
RESEARCH ARTICLE

Confronting an individual-based simulation

model with empirical community patterns of

grasslands

Franziska TaubertID
1*, Jessica Hetzer1, Julia Sabine Schmid1, Andreas Huth1,2,3

1 Department of Ecological Modelling, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Saxony,

Germany, 2 Institute of Environmental Systems Research, University of Osnabrück, Osnabrück, Lower

Saxony, Germany, 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig,

Saxony, Germany

* franziska.taubert@ufz.de

Abstract

Grasslands contribute to global biogeochemical cycles and can host a high number of plant

species. Both–species dynamics and biogeochemical fluxes–are influenced by abiotic and

biotic environmental factors, management and natural disturbances. In order to understand

and project grassland dynamics under global change, vegetation models which explicitly

capture all relevant processes and drivers are required. However, the parameterization of

such models is often challenging. Here, we report on testing an individual- and process-

based model for simulating the dynamics and structure of a grassland experiment in temper-

ate Europe. We parameterized the model for three species and confront simulated grass-

land dynamics with empirical observations of their monocultures and one two-species

mixture. The model reproduces general trends of vegetation patterns (vegetation cover and

height, aboveground biomass and leaf area index) for the monocultures and two-species

community. For example, the model simulates well an average annual grassland cover of

70% in the species mixture (observed cover of 77%), but also shows mismatches with spe-

cific observation values (e.g. for aboveground biomass). By a sensitivity analysis of the

applied inverse model parameterization method, we demonstrate that multiple vegetation

attributes are important for a successful parameterization while leaf area index revealed to

be of highest relevance. Results of our study pinpoint to the need of improved grassland

measurements (esp. of temporally higher resolution) in close combination with advanced

modelling approaches.

Introduction

Europe is covered with grasslands by nearly 21%, which is comparable with the extent of for-

ests and crop cultivation [1]. Grasslands in the temperate zone–being an early state of succes-

sion towards forest ecosystems–are characterized predominantly by the way how they are

maintained (e.g. by grazing or mowing) as well as by local environmental conditions. Different
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types of grasslands can emerge, ranging between extensive grasslands (e.g. for nature conserva-

tion) and intensively used meadows or pastures (e.g. for agricultural production on fertile

soils) [2, 3].

In large biodiversity experiments and exploratories across various environmental gradients

[4–8], a third dimension of important drivers for grassland dynamics and functioning has

been analyzed–the diversity of plant species. The relations between species diversity and eco-

system functioning can have a large impact on biogeochemistry (e.g. positive effects of high

richness on productivity and soil carbon storage), but also leave uncertainties for explaining

variations in biodiversity effects, at the local as well as across spatial scales [5, 9, 10].

In this respect, process-based vegetation models of grasslands can complement field obser-

vations by providing additional insights into ecosystem processes and mechanisms which can

be difficult to measure in the field or to infer from monitoring campaigns. For such purposes,

existing grassland models differ and range from simple mathematical models (e.g. [11–13]) to

more complex ones like rule-based models (e.g. [14]) or process-based individual-centred or

individual-based models (IBMs, e.g. [15–21]). IBMs, in particular, explicitly represent the rele-

vant processes for the interplay between species diversity, the environment and anthropogenic

influences [22].

Here, we report on such an individual- and process-based model (GRASSMIND) which

simulates the dynamics and structure of temperate grasslands including species diversity, local

abiotic factors and mowing [15]. Plant growth is modeled based on the balance between car-

bon uptake and release, which is influenced by (a) interactions within and between species,

and the plant’s response to (b) climate and soil conditions and (c) events of mowing. Notably,

intra- and interspecific species interactions emerge from the interplay of species traits and

individual plant size.

Model complexity often goes along with challenges. A detailed description of processes

requires a larger number of parameters–from the individual plant level (e.g. species traits) to

the ecosystem level (e.g. litter decomposition rates). Still, individual-based measurements of

plants in species-rich grasslands are scarce which can challenge the parameterization of such a

model type. Here, we show that (a) the individual-based model GRASSMIND reproduces gen-

eral trends of a multiple of empirically observed patterns (time-series of aboveground biomass,

leaf area index, vegetation height and cover) of three selected parameterized grassland species

based on a local grassland experiment in Germany and (b) the model allows to compare simu-

lations of monocultures and a two-species mixture with observed dynamics. We specifically

ask: Can we parameterize an individual-based grassland model for different species? How

much information on grasslands is important to ensure a robust parameterization?

