue, and the same holds
true for the role of pacemakers and hubs. Moreover, it is
reasonable to assume that to some extent some traits may be
shared between different subpopulations, e.g., some of the first
responders to glucose may be among the first responders to GLP-
1 or among the hub cells. This may again depend on the
experimenter’s definition of the size of subpopulation, with
larger subpopulations possibly generating more overlap than
more narrowly defined subpopulations. In other words, some of
the first responders will with large probability be among the hubs
if one sixth or even one third of the fastest responding cells and
cells with the highest degree are defined as first responders and
hubs, respectively, compared with a lower probability for overlap
if the cut-off is set at one tenth. On the other hand, the overlap
may have to do with genuine biological properties of beta cells. In
the case of different or the same cells being first responders for
different secretagogues, a cell´s role as a first responder may be
determined by the relative importance of a given component in
the stimulus-secretion coupling cascade in this cell. In addition
to resolving the controversies regarding the importance of
specific subpopulations for normal and pathological islet
functioning, future studies shall therefore also shed light on the
temporal persistence of these roles and their sensitivity to
experimental conditions, such as different secretagogues.
Moreover, they shall pinpoint additional subpopulations
of cells and dissect into more detail their molecular,
structural, and additional functional signatures. Additionally, a
consensus among different research groups would be welcome
on the nomenclature and cut-off values for determining
subpopulation sizes. For additional details on the role of
subpopulations in human islets, please see Human Islets and
Coordinated Beta Cell Activity in Health and Disease, and for
some suggestions on how mathematical modelling and
multilayer networks may help address the issue of different
subpopulations, please see Computational Models of Beta Cell
Networks and Islets as Multilayer Networks below. Finally, for
more details on the role of heterogeneity and different beta cell
subpopulations in islets, as well as some suggestions for future
studies, we wish to refer the reader to some other recent articles
addressing this topic in detail (55, 58–60).

Altered Connectivity in Beta Cell Networks
and Its Relevance in Diabetes
Adequate intercellular electrical coupling through gap junctions
is essential for synchronized beta cell activity. In basal glucose,
insulin release is low since the less active beta cells keep the
intrinsically more active beta cells quiescent through junctional
hyperpolarization or clamping (152, 171). In contrast, during
increasing stimulation, more and more cells become active and
intercellular coupling may facilitate recruitment of the least
active cells. In Cx36 knock-out (Cx36 KO) mice, the response
of beta cells to glucose resembles that of dispersed cells in culture
including increased basal and lower stimulated insulin
secretion, thereby confirming the theoretically predicted role of
Frontiers in Endocrinology | www.frontiersin.org 12
gap-junctional coupling for the coordinated collective response
(60, 77, 78).

Importantly, prolonged exposure to high concentrations of
glucose and fatty acids, as expected in diabetes, was found to
downregulate Cx36 in mice, rats and humans, and may disrupt
the pattern of intercellular synchronization (172–174). Similarly,
studies on Cx36 KO mouse models have also shown an
impairment of normal oscillatory patterns of insulin secretion
elicited by glucose and a diabetic phenotype (77, 78, 152, 175).
Moreover, a decrease in Cx36 protein and a smaller size of gap
junction plaques were also observed in prediabetic C57BL/6 mice
fed a high-fat-diet for 60 days (176). Similarly, in diabetic ob/ob
mice the Cx36 protein level is significantly reduced despite a
preserved Cx36 mRNA level, pointing to a decrease in protein
synthesis and/or inappropriate gap junction organization,
leading to deficient electrical coupling between cells (172). Also
the synchronicity of Ca2+ oscillations in ob/ob mice is disturbed,
disrupting the normal insulin secretion pattern (172, 177). From
a mechanistic point of view, in (pre-)diabetes, a decrease in Cx36
coupling could be a consequence of increased concentrations of
pro-inflammatory cytokines. Interestingly, in both mouse and
human islets a cytokine-mediated decrease in coupling can be
prevented with pharmacological interventions which increase
intracellular cAMP. In this case, in mouse islets the glucose-
stimulated calcium signaling was preserved by increasing the
levels of gap junction protein Cx36 on the plasma membrane
using exendin-4, a glucagon-like peptide (GLP-1) receptor
agonist (178).

To protect islets from high-fat-diet induced impairment of
beta cell gap junction coupling and to preserve proper Ca2+

signaling, including Ca2+ oscillation coordination and amplitude,
a relatively simple intervention, namely a 40% caloric restriction,
seems to be very efficient, mirroring similar beneficial effects of
caloric restriction in human patients (179). Additionally, trying
to decipher the effects of vertical sleeve gastrectomy (VSG) on
beta cell function in obese mice, Akalestou et al. have shown that
Ca2+ dynamics as well as the number and strength of
connections between beta cells increase within 8-10 weeks
post-surgery, which could be attributed to the strong influence
of GLP-1 on islet functioning (57). GLP-1 in physiological
picomolar concentrations augments postprandial insulin
secretion. However, it significantly enhances beta cell cluster
activity, coupling, and coordination only in the second phase of
insulin secretion as shown using a microfluidic system with
multielectrode arrays (146). As evident from the above findings,
an important impact on Ca2+ oscillations is mediated by cAMP
acting downstream through at least two different pathways,
namely the guanine nucleotide exchange factor Epac2A and
the protein kinase A (PKA) pathway (178). We wish to point
out that in addition to physiological or pharmacological
stimulation of cAMP production by neurohormonal
secretagogues, glucose itself induces cAMP signaling in beta
cells. This effect is most probably mediated by a Ca2+-
dependent arm through Ca2+-dependent adenylate cyclase
isoforms and by a Ca2+-independent arm through direct ATP
availability or since the concentration of ATP is possibly
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saturating for adenylate cyclases even in basal glucose, through a
decrease in inhibitory AMP. Moreover, cAMP oscillates in beta
cells in response to stimulation by both glucose and extracellular
primary messengers with the same period as electrical activity
and [Ca2+]IC. The mechanism underlying these oscillations may
differ depending on the experimental protocol. As [Ca2+]IC can
influence cAMP production and degradation, oscillations in
cAMP may at least partly be due to oscillations in [Ca2+]IC.
This seems to be supported by the observation that oscillations in
[Ca2+]IC and cAMP are typically in phase or occur with a slight
shift. Pharmacological activation of GLP-1 receptors and/or
direct activation of adenylate cyclase by forskolin are unable to
stimulate beta cells in low glucose but can significantly enhance
glucose-stimulated Ca2+ oscillations (180–182). Indeed, by
constructing functional connectivity networks we have recently
shown that increasing cAMP levels using forskolin increases beta
cell activity as well as enhances synchronicity and coordination
of intercellular signaling, evident as denser and more integral
networks (180, 183). While both slow and fast Ca2+ oscillations
rely on periodic entry of Ca2+ from extracellular space into the
beta cells through voltage-activated Ca2+ channels, the fast Ca2+

oscillations may also depend on mobilization of intracellular
Ca2+ stores from the endoplasmic reticulum. Therefore,
pharmacological agents that increase cAMP may promote the
appearance of fast Ca2+ waves (184, 185).

Many other pharmacological substances and drug candidates
for diabetes treatment can affect beta cell connectivity patterns by
targeting different signaling pathways, but to the best of our
knowledge, apart from the cAMP-elevating agents only a few
have been investigated using network measures. In this regard,
glutamate signaling via N-Methyl-D-Aspartate receptors
(NMDARs) has been demonstrated to play an important role
in beta cell function by shortening the duration of bursts of
electrical activity and therefore fast [Ca2+]IC oscillations, with
NMDAR antagonists being able to prolong the duty cycle by
prolonging these bursts (186, 187). More specifically, following
glucose metabolism, increased ATP inhibits KATP channels and
causes plasma membrane depolarization, resulting in activation
of voltage-dependent Ca2+ channels, increase in [Ca2+]IC, and
insulin secretion. A negative regulation of this pathway is
mediated by NMDARs. Under physiological conditions, these
receptors are probably fully saturated with glutamate originating
from glutamate in blood, from glutamate secreted by alpha cells,
or from glutamate exported by beta cells through excitatory
amino acid transporters. Membrane depolarization is therefore
able to activate NMDARs, which in turn activate KATP channels
and Ca2+- dependent K+ channels (SK4 channels) through a not
fully understood functional interaction, thus hyperpolarizing the
membrane, terminating the bursts of membrane depolarization
and shortening Ca2+ oscillations. NMDAR inhibition interferes
with this negative feedback loop and prolongs bursts and Ca2+

oscillations (69, 186–188). Representing the spreading [Ca2+]IC
waves as network layers, we have recently shown that the
inhibition of NMDARs not only increases beta cell activity but
also stabilizes and synchronizes intercellular connectivity
patterns. Within consecutive [Ca2+]IC waves, NMDAR
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inhibition also stabilizes the course of [Ca2+]IC waves and the
role of wave initiators (69). Given the importance of connectivity
for normal and pathological functioning of islets and the fact that
the network analyses are able to detect effects of non-
pharmacological and pharmacological interventions beyond the
classical physiological measures of beta cell activity, they are a
promising tool to detect early changes during progression to
diabetes and non-classical effects of new therapeutic
approaches (188).

Human Islets and Coordinated Beta Cell
Activity in Health and Disease
During the response to glucose, human beta cells have been
described to display a more regional coordination between cell
clusters compared with responses in mice (189, 190), which
could reflect differences in islet architecture and gap junction
coupling among beta cells in different species (191–193), but at
least partly also due to differences in donor age and health, mode
of preparation, as well culture duration and conditions (191, 192,
194–197). In human islets, diabetes results in disrupted
cytoarchitecture with altered homotypic and heterotypic
communication between different cell types within an islet
(105, 198). The coordinated responses of islets to stimulation
with glucose, glucagon-like peptide 1 (GLP1), and glucose-
dependent insulinotropic polypeptide are also altered possibly
due to a reduction in Cx36 expression. Moreover, perturbed
beta-cell coupling and dysregulation of Cx36-dependent [Ca2+]IC
signaling were observed in islets from donors with a high BMI,
suggesting that lipotoxicity may result in lowered insulin
secretion and progression to diabetes (54). Furthermore,
during ageing, which is associated with increased risk of
diabetes, a significant decline was found in gap junctional
coupling. This was accompanied by reduced overall
coordination of [Ca2+]IC activity, which became restricted to
islet subregions, and diminished insulin secretion. However,
activating gap junctional communication using modafinil, a
pharmacologic activator of Cx36 electrical coupling,
successfully reversed the age-related decline in synchronization
of [Ca2+]IC signals (190). Supporting these observations,
advanced optogenetic methods in combination with complex
computational tools, confirmed differences in the coordinated
responses to glucose between mouse and human beta cells. In
human islets, [Ca2+]IC waves seem to be initiated from specific
subregions called pacemaker or leader regions with specific
metabolic profile and local excitability (54, 64, 71, 165). The
synchronization patterns are more clustered compared to mice
and the collective behavior of beta cells becomes altered in
diabetes (67, 145). Our own research indicates that in type 2
diabetic islets glucose-dependence is still present, but beta cell
activity seems to be reduced, mostly due to a reduced oscillation
frequency. Furthermore, human beta cell networks are more
segregated than mouse networks and in diabetic islets more than
in islets from control donors. This is accompanied by smaller and
more locally restricted [Ca2+]IC waves. Importantly, the hub
regions seem to lose a disproportionately large fraction of
connections, especially the long-range ones (58). Figure 8
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summarizes how differences in structural connectivity between
control and Cx36 KO islets, as well as between mouse and
human islets from normal and diabetic donors, translate to
differences in functional connectivity. Loss of gap junction
connectivity in Cx36 KO mouse islets desynchronizes beta cell
Frontiers in Endocrinology | www.frontiersin.org 14
[Ca2+]IC responses, resulting in poor cell-cell correlation and
sparse functional networks (Figure 8B). The changes in
intercellular coupling are reflected in key network parameters,
e.g., a lower average correlation (Ravg), scarcely connected beta
cells, and an overall decrease in local connectedness, as well as in
A