Materials and methods

The grassland model GRASSMIND

The grassland model GRASSMIND is designed to simulate temperate grasslands and com-

bines biogeochemical cycles with biodiversity, as well as plant-soil feedbacks, management

and climatic effects [15]. The model follows the long tradition of forest gap models [23–27].

Individual plants interact and compete for resources on a rectangular patch (1 m x 1 m) with-

out assignment of explicit spatial locations to each plant. Note that the gap approach for

describing plant interactions (based on plant size differences) differs from spatially explicit

approaches (e.g. of field-of-neighborhood type [28–30]) or more simplified approaches (e.g.

mean-field approach [31, 32] or models that describe a species population by a representative

plant [17,19,20,33,34]).
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The model simulates the daily dynamics of each single plant within the community based

on the following processes: (a) recruitment and emergence of plant seedlings, (b) plant senes-

cence and mortality, (c) growth of plants (based on a carbon balance of photosynthesis and

respiration), which can be (d) limited by environmental conditions or reduced due to interac-

tions between plants. Intra- and interspecific competition for resources encompass above-

ground ‘light’ and ‘space’ resources as well as belowground ‘soil water’ and ‘nitrogen’

resources. Limitations of growth can be caused, for example, by low light intensities (e.g. in

winter or due to shading by other plants), unfavorable air temperatures, crowded space (‘thin-

ning’), reduced soil water or soil nitrogen (e.g. in times of drought or due to strong competi-

tion with other plants).

Stochasticity is included in the model only in the mortality of plants. Plants can die due to

an intrinsic mortality rate or in case when space is limited. While the intrinsic mortality acts at

each day, mortality due to crowding is only triggered when growing plants and invading seed-

lings would cover more than the respective simulation area. Stochasticity is affecting which

plant (of which size) is dying in each time step and thus, can have an impact on the simulated

dynamics and structure of the grassland.

Simulated individual plants can differ in size (which is changing during the simulation) and

species identity (which is defined by species traits fixed at the beginning of a plant’s life cycle).

Some species traits affect size growth of single plants directly (e.g. leaf photosynthesis rate)

while other traits rather affect plant interactions and community dynamics (e.g. seedling ger-

mination). By this, the model allows simulating monocultures as well as multi-species mixtures

(large numbers of species can be simulated, but strongly increase runtime efforts). Concepts to

simulate grasses, forbs and legumes typically occurring in temperate grasslands (e.g. in

Europe) are included in the model. Soil water, carbon and nitrogen dynamics are modeled in

this study using the Century soil model [35]. The GRASSMIND model allows to simulate large

areas (e.g. hundreds of m2) and long-term grassland dynamics (e.g. decades). A detailed model

description of GRASSMIND is provided in S1 Appendix.

Study site and empirical data

For the parameterization of the grassland model, we used empirical data on a local biodiversity

grassland experiment carried out in Central Germany (Jena Experiment, Germany, 50˚55´N,

11˚35´E, [7, 36], seeding year 2002). In this study, we firstly tested the GRASSMIND model

and focused on two grass species (Festuca pratensis, Poa pratensis) and one forb (Plantago lan-
ceolata) for which measurements on monoculture plots (20 m x 20 m) of each species and one

two-species-mixture plot (of P. pratensis and P. lanceolata) are available. All plots were mown

twice a year to a height of 10 cm (which is included in the simulation model). In the first year,

plots were mown twice, eight weeks after sowing (in July) and in September [37] (11 July and

20 September). In all consecutive years (2003 to 2008), plots were mown twice a year in June

and September [36] (20 June and 20 September). Plots have not been fertilized.

Plots have been measured biannually in terms of four vegetation attributes: aboveground

biomass (AGB), leaf area index (LAI), vegetation height, and vegetation cover [36]. In the two-

species-mixture plot, AGB and vegetation cover have been measured for each of the two spe-

cies separately. In this study, we used published time-series data of observations from 2003 to

2008 [36].

Here, we aggregated biannual measurements to annual time-series data (mean value per

year to reduce the variability in the observation, Fig 1, see S1 Fig for a comparison of using

annual or bi-annual data in the model parameterization). Based on the calculated annual time-

series from 2003 to 2008, we define the following ten ‘vegetation patterns’: time-series of (i)
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AGB, (ii) LAI, (iii) vegetation height and (iv) cover of each monoculture plot, time-series of

(v) community LAI and (vi) vegetation height of the mixture plot, time-series of species-spe-

cific (vii) AGB and (viii) vegetation cover in the mixture plot, and time-series of relative yields

(i.e. the ratio of an attribute value in the mixture to its value in the monoculture; in terms of

(ix) AGB and (x) vegetation cover) per species. More details on the available empirical data

can be found in S2 Appendix.