B

C

D

FIGURE 8 | Multicellular activity and functional connectivity maps in a control (wild type) mouse islet (A), an uncoupled (Cx36 KO) mouse islet (B), human islet from
a normal donor (C), and human islet from a donor with T2D (D). Left column visualizes Ca2+ activity with indicated stimulation intervals. Bars indicate 3- (light gray),
6- (gray) and 12- (dim gray) mM glucose stimulation. Note that 3 mM glucose was used as the substimulatory concentration in (B-D), as 6 mM can already evoke
activity in these islets (unlike in control mouse islets). Inserts show short intervals of selected cellular signals. Middle column features the correlation matrices
extracted from Ca2+ signals. Correlation levels between cell pairs are color-coded as indicated with the color bar (the same scale refers to all four panels). In the right
column the corresponding functional networks are presented, which were obtained by thresholding the correlation matrices (Rth = 0.7). Along with networks, the key
parameters are provided: average correlation (Ravg), average clustering coefficient (Cavg), average network node degree (kavg), global efficiency (Eglob), largest
connected component (Smax), and the number of communities (Ncom).
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global efficiency compared to the control islet (Figures 8A, B).
Conversely, despite having a comparable average correlation as
Cx36 KO islets, human islets have better connected beta cells, are
more locally integrated, and have a significantly higher number
of communities. Their global integration, reflected in Eglob,
however, is comparable to Cx36 KO mice islets, indicating a
lack of long-range functional connections between subregions of
the islet due to the relative lack of global [Ca2+]IC waves
compared with mice (Figure 8C). Clusters of beta cells in
human islets form communities (while Cx36 KO islets do not),
these different communities are also connected, but much less
than in islets in control mice, where global [Ca2+]IC waves and
thus globally synchronized [Ca2+]IC oscillations are the rule
rather than the exception. In human islets, [Ca2+]IC waves are
heterogeneous in size and mostly encompass only smaller
regions of the islet, in contrast to global, islet-wide [Ca2+]IC
waves in mice (58, 147). Both can be at least partly contributed to
structural differences, particularly a higher proportion of alpha
cells and a more lobular structure in human islets, promoting a
higher number of heterologous contacts between alpha and beta
cells and possibly introducing bottlenecks for spreading of global
[Ca2+]IC waves between the more segregated subregions (189,
192, 193). We wish to point out that despite this larger degree of
segregation, human islets still seem to be able to produce [Ca2+]
IC waves that involve the great majority of islet beta cells but do
so much less often compared with mouse islets where globally
synchronized oscillations are the rule rather than an exception
(58, 197). Due to the abovementioned structural and functional
differences, human islets may even be more prone to losing the
ability to produce globally synchronized [Ca2+]IC with decreases
in intercellular coupling under pathological conditions. Along
this line, the functional connectivity patterns in islets from
diabetic human donors (Figure 8D) are indeed much sparser
and more segregated compared with islets from healthy controls,
indicating thereby a higher fraction of inactive regions and a lack
of larger and coherent [Ca2+]IC waves (58). Finally, while much
of the evidence on the role played by decreased intercellular
coupling in development of diabetes presented in the last two
chapters may be circumstantial, we wish to point out that when
taken together, some excellent recent studies nevertheless suggest
that decreased Cx36 coupling is at least partly causative. More
specifically, knockout of Cx36 leads to a diabetic phenotype (78),
some degree of decrease in Cx36 is present in diabetic islets and
improving this by pharmacological (178, 190) or dietary
interventions (178) is sufficient to improve islet function.
However, more studies in this direction are needed to quantify
the contribution of decreased coupling and determine whether
improving coupling is a viable treatment option for diabetes.