Model parameterization

The GRASSMIND model was parameterized for three species (Festuca pratensis, Poa pratensis,
Plantago lanceolata). As a result, we obtained species-specific sets of trait parameters which in

combination with site-specific time-series of climate data, mowing dates and additional plot-

based parameters (e.g. for soil attributes) were used to simulate the observed vegetation pat-

terns in each field plot with the GRASSMIND model. To be able to compare daily simulated

dynamics of individual plants with the observed vegetation attributes at the population and

community level, we aggregated our simulation results. At the same biannual measurement

dates of each field plot, we summed up simulated single plant biomass to calculate community

level AGB (or only plants of a certain species for population level AGB; similarly calculated for

vegetation cover). To obtain LAI, we summed up all single plant’s leaf area and related them to

the simulated plot area. Vegetation height was determined as the height of the largest plant.

The resulting simulation data of population and community level dynamics for each of the

biannual measurement dates were then aggregated to annual time-series data (similar to the

observations).

The model requires a total of 30 parameter values per species, from which nine parameters

were available from literature (S2 Appendix). From the remaining parameters, five were esti-

mated and the other 16 parameters (of plant geometry, physiology, demography and resource

demand) parameterized inversely using optimization techniques [38, Tables 1 and 2]. To

inversely determine parameter values, we used the observed vegetation patterns (see paragraph

before, S2 Appendix). According to a selected algorithm, many parameter sets were con-

structed and tested in order to minimize the distances between observations and simulations

(distances are thereby summarized in a cost function, S2 Fig, [38]).

The cost function for the optimization includes in our study all vegetation patterns of the

annual time-series observations (aboveground biomass, leaf area index, vegetation height, veg-

etation cover of monocultures and species mixtures as well as their relative yields; see para-

graph before for details). For a selected pattern p and species i we calculated the mean absolute

percentage error (MAPE, [47]) of the simulated (yp,i) and observed (xp,i) time-series data. By

Fig 1. Aboveground biomass dynamics for three monocultures. Black dots show observed values and colored lines

represent the simulated dynamics of (A) F. pratensis, (B) P. pratensis and (C) P. lanceolata using the model

GRASSMIND (annual average and vertical grey lines/polygons denote the intra-annual range of two censuses per

year).

https://doi.org/10.1371/journal.pone.0236546.g001
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this, the cost function includes (a) the growth behavior of three species in monocultures, (b)

the growth behavior of a grass and forb species in a mixture and (c) the growth behavior of

each species in a mixture compared to its monoculture for the grass-forb community (i.e. rela-

tive yields). Details, explanations and results of the model parameterization are described in

the S2 Appendix.

In addition, we tested the inverse parameterization method for (i) different vegetation pat-

terns included in the cost function, (ii) different algorithms for minimizing the cost function,

(iii) different mathematical formulations of the cost function, and (iv) different degrees of

detail of the observations included in the cost function. This sensitivity analysis is illustrated

on the example of the monoculture plot of Festuca pratensis (due to extensive runtime efforts).

Again, optimization was done using the previously introduced cost function (except for (iii))

and evaluated using our model evaluation criteria (introduced in the next subsection).

For (i) we tested whether fitting only one single vegetation pattern could be sufficient to

explain population dynamics rather than including multiple patterns. In (ii) we tested different

cost functions on the example of aboveground biomass: mean absolute percentage error

(MAPE), normalized root mean square error (nrmse) and a combined function based on our

evaluation criteria (for details see S2 Appendix). For (iii) we analyzed three different algo-

rithms on the example of aboveground biomass: dynamic dimensional search (DDS), adaptive

simulated annealing (ASA) and differential evolution (DE). Details on the algorithms can be

found in [38]. In (iv) we compared the optimization if we include annual or biannual time-

series in the cost function on the example of leaf area index (as this represents a well calibrated

attribute in contrast to AGB).

Model evaluation

To evaluate the accuracy of our model parameterization, we compared the annual time-series

of observations and simulations for each vegetation pattern (similarly aggregated as for the

model parameterization; average of 100 replicated model simulations to account for stochasti-

city, Table 1). For descriptive purposes only, we also averaged values of each observed and sim-

ulated vegetation pattern (to calculate an average value of annual mean and standard deviation

across years 2003 to 2008; sample size N = 6 years; Table 1).

Table 1. Geometrical parameters for the three species.