Computational Models of Beta
Cell Networks
The new findings by network science about the complex nature of
intercellular activity patterns and the specific roles played by
certain cells were recognized as theoretically very appealing and
have inspired the development of multicellular beta cell models.
Mathematical modelling approaches have a long tradition in islet
Frontiers in Endocrinology | www.frontiersin.org 15
research and have also served as a paradigmatic case study for
emergent networks [for excellent reviews see (60, 125, 199–201)],
but the interest for the design of multicellular models has
increased over the last few years. This is in part due to growing
computational resources, which facilitate multiscale simulations of
beta cell populations, but also due to advances in experimental
techniques, which have provided valuable new data on
microarchitecture and intercellular dynamics. Several studies
have utilized computational models to investigate how
intercellular coupling facilitates beta cell synchronization (138,
202–206) and the propagation of [Ca2+]IC waves (74, 207, 208). In
recent years, specific attention has been given to cellular
heterogeneity and to how the collective activity emerges from
functionally heterogeneous beta cell subpopulations (71, 143, 145,
147, 148, 165, 169, 209). In the context of complex beta cell
networks, it has been demonstrated that the coupling scheme
between the beta cells represents the basis for the functional
connectivity patterns, but the relation relies heavily on various
physiological determinants, such as the level of stimulation,
cellular noise, and the coupling parameters (210). Multicellular
models have also been employed to study the occurrence of long-
range connections in functional beta cell networks. Importantly, it
has been demonstrated that long-range synchronicity can in
principle be established solely by the propagation of excitation
waves through nearest-neighbor-coupled networks, if the cells and
the coupling strengths are heterogeneous (142, 143, 211). In recent
years, particular emphasis has also been given to the role of
functional subpopulations, such as hubs and pacemaker cells,
although their exact roles remain somewhat debatable. This is in
part also due to the inconsistent use of terminology in the
literature, but with some more recent papers this aspect is
improving (55, 59, 60). It has been shown by numerical
simulations that the inclusion of specialized hub cells
importantly affects the collective activity on different temporal
scales (212). Furthermore, by silencing a few hub cells within the
islet it was possible in principle to abolish whole-islet [Ca2+]IC
activity in simulations, similarly to what was noted experimentally,
but as mentioned before, only close to the threshold glucose
stimulation (148). Later studies incorporating in-depth
numerical analyses alleviated these findings a bit by showing
that removing the metabolically most active and heavily
connected cells or cells with the highest intrinsic frequencies
does not diminish whole-islet activity (60, 143, 170). These
results suggest that the whole-islet [Ca2+]IC activity is probably
not driven by a very small (<10%) subpopulation of extraordinary
cells and that the islets are robust to loss of small groups of cells,
even if they have special attributes, as would be expected for
evolutionary robust assemblies of intrinsic oscillators (60, 213). To
sum up, the recent theoretical works have partly confirmed some
of the recent experimental findings and thereby contributed to our
understanding of the complex signaling mechanisms within the
islets. However, there is still a long road to drive before we will
fully understand how functionally heterogeneous beta cell
populations interact among each other, with other cells, and
with the dynamical environment by means which may involve
paracrine and other modes of intra-islet signaling (214–216), the
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effect of incretins (217), as well as long feedback loops, for instance
between the liver and the pancreas (137). We firmly believe that
the tools developed in the field of computational physiology and
network science will help us to address these issues and will
provide us further insights into functional properties, as well as the
underlying mechanisms that guide the multicellular dynamics of
endocrine cells.
FRONTIERS OF ISLET NETWORK
SCIENCE: ASSESSING MULTICELLULAR
ACTIVITY BY MULTILAYER NETWORKS
AND GOING BEYOND CALCIUM

The Many Layers of Multicellular Networks
Pancreatic islets are non-stationary complex systems governed
by different oscillatory subsystems, they are characterized by
different types of interactions, and their function can be captured
with different measures and parameters. Therefore, the standard
network approach focusing on single networks in isolation might
be insufficient to unveil the functional regulatory patterns
originating from complex interactions across multiple layers of
physiological relationships and processes. In the last few years,
the multilayer network (MLN) formalism has emerged as a new
research direction to engage with such multi-dimensional
systems (19, 218–221), including in the area of biomedical
research (18, 222–224). By means of the MLN formalism, it is
possible to track the evolution of interactions among entities over
prolonged periods of time, evaluate precisely the changes caused
by altered experimental conditions, such as addition of
pharmacological substances or the development of a disease,
explore the associations between different temporal and spatial
scales, and characterize different types of interactions. In this
way, a much more precise insight into the architecture and
dynamics of biological systems can be acquired, compared to
single-layer analyses only. While standard networks can be
represented by adjacency matrices (see Figures 4, 8), for MLNs
higher-order matrices, i.e., tensors, are required. Formally, to
represent connectivity within and between network layers, a
Frontiers in Endocrinology | www.frontiersin.org 16
supra-adjacency with a block structure matrix is used, in which
diagonal blocks encode intra-layer connectivity and off-diagonal
blocks encode inter-layer connectivity (Figures 9A, B). This
framework allows for expansion of the traditional network
analysis by examining interlayer similarity, overlapping
(weighted) degrees and other measures, detection of modular
super-units, identification of most central units, etc. (225, 226).
In the context of beta cell networks, these MLN metrics can be
used for example to assess the spatio-temporal beta cell network
persistency, to quantify the effects of pharmacological
interventions or to identify signal-specific functional
subpopulations, as well as to determine how they change with
time, as specified in more detail below.

To date, biomedical endeavors employing the MLN concepts
have been mostly limited to molecular and brain networks. In the
former, the MLN formalism is predominantly used to assess the
interdependent biochemical networks extracted from linked
genomic, proteomic, and metabolomic data (227–230), whereas in
the latter, these methods are used to address the temporal evolution
of brain networks and rewiring dynamics (231–234), associations
among different frequency bands (235–238), and to explore the
longstanding issue about the interplay between brain structure and
dynamics (36, 239, 240). On the level of tissues and intercellular
interactions, the MLN methodological directions are still rather
unexplored, even though the number of potential applications is
large, particularly in pancreatic islets. We therefore present here
some specific examples on how theMLN theory has been and could
be further integrated into islet research (Figure 10). They are
explained in continuation and encompass the assessment of
different temporal scales of oscillatory activity, tracking the
network evolution during prolonged stimulations or
pharmacological interventions, following the course of the
intercellular signals, characterization of heterologous interactions
between different cell types, and the evaluation of the multicellular
beta cell function by simultaneously acquiring multiple
measured variables.

Islets as Multilayer Networks
As explained above, mouse beta cells in isolated islets and in
pancreatic tissue slices oscillate at different temporal scales when
A B

FIGURE 9 | Multilayer representation of a multicellular network. (A) A multilayer network consists of different network layers, each one represented by an adjacency
matrix. (B) A rank-2 tensor, generally known as the supra-adjacency matrix, can be used to describe and analyze both intra- and inter-layer connectivity.
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exposed to stimulatory glucose concentrations (56, 130, 241,
242). The slow oscillatory component with a period of several
minutes is believed to reflect metabolic activity and drives the
oscillatory ATP production (243, 244). Superimposed on the
slow and sometimes occurring without them are so-called fast
[Ca2+]IC oscillations with a glucose-dependent frequency of
around 5 min-1 and duration of around 2-15 s (55, 131, 159,
160), which reflect the bursting pattern of electrical activity. Both
slow and fast oscillations are synchronized between different beta
cells of the same islet and contribute to proper secretion patterns
(133, 137, 140, 141, 245). To quantify how the multimodal
oscillatory pattern manifests itself on the multicellular level, a
multiplex network representation can be used (56). More
specifically, using a band-pass filter, the slow and fast
oscillatory component can be extracted separately from the
[Ca2+]IC recordings, and these signals can be used to construct
individual network layers, as demonstrated in Figure 10A.
Previous analyses have shown that the slow oscillations are
more global, resulting in several long-range connections and
networks extracted from them have a more cohesive structure
compared to the networks based on fast oscillations. Moreover,
there was only a weak relation between the fast and slow network
layer character ist ics , which suggests that different
synchronization mechanisms shape the collective cellular
activity in islets (56). Of note, a conceptually similar approach
is commonly applied in neuroscience to construct frequency
band-specific multi-layered functional brain networks (236,
237). Within this new framework, each region of the brain is
mapped into a network node and replicated across all layers
encoding frequency bands. Such representation of functional
connectivity is better able to distinguish between brain
functional connectivity patterns in health and disease (246).

The second conceivable frontier of network analyses is the
investigation of network dynamics. The so-called temporal
networks offer mathematically principled models of evolving
networks. as well as a battery of statistical variables to
characterize their evolution (19, 218). Layers are to that
purpose typically generated on the basis of a series of (possibly
overlapping) time windows and the nodes are linked only across
sequential replicas to indicate identity. Mapping the temporal
changes in connectivity patterns is meaningful in biomedical
sciences as well (231, 247, 248) and could be very beneficial for
the description of information flow and dynamic interaction
patterns within the islets. More specifically, the activity patterns
in these mini-organs are remarkably complex already under
constant stimulation (147), and even more in a dynamic in
vivo environment (67, 249, 250). In this vein, the multilayer
model for time-varying networks could be used to explore
fluctuations in functional connectivity during prolonged or
variable stimulation of cells, as well as to assess the functional
adaptation and plasticity after repeated stimulations (48, 63).
Moreover, from the viewpoint of the recent developments in the
field, MLN could represent a viable approach to track the
network evolution after targeting specific cells via optogenetic
and photopharmacological strategies (59, 64). In addition, with
this approach one could track the changes in islets during diet-
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induced pathogenesis by monitoring the activity in islets
transplanted into the anterior chamber of the eye (67, 249). In
Figure 10B, a hypothetical scenario is presented, illustrating how
the average temporal activity and the corresponding functional
connectivity maps evolve when islets are subjected to stimulation
by candidate drugs.

Third, [Ca2+]IC waves are the main synchronizing mechanism
between beta cells and their course depends heavily on cellular
heterogeneity and intercellular interaction patterns. Because of
the rich information encoded in individual waves, they represent
the perfect candidates for being studied viaMLN analysis. By this
means, each individual wave can be regarded as an individual
layer in which the connections are weighted and directed. We
wish to point out that this is in stark contrast with the traditional
way of constructing networks based on longer time series that
include many waves and are based on similarity measures. The
directionality of connections indicates the path of the
intercellular signal, and the weights reflect the temporal delay
between cell pairs that are subsequently activated along the
course (69). We schematically present this approach in
Figure 10C. On the left panel the activation sequence of 9 cells
in 5 waves is shown in the form of a raster plot, and on the right
panel the corresponding directed and weighted networks of
waves are shown in their temporal order. Notably, we
leveraged this approach in a recent study where we quantified
the differences in collective beta cell activity between prolonged
glucose stimulation only and stimulation by glucose and the
NMDA receptor inhibitor MK-801 (69), which was previously
shown to increase beta cell activity and synchronicity (186, 187).
In our study, we focused on the velocity of intercellular [Ca2+]IC
waves and their temporal stability. Since each layer encodes the
exact path of the wave (direction of connections) and the time
delays between cells (weights of connections), one can compute
the exact wave propagation velocity based on the geodesic path
length between wave initiator cells and the last cells that activated
as the sum of the weights of this path. Our analysis revealed that
the propagation velocity did not change either under prolonged
stimulation with glucose or under the action of NMDA receptor
inhibitor. However, when quantifying the inter-layer similarity,
we found that the wave initiator regions and the stability of wave
paths increased dramatically when the NMDA receptors were
inhibited. In this manner, we were able to identify the key factor
underlying the more synchronous behavior. As such, the
proposed methodology can help quantitatively evaluate the
impact of pharmacological interventions on multicellular
dynamics beyond classical physiological or network parameters
and is applicable to other secretagogues and multicellular
systems as well.