Parameter Unit Description F.

pratensis
P.

pratensis
P.

lanceolata
Reference

hmax cm maximum height of a plant 120 60 70 [39–41]

hw - height-width ratio of a plant’s encasing

cylinder

1.5 0.5 0.6 inversely parameterized

fs g cm-3 shoot correction factor 0.00072 0.00057 0.00041 inversely parameterized

fO - overlapping factor 1 1 0.8 predefined (for F. pratensis and P. pratensis) inversely

parameterized (for P. lanceolata)

SLA cm2 g-

1
specific leaf area 117.48 130.05 197.25 inversely parameterized

SRL cm g-1 specific root length 42462.8 17804 89051. 1 inversely parameterized

r1,r2 - parameters of the rooting depth power-

law relationship

3.506

0.301

3.506

0.301

5.777 0.365 [42]

sr - shoot-root ratio of plant biomass organs 2.2 3.5 10.4 [37]

The table provides details about GRASSMIND parameters, with their units of measurements and prescribed or inversely parameterized values. While no overlapping of

grass species was included (predefined factor of 1), we allowed plant overlapping for the forb species and calibrated its parameter inversely.

https://doi.org/10.1371/journal.pone.0236546.t001
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For a selected pattern p and species i we performed a linear regression of the simulated

(yp,i) and observed (xp,i) time-series data: yp,i = Ip,i+sp,i�xp,i (resulting in a slope sp,i, intercept Ip,i
and the coefficient of determination R2, sample size N = (6 years × 3 species) for the monocul-

tures, N = 6 years for the mixture). In addition, we calculated the normalized root mean square

error nrmse (sample size N = (6 years × 3 species) for the monocultures, N = 6 years for the

mixture).

To get an overall impression, we further compared and analyzed the normalized observed

and simulated vegetation patterns of (a) all monoculture plots (Fig 2A) and (b) all attributes in

the mixture plot (Fig 3C). For this overall evaluation, we divided simulated and observed vege-

tation patterns by the maximum value of observed and simulated data of all species, but per

pattern separately. Details, explanations and results of the model evaluation are described in

the S2 Appendix and S3 Fig.

Table 2. Model process parameters for the three species.

Process Parameter Unit Description F.

pratensis
P.

pratensis
P.

lanceolata
Reference

Recruitment and emergence of

new seedlings

Nmeta
seed m-2 d-1 seed rain from surrounding

landscape

4013 1062

(1934)

3038 (1100) inversely parameterized

tmeta julian day julian day at which seed rain

starts

136 136 136 [36]

tem d time between seed rain and

seedling emergence

14 21 7 [37]

germ% - seed germination rate 0.3 0.75 0.9 [43]

hmin m initial height of ingrowing

seedlings

0.03 0.03 0.03 predefined (technical

parameter)

agerep yr age at which recruitment starts 0.2 0.09 0.02 inversely parameterized

Mortality LLS d leaf life span (start of yellowing

leaves)

219 80 77 inversely parameterized

RLS d root life span 166 278 547 inversely parameterized

mseed d-1 mortality rate of established

seedlings

0.038 0.06 0.046 inversely parameterized

mbasic yr-1 mortality rate of mature plants 0.02 0.02 0.02 [44]

life yr life span of plants perennial perennial perennial predefined

Photosynthesis pmax μmolCO2 m-2 s-1 maximum gross leaf

photosynthesis

17 29 37 inversely parameterized

α μmolCO2

μmolphotons
-1

initial slope of light response

curve

0.07 0.09 0.04 inversely parameterized

k - light extinction coefficient 0.8 0.3 0.27 inversely parameterized

m - transmission coefficient 0.1 0.1 0.1 [45]

Competition WUE gODM kgH2O
-1 water use efficiency coefficient 2.7 6.1 7.5 inversely parameterized

CNgreen - CN ratio of green leaves 18 27 23 inversely parameterized

CNsen - CN ratio of senescent leaves and

roots

39 47 49 inversely parameterized

Nfix y/n symbiotic N fixation No no no predefined

Growth allocshoot - allocation rate of NPP to shoot

growth

0.50 0.33 0.35 inversely parameterized

rm d-1 maintenance respiration rate 0.02 0.02 0.02 [46]

rg - growth respiration factor 0.2 0.2 0.2 [46]

The table provides details about GRASSMIND parameters, with their units of measurements and prescribed or inversely parameterized values. For seed rain of P.

pratensis and P. lanceolata values of the monocultures are given first while mixture values are provided in brackets below.

https://doi.org/10.1371/journal.pone.0236546.t002
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Results

Species population dynamics in monocultures

The observed population dynamics in monocultures (two grasses and one forb species) show

considerable differences in their intra- and inter-annual variations (Fig 1, Table 3, S4 Fig).