Fourth, the pancreatic islets are multicellular micro-organs
that comprise predominantly alpha, beta, delta cells and
communication among them is essential for proper function
(73, 214, 251, 252). While direct electrical coupling through gap-
junctions is the key determinant ensuring synchronous beta cell
activity (76, 77) and was also found to be present between beta
and delta cells (253, 254), islet cells also communicate by
paracrine, autocrine, and other juxtacrine signaling pathways
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(73, 215, 252). It is well known that this variety of intercellular
signal mechanisms is essential for a synergistic cooperation
between islet cells and this represents one of the most vibrant
issues in islet cell biology. With the recent advances in
multicellular imaging of islet networks, our ability to dissect
individual components of cell-cell communication has much
improved (73). In this regard, the MLN formalism could be
advantageous by providing the means to decipher the
complexity of islet communication. In Figure 10D we
illustrate a MLN representation of the endocrine cell crosstalk
within the islets with some of their paracrine interactions.
Within the framework of the MLN paradigm, networks of
different types of cells could be constructed based on their
[Ca2+]IC signals and compared with networks based on the
physical positions of cells and their paracrine or other
interactions. Additionally, the relative contributions of
different local signals could be dissected using the MLN
approach through application of different agonists and
antagonists as described in the second paragraph above.
Interestingly, in a similar context, the MLN approaches have
already been used to study the neural network of C. elegans by
using multiple layers to represent different types of connections
between neurons, which has led to novel findings about the
functional organization of this famous neuronal network (255,
256). Very recently, muscle cells and further modes of
interactions between cells have been incorporated as
additional layers to this scheme, providing thereby an even
deeper knowledge of the C. elegans connectome (257). Along
similar lines, Virkar et al. proposed a multilayer network to
study diffusive transport of metabolic resources among the glial
network and to the synapses in the neuronal network
layer (258).

Finally, as illustrated at length above, intracellular [Ca2+]IC
responses of islet beta cells represent an accessible and well-
characterized approach to assess islet activity, with tremendous
insight to be gained about islet behavior. However, stimulus-
secretion coupling involves several steps from receptor binding
or metabolism of a secretagogue to membrane depolarization
and secretion of insulin granules (133, 259–261). These
intracellular signaling steps interact with each other and are
finely tuned by additional physiological, pathological, and
pharmacological triggering and amplifying factors (133, 141,
262, 263). The [Ca2+]IC signal itself is determined by a number
of upstream processes that include glucose entry, cellular and
mitochondrial metabolism, and electrical responses leading to
action potential-dependent Ca2+ entry and an interplay with
intracellular buffering and storage mechanisms (216, 261, 264).
It is important to note that Ca2+ is not just an indicator of
cellular activity but is indeed a key mediator for downstream
processes required for insulin secretion itself (265), where a
glucose-stimulated uptake of Ca2+ (266) triggers the fusion of
insulin granules with the cell plasma membrane to elicit insulin
release by exocytosis (267–269). Thus, while Ca2+ is generally a
good indicator of islet cell activity, it is not reporting all relevant
cell physiological processes, and indeed may not always be
directly concordant with insulin secretory function. As one
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example, glucose stimulation can stimulate insulin secretion
even when [Ca2+]IC is clamped (270). Moreover, in (pre)
diabetes increased efficacy of Ca2+ on the secretory apparatus
can directly enhance insulin secretion (174, 271). Thus, to what
extent multi-modal profiling of islet network activity should be
undertaken to better understand islet behavior and dysfunction
in disease? The most obvious methodological approaches to
provide additional layers of data would involve simultaneous
imaging of physiological processes either up- or down-stream
of [Ca2+]IC dynamics. Although the candidates described below
are certainly not an exhaustive list, several measures may be
considered when adding additional layers of information to
these networks. More specifically, individual steps of the
stimulus-secretion coupling cascade could form individual
layers of MLNs and the interactions between the steps would
constitute inter-layer connectivity. To date, several candidates
for individual layers meet the criterion of being experimentally
measurable and having an adequate spatial and temporal
resolution, as well as ranging from the most proximal to the
most distal steps. We wish to point out that genetically encoded
sensors (including for Ca2+) may allow greater specificity in
measurements when targeted to the cell cytosol, mitochondria,
or other relevant intracellular organelles or sub-cellular
locations, and greater cell specificity when expressed under
the control of relevant promotors (for example the insulin
promoter) in engineered model animals, such as mice or
zebrafish, or when delivered to human islet cells, typically by
adenoviral vectors (181).

If we follow the stimulus-secretion coupling cascade,
although cellular glucose uptake can be measured using a
fluorescent probe (272), and this can be combined with [Ca2+]
IC responses in islet cells (273), additional information on the
metabolic activity of islet cells can also be gained using
approaches that more directly assess relevant metabolic
signals. In this regard, sensors reporting glycolysis (the most
proximal signaling step) have provided insight into the
regulation of oscillatory metabolic activity and can be
characterized by oscillations in phosphofructokinase-1 (PFK1)
activity and its product fructose-1,6-bisphosphate (FBP) (274),
and pyruvate kinase activity (244, 275). Moreover, several
approaches to monitor mitochondrial or cellular metabolic
function have been adopted for use in pancreatic islets over
the last decades. NAD(P)H autofluorescence is a long-used
indicator of islet cell metabolic function (276–278), the signal
which is generally dominated by mitochondrial activity (279).
Chemical probes reporting mitochondrial membrane potential
have been used to monitor mitochondrial activity within islets
coincident with [Ca2+]IC responses (244, 280, 281).
Additionally, mitochondrial oscillations can be optically
monitored by measuring the signals from mitochondrial
flavins (244). Furthermore, sensors for NADPH (282) or
H2O2 (283) have provided insight into redox-dependent
control of islet function. Genetically encoded probes for ATP
have revealed signaling microdomains (284) and the
relationship between mitochondrial Ca2+ and cytosolic ATP/
ADP ratios (285). Combined imaging of these and other
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relevant metabolic signals and mitochondrial function
(including lactate, glutamate, and mitochondrial pH) have
recently provided important insight into the metabolic control
of insulin secretion and prompted a reconsideration of the
consensus model for stimulus-secretion coupling (286). New
Frontiers in Endocrinology | www.frontiersin.org 19
and improved genetically-encoded probes for key signaling
molecules, for example recent new probes for citrate (287) and
lactate (288), may also provide for improved imaging to allow
collection of additional layers of data relating metabolic and
[Ca2+]IC networks in islets.
A

B

C

D E

FIGURE 10 | The MLN formalism can be used to study various aspects of collective dynamics and cellular activity patterns within the pancreatic islets. (A) A hypothetical
raw [Ca2+]IC signal and the extracted slow and fast components (left panel). The two different oscillatory components are then used to construct a two-layered multiplex
functional beta cell network (right panel). (B) Typical [Ca2+]IC activity in a pancreatic islet subjected to a hypothetical protocol (upper panel) and the corresponding temporal
functional network layers extracted from specific time intervals (lower panel). (C) A schematic presentation of how network layers are designed from individual intercellular
[Ca2+]IC waves. The left panel features a raster plot indicating the onsets of oscillations of cells within specific waves and the right panel visualizes the corresponding network
layers. The direction and weights of connections within each layer denote the course and the temporal lag between subsequent oscillation onsets, respectively. (D)
Heterologous and homologous interactions within the islets visualized as a multilayer network. (E) Hypothetical simultaneously measured dynamics of [Ca2+]IC, intracellular
ATP, and insulin release along with the corresponding functional network layers. Intralayer connections represent functional connections between time series of the same
variables, whereas the interlayer connections stand for associations between different measured variables.
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Although the abovementioned approaches can all be
combined with Ca2+ signaling networks, it is worth noting
that other relevant signals can be assessed. Imaging of islet cell
membrane potential has been accomplished using small
molecule voltage-sensitive probes (289), and may perhaps be
more robustly measured using newer genetically encoded
voltage indicators (290). Moreover, optogenetic control of
islet function is also feasible in transgenic models (291).
Further, as already mentioned, signaling by G-protein
coupled receptors via second messengers, such as cAMP, is
important in both physiology and diabetes treatment (292),
and such second messengers are even important for the
maintenance of beta-cell activity at a baseline level (293).
Genetically encoded probes for cAMP demonstrate glucose-
dependent cAMP responses (182) and intra-islet signaling
(294). Finally, approaches to monitor the downstream process
of insulin secretion from islet cells of intact islets typically
involve the visualization of extracellular probes at a cellular
resolution. This can include the visualization of zinc ions (Zn2
+) released into the extracellular space concomitantly with
insulin (295). Indeed, many Zn2+-binding dyes suitable for
this purpose are available (296). Markers of the extracellular
volume, such as sulphorhodamine B, have also been used to
monitor insulin secretion from individual cells within islets
(297), including evaluation of the spatiotemporal control of
individual insulin exocytosis event (298). Thus, in the context
of intact islet cellular network activity as measured by [Ca2+]IC
responses, abundant opportunity exists to add additional layers
assessing upstream (metabolism, cAMP), coincident (voltage
responses), and downstream (exocytosis) physiological
processes. Figure 10E shows an example of an MLN that
comprises oscillations in [Ca2+]IC (upper panel), out-of-phase
oscillations in [ATP]IC (middle panel), and in-phase
oscillations in secreted insulin (lower panel). Along the same
line, the MLN approach has already been used to elucidate the
relationship between functional connectivity patterns based on
membrane potential and [Ca2+]IC signals (299). In perspective,
such approach may be for instance instrumental in dissecting
the properties of first responders, wave initiators, hubs, and
other cells in terms of their biochemical properties, their
sensitivity to glucose, and their secretory potential. In other
words, MLNs may help address the question whether a cell that
seems to be important in one layer also has any special roles in
other layers.

Network-based analyses of islets of Langerhans are typically
studied in islets isolated from the pancreas and therefore lacking
in the extracellular matrix, vascularization, and innervation that
play important roles in signal transduction (300). However,
other models may allow the observation and construction of
islet cell networks during development, after transplantation into
a live animal, and in the context of disease. The tissue slice
approach can be regarded as a first in the series of possible
upgrades to conditions that are closer to the in vivo situation
(301–303). Further, the zebrafish Danio rerio is transparent
during development and thus has islet tissue that can be
Frontiers in Endocrinology | www.frontiersin.org 20
readily visualized (304). By introducing stable fluorescent
probes, zebrafish can therefore be a model for studying
glucose-stimulated [Ca2+]IC dynamics in islet cells within the
local microenvironment. A similarly transparent site is the
anterior chamber of the eye of rodents, where islets can be
transplanted, become highly vascularized, and [Ca2+]IC
dynamics can be visualized (249). This site can be used to
study not only human or mouse islet networks in an
environment closer to the native pancreas, but also the
characteristics of networks and cell-cell signaling in developing
stem cell-derived islet-like clusters (305). Moreover, this
approach can be employed in the context of a model for type 1
diabetes, wherein beta cells are attacked by the immune system
(306), and in the context of type 2 diabetes using high fat diet or
other rodent models (271), or donor islets from people who lived
with the disease (249). Combining and comparing network
properties from isolated islets and islets analyzed in situ will
continue to offer insights into islet communication, both in non-
diabetic and diabetic states.
CONCLUSION