Aboveground biomass (AGB) ranges on average between 44 to 328 g per m2; especially F. pra-
tensis shows peaks during the first years of transient growth phase with an average biomass of

450 g per m2 in 2004. Species-specific dynamics of leaf area index (LAI) and vegetation height

follow nearly similar annual patterns compared to aboveground biomass (S4 Fig). Both grass

species differ considerably as P. pratensis reaches only about half of the biomass (AGB), LAI

and vegetation height of F. pratensis (S4 Fig, Table 3).

Monoculture simulations match only partly the observed vegetation patterns with an over-

all moderate R2 of 0.57 and nrmse of 67.6% (regression slope s = 0.7; Fig 2, Table 3, S4 Fig, S2

Appendix). Some deviations remain unresolved, mostly with regard to aboveground biomass

and vegetation cover of F. pratensis (S4 Fig, S2 Appendix). The dynamics of LAI and

Fig 2. Comparison of observed and simulated patterns in terms of aboveground biomass, vegetation height, leaf

area index and vegetation cover for three monocultures. Each dot reflects a yearly value. Colors mark results for the

different species. In (A) all compared patterns for the three species are combined. Different patterns are normalized by

the maximum value (of observations and simulations for all species). The black solid line shows the linear regression

line for which the R2 and nrmse is displayed. In (B-E) each pattern is displayed without normalization. Note that axes

for AGB are logarithmic.

https://doi.org/10.1371/journal.pone.0236546.g002

Fig 3. Comparison of observed and simulated patterns for the two-species-mixture. In (A-B) annual dynamics of

AGB and LAI are shown. In (C-E) each dot represents an annual value compared between observation and simulation.

In (A, D-E) species are marked by different colors (yellow and blue). In (C) all results are combined and normalized by

the maximum value (of observations and simulations per selected pattern). In (D) the observed AGB and vegetation

cover is compared with the simulated values only for P. pratensis within the mixture, while in (E) both patterns are

shown only for P. lanceolata’s contribution in the mixture (again normalized by their respective maximum values).

https://doi.org/10.1371/journal.pone.0236546.g003
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vegetation height show comparably low nrmse values for all species (Fig 4B–4E, Table 3). The

observed inter-annual range of LAI, vegetation height and cover can be reproduced by the

simulation model, while for AGB the observed range was on average two times higher than

simulated (Table 3).

Dynamics and interactions in two-species mixtures

Simulated patterns of grassland dynamics for both species in the mixture show large deviations

to those observed in the field with an overall high nrmse of 82% and low R2 of 0.49 (regression

slope s = 0.58; Table 3, Fig 3, S5 and S6 Figs). Among all patterns, vegetation cover was the best

reproduced pattern by the model (nrmse< 100%; Table 3, S2 Appendix) compared to vegeta-

tion height, AGB and LAI (nrmse> 100%; Table 3). The dynamics of species composition is

simulated in sufficient agreement with empirical measurements (for cover and AGB; Fig 3D–

3E, S5 and S6 Figs). Observed inter-annual ranges were well reproduced by the simulations

(Table 3), except for AGB which was about factor two to three lower in the simulations.

When comparing the observed behavior of monocultures (for P. pratensis and P. lanceo-
lata) with their respective outcome in the mixture, we notice that the forb species (P. lanceo-
lata) is more competitive in terms of AGB compared to the grass species (P. pratensis). While

the forb is able to exceed its expectations (i.e. half of its monoculture), the grass species is

observed far below the forb and reaches, for example in year 2003 only around 35% of its

expectations (S7 Fig, S2 Appendix). Most of the simulated values of relative yields in terms of

cover coincide with the observed values, while simulated relative yields in terms of AGB (espe-

cially for P. lanecolata) fail to match the observations (S2 Appendix, S7 Fig).

Insights from model parameterization

Best matches between observations and simulations were obtained when accounting for all

available information on the different vegetation patterns (‘multi-constrained inverse

Table 3. Comparison of observed and simulated vegetation patterns and its evaluation.