Since the end of the 20th century, complex networks have become
a common and irreplaceable language in interdisciplinary studies
and over the last two decades, the field of network science has
experienced an explosive growth (98, 307). The research interests
have evolved in several directions, from social and economic
systems (3, 308, 309), to a wide range of engineered and
technological systems (86, 87, 310), and to the more recently
developing field of multilayered networks (19, 219). Guided by
the advances in high-throughput data-collection and imaging
techniques, network analyses are also becoming an indispensable
tool in biomedical sciences across multiple disciplines and levels
of organization (15, 36, 82, 85), including in studies of
intercellular interactions in tissues (18, 59). Understanding
how heterogeneous populations of interconnected cells in a
dynamic and noisy environment operate to ensure proper
function is very appealing and challenging to investigate. In
the present contribution, we focused on how the network
approaches have been and can be used to study the pancreatic
islets of Langerhans. Work in this field has stimulated research
collaborations across different disciplines, from experimental to
advanced modelling and computational approaches (58–60, 124,
141, 242, 263). For such collaborations to be even more fruitful in
the future, experimentalists need to have a good basic
understanding of network science and network scientists need
to have a detailed understanding of islet biology. In our view, this
is today even more important than it was at the birth of islet
networks a decade ago, since the number of experimental and
analytical options is increasing at an unprecedented pace. Our
wish for the present review is to serve as an information hub for
islet biologists and network scientists, helping them navigate
through the complex network of existing knowledge and future
options and finding the way to each other.
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55. Stožer A, Klemen MS, Gosak M, Bombek LK, Pohorec V, Rupnik MS, et al.
Glucose-Dependent Activation, Activity, and Deactivation of Beta Cell
Networks in Acute Mouse Pancreas Tissue Slices. Am J Physiol -
Endocrinol Metab (2021) 321:E305–23. doi: 10.1152/AJPENDO.00043.2021
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145. Stožer A, Markovič R, Dolensěk J, Perc M, Marhl M, Rupnik MS, et al.
Heterogeneity and Delayed Activation as Hallmarks of Self-Organization
and Criticality in Excitable Tissue. Front Physiol (2019) 10:869. doi: 10.3389/
fphys.2019.00869

146. Jaffredo M, Bertin E, Pirog A, Puginier E, Gaitan J, Oucherif S, et al. Dynamic
Uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets.
Diabetes (2021) 70:878–88. doi: 10.2337/db20-0214
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Glucose-Stimulated Calcium Dynamics in Beta Cells From Male C57BL/6J,
C57BL/6N, and NMRI Mice: A Comparison of Activation, Activity, and
Deactivation Properties in Tissue Slices. Front Endocrinol (2022) 13:867663.
doi: 10.3389/FENDO.2022.867663

161. Meissner HP, Schmelz H. Membrane Potential of Beta-Cells in Pancreatic
Islets. Pflügers Arch Eur J Physiol (1974) 351:195–206. doi: 10.1007/
BF00586918

162. Henquin JC. Adenosine Triphosphate-Sensitive K+ Channels may Not be the
Sole Regulators of Glucose-Induced Electrical Activity in Pancreatic B-Cells.
Endocrinology (1992) 131:127–31. doi: 10.1210/EN.131.1.127

163. Antunes CM, Salgado AP, Rosário LM, Santos RM. Differential Patterns of
Glucose-Induced Electrical Activity and Intracellular Calcium Responses in
Single Mouse and Rat Pancreatic Islets. Diabetes (2000) 49:2028–38.
doi: 10.2337/DIABETES.49.12.2028
June 2022 | Volume 13 | Article 922640

https://doi.org/10.3390/s151127393
https://doi.org/10.1007/978-90-481-3271-3_12
https://doi.org/10.1152/ajpcell.00400.2005
https://doi.org/10.1016/S0021-9258(19)36744-4
https://doi.org/10.2337/DIABETES.54.12.3517
https://doi.org/10.2337/DIABETES.54.12.3517
https://doi.org/10.1152/ajpendo.00177.2010
https://doi.org/10.1007/BF00550880
https://doi.org/10.1529/biophysj.106.087296
https://doi.org/10.1529/biophysj.106.087296
https://doi.org/10.1016/J.SEMCDB.2020.01.008
https://doi.org/10.1016/J.SEMCDB.2020.01.008
https://doi.org/10.1080/19382014.2017.1342022
https://doi.org/10.1016/j.bbamem.2017.03.005
https://doi.org/10.1016/j.bbamem.2017.03.005
https://doi.org/10.1529/BIOPHYSJ.104.049262
https://doi.org/10.1016/J.JTBI.2018.08.029
https://doi.org/10.1016/J.JTBI.2018.08.029
https://doi.org/10.1529/biophysj.104.055681
https://doi.org/10.1529/BIOPHYSJ.105.078360
https://doi.org/10.1088/1478-3975/12/6/066002
https://doi.org/10.1016/j.mam.2015.01.003
https://doi.org/10.2337/dbi17-0004
https://doi.org/10.1063/1.4949020
https://doi.org/10.1371/JOURNAL.PONE.0248974
https://doi.org/10.1016/S0021-9258(17)37032-1
https://doi.org/10.1016/S0021-9258(17)37032-1
https://doi.org/10.3389/fphys.2019.00869
https://doi.org/10.3389/fphys.2019.00869
https://doi.org/10.2337/db20-0214
https://doi.org/10.3389/FPHYS.2017.01106
https://doi.org/10.1080/19382014.2018.1493316
https://doi.org/10.2337/dbi19-0012
https://doi.org/10.2337/db20-0501
https://doi.org/10.2337/dbi20-0027
https://doi.org/10.2337/db06-0232
https://doi.org/10.1088/978-0-7503-3059-6ch5
https://doi.org/10.2337/DBI21-0008
https://doi.org/10.1016/j.jmb.2019.10.032
https://doi.org/10.1371/journal.pone.0054638
https://doi.org/10.1007/BF00400827
https://doi.org/10.2337/DIABETES.50.3.540
https://doi.org/10.1016/J.CECA.2019.102081
https://doi.org/10.1016/J.CECA.2019.102081
https://doi.org/10.3389/FENDO.2022.867663
https://doi.org/10.1007/BF00586918
https://doi.org/10.1007/BF00586918
https://doi.org/10.1210/EN.131.1.127
https://doi.org/10.2337/DIABETES.49.12.2028
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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