Plot Pattern Species Observed Simulated MAPE Regression slope (R2) nrmse (%)

Mono-cultures AGB F. pratensis 219.6 (111.8–327.5) 158.7 (139.8–177.5) 0.38 0.31 (0.44) 80.3%

P. pratensis 88.8 (44.3–133.4) 70.2 (55.9–84.4) 0.48

P. lanceolata 67.4 (49.3–85.5) 55.4 (40.0–70.7) 0.32

LAI F. pratensis 2.0 (1.6–2.4) 1.9 (1.6–2.1) 0.16 0.70 (0.64) 63.5%

P. pratensis 1.0 (0.8–1.2) 0.8 (0.6–1.0) 0.16

P. lanceolata 1.2 (0.9–1.6) 1.1 (0.8–1.4) 033

Height F. pratensis 36.1 (27.1–45.2) 32.2 (27.0–37.4) 0.15 0.61 (0.67) 63.2%

P. pratensis 20.2 (18.8–21.5) 17.8 (14.2–21.5) 0.12

P. lanceolata 18.7 (16.8–20.6) 15.0 (11.0–19.0) 0.22

Cover F. pratensis 61.8 (56.1–67.5) 74.1 (70.7–77.6) 0.53 -0.01 (0.002) 106.9%

P. pratensis 74.5 (72.7–76.3) 69.7 (61.1–78.4) 0.28

P. lanceolata 55.0 (45.1–64.9) 70.1 (64.2–76.0) 0.39

Mixture AGB P. pratensis + P. lanceolata 141.7 (86.7–196.8) 65.7 (50.5–80.9) 0.91 0.15 (0.62) 105.2%

LAI 1.3 (0.9–1.7) 1.0 (0.8–1.3) 0.20 -0.02 (0.0006) 134%

Height 20.3 (16.8–23.8) 18.2 (14.6–21.9) 0.12 0.01 (0.003) 101.9%

Cover 77.2 (68.4–86.0) 69.9 (63.0–76.9) 0.59 0.30 (0.31) 83.5%

Average values (years 2003 to 2008) of yearly mean (in brackets the average of yearly minimum and maximum values is given) in terms of aboveground biomass (AGB),

leaf area index (LAI), vegetation height and cover are compared for three monocultures and a two-species community.

https://doi.org/10.1371/journal.pone.0236546.t003
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parameterization’). In a demonstration example of an F. pratensis monoculture, calibrating

time-series only on single vegetation patterns optimizes the simulation of the respective pat-

tern (nrmse values of 27% - 126%), but clearly fails when comparing the excluded attributes

(Fig 4, nrmse values between 80% and 263%). Moreover, for aboveground biomass even the

calibrated pattern was not reproduced well (Fig 4, nrmse� 126%).

Interestingly, calibrating LAI alone already provides comparably sufficient matches of vege-

tation height and AGB (nrmse� 80% - 110%) but less for cover (nrmse� 127%). This result

can also be assessed when combining multiple patterns for the calibration (e.g. two patterns,

Fig 4. Comparison of different observed vegetation attributes included as single attribute in the inverse model parameterization. The calibrated vegetation pattern

is framed by a blue rectangle while the other vegetation patterns are shown for evaluation purposes (example of F. pratensis monoculture, using MAPE as cost function).

Green lines (and shaded polygons) describe simulations (yearly mean and range) while black dots and grey lines describe the observations (yearly mean and range). All

four vegetation patterns are normalized and summarized in a 1:1 plot (right panel). See methods for details.

https://doi.org/10.1371/journal.pone.0236546.g004
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three patterns or full information). Adding additional information to the calibration improves

clearly those patterns not calibrated before, but often at the expense of those patterns previ-

ously included in the calibration (S8 and S9 Figs). In all possible combinations of observed

vegetation patterns included in the calibration, the inclusion of LAI revealed in most cases best

results (comparably low nrmse in all patterns). Nevertheless, using all available information

still showed the best calibration result. Additional effects can be expected when using alterna-

tive calibration algorithms or cost functions (S10 and S11 Figs).

Discussion

Here we tested in a first step the individual- and process-based grassland model GRASSMIND

for simulating monocultures and a two-species mixture of two grass and one forb species

(based on a mown grassland experiment in Central Germany). Key characteristics of the

model include: (i) the ability to track the plant size structure in grasslands and by this, intra-

and interspecific plant interactions, (ii) the calculation of plant growth based on biogeochemi-

cal cycles (in terms of carbon, nitrogen and water), (iii) the description of plant interactions by

species traits and plant size, and (iv) the detailed modelling of soil and hydrological processes

by coupling soil models. By this, simulated monocultures as well as species assembly in mix-

tures can reproduce general trends of empirical measurements for different vegetation attri-

butes, however still with some considerably quantitative deviations. Parameterization of the

model is partly challenging due to scarce plant measurements at the individual plant level,

which can be overcome by inverse parameterization methods. We demonstrated that multiple

vegetation attributes are important for a comprehensive model parameterization while leaf

area index demonstrated to be of highest relevance for a robust parameterization. Failures in

exactly matching all observation data at the same time pinpoint to the need of detailed grass-

land measurements (e.g. of higher temporal resolution) for advancing modelling approaches.

Extending the model’s applicability to other regions than the here analyzed study site

requires additional tests of the GRASSMIND model on its transferability to various environ-

mental conditions, management regimes (including model extensions to simulate grazing)

and a higher richness of plant species and functional groups (including legumes). Accounting

for additional factors and their integration in grassland models, however, needs careful consid-

eration in terms of potential changes in model behavior [48], especially when moving to other

ecoregions (e.g. Mediterranean grasslands characterized by shifted growing-seasons to

autumn-spring, summer drought and variable precipitation [49]).

While the GRASSMIND model simulates the biogeochemical growth of individual plants

interacting with each other in their neighborhood, other comparable grassland models sim-

plify specific processes in favor of applicability [15]. Individual-centered models (e.g. GEMINI

[19,33,34], or LPJmL [20]) simulate, for example, average plants per species within mixtures,

but is at the expense of a detailed size structure of plants within grasslands. The mechanistic

model IBC-grass [18,21] in turn is able to track the size of individual plants, but describes

plant development by growth functions which exclude biogeochemical cycles. In another

direction, an increasing model complexity can complicate model parameterization for species-

rich mixtures and is thus often applied only for a representative mean species (e.g. Hurley Pas-

ture Model [50]). Nevertheless, individual-based and individual-centered models enable to

analyze morphological and physiological trait plasticity [19,33,34].

Mechanistic models support the understanding of complex processes and interactions in

grasslands, whereas applications at larger scales benefit from simpler mechanistic or even

empirical models [51]. Less complex model types (e.g. the generic CoSMo model [52,53],

being a model component susceptible to be coupled to generic simulation models that deal
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with grasslands as an average plant species) are therefore often based only on specific vegeta-

tion attributes for simulating community changes and species composition (e.g. aboveground

biomass, [53]). However, recently developed methodological frameworks for applying (or

upscaling) process-based models to larger scales without losing multiple small-scale informa-

tion have already been tested for various biomes (e.g. [54–57]) and can be promising to be

transferred to temperate grasslands.

As climate change research becomes more and more relevant, grassland models can play a

major role for understanding the interplay between environmental change, biodiversity and

grassland functioning [58]. Next generation grassland models thereby are posed to specific

challenges, including among others the improved representation of multi-species grasslands

(e.g. for identifying important species traits and processes to enhance grassland resilience) as

well as GHG balances, and promoting regional transferability of models to various environ-

mental conditions [51].

Challenges in confronting the grassland model with empirical data

Parameterizing the grassland model for the three selected grassland species included some

challenges as some field observations were not able to be matched by the model (mostly in

terms of aboveground biomass). Here, we were able to identify that the parameterization of an

individual- and process-based grassland model like GRASSMIND requires the inclusion of

several combined observed vegetation attributes (‘multi-constrained inverse parameteriza-

tion’). To progress future model development and improve parameterization, further analysis

of more computer-intensive techniques (like Approximate Baysian Computation [59,60], and

related cross-validation procedures [61]) can provide additional insights on the uncertainty of

estimated model parameters.

Dependent on the location of observation plots, rates of seed rain as well as the functional

type of undesired species or weeds in the biodiversity experiment can differ. Such differences

can cause variations in species dynamics and interactions on the plot (e.g. by species invaders

or weeds), which could also propagate to the measured vegetation patterns (e.g. aboveground

biomass) causing the observed variations. Although biodiversity experiments have the advan-

tage to stepwise confront models with population and community dynamics of various species

richness, natural monitoring sites (e.g. Nutrient Network sites, [5]), which allow ingrowth and

persistence of all species of the regional species pool, could overcome these uncertainties.

Empirical time-series data of grasslands often lack continuous measurements. Various veg-

etation patterns at a high temporal resolution have so far been rarely measured over longer

time periods (e.g. monthly or weekly measurements over several years). Although the process-

based grassland model simulates on a daily basis, we thus can only compare specific points in

time within a year (here in this study, two days per year). By this, some model parameters (e.g.

plant architecture) which still remain difficult to measure are also challenging during inverse

model parameterization. In addition, plant attributes are constant species trait parameters in

the model, but may vary in reality over the lifetime of an individual plant (e.g. specific leaf area
[62]). Model development in the direction of trait evolution or adaptation to environmental

conditions could potentially integrate such effects.

Multiple patterns of empirical measurements are in general desired to sufficiently parame-

terize individual- and process-based grassland models [63]. The here applied parameterization

methods in fact required multiple patterns which may reflect different structural and physio-

logical attributes of grasslands. Data on LAI and vegetation height, for example, describe the

vertical size structure of grasslands in an aggregated way, thereby pinpointing to potential

plant size hierarchies within the community. In turn, vegetation cover reflects rather a measure
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of lateral spread of species and thus, of horizontal vegetation structure (or implicit spatial

structures). Aboveground biomass is an additional component for integrating physiological

processes correctly which drive grassland productivity and plant density (correlating with leaf

area index).

The inclusion of multiple vegetation patterns describing the vertical and horizontal struc-

tures as well as physiological aspects thus affect the parameterization of different species traits

for the presented grassland model. While attributes of a species’ light response mostly affect

aboveground plant biomass, geometric species traits (e.g. plant shoot architecture) influence

vegetation height and cover much stronger. Nevertheless, all species traits interfere in the

model via intra- and inter-specific interaction dynamics and interplay strongly with plant size

hierarchy. An open question remains if (and which) observed vegetation attributes are suffi-

cient for model parameterization in general (i.e. beyond the selected plots tested in this study).

Here, we highlighted the relevance of LAI, thus calibrating for example only LAI time-series,

could be a promising approach for IBM-parameterizations of grasslands. Leaf area index can

generally be provided in a high spatial and temporal resolution (e.g. daily) by remote sensing

while ground-truth measurements (e.g. on aboveground biomass and vegetation height) could

be used for validation then.

Perspectives of grassland modelling

Grasslands have gained large attention during the last decades by the set-up of biodiversity

experiments and global monitoring campaigns, which relate species diversity to ecosystem

functioning at the local scale as well as across spatial scales. Empirical analyses of such studies

already highlighted for example, that species yield can differ in mixtures compared to mono-

cultures. Empirically observed diversity-productivity relationships have revealed that positive

effects are mainly driven by an increasing plant density of overyielding species (predominantly

forbs and legumes, [64]).

To understand why species in mixtures differ in their competitive dynamics compared to

monocultures, grassland modelling is valuable in complementing field measurements. Insights

have been gained, for example, by structural equation modelling [65] and simple mechanistic

models [11, 66, 67]. In contrast, process-based models allow to look deeper into mechanisms

and enable to switch on or off different processes (e.g. competition for water between plants),

to manipulate specific site conditions (e.g. soil properties), to derive additional attributes and

to upscale local measurements. By this, the effect and strength of ecosystem processes and

external drivers on grassland dynamics, structure and species interactions can be analyzed and

disentangled in a systematic manner. This approach complements field experiments which are

often limited in the number of factors that can be varied within their designs. Efforts for long-

term monitoring and analysis of experiments increase with variations of species’ seed num-

bers, soil properties and management (including the prevention of invaders) combined with a

full design of a field experiment in terms of species diversity and assembly.

Accounting for heterogeneities in the environment for grassland dynamics especially

becomes relevant when analyzing study sites at larger spatial scales or comparing various sites

across spatial scales. Still, the ongoing debate about generalized diversity-productivity relations

at local sites and productivity-richness relations across scales, as well as their linkage opens up

new research questions and hypotheses [5, 9, 10, 68]. Applying a process-based model to larger

spatial scales enables to analyze the interplay of species dynamics and ecosystem function (e.g.

productivity or soil carbon storage) for local and regional scales (e.g. in virtual landscapes of

heterogeneous soil, climate, anthropogenic management and natural disturbances). Besides

spatial heterogeneities, also temporal variability in the environment (e.g. rainfall duration and
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intensity) and in natural or anthropogenic disturbances (e.g. stochastic extreme events or reg-

ular mowing) needs to be considered to understand the stability and recovery of grasslands,

especially in terms of functioning and species coexistence [69–73]. Analyses, for example, on

how long environmental change or disturbances impact grassland ecosystems can only be sup-

ported when field studies run on the long-term. Species traits have strongly been in the focus

of biodiversity-ecosystem-functioning studies with the general hope to infer long-term ecosys-

tem properties only from the prevailing species traits [66]. The set-up of large trait databases

like TRY [74], e-FLORA [75] or other initiatives (e.g. Glopnet [76] or LEDA [77]) supported

such analysis and stimulated modelling efforts using species trait distributions [78,79]. Models

which integrate trait distribution concepts, for example, randomly choose a few independent

traits for new recruits while all others are derived by trade-off relations. Another approach

encompasses to completely dice out all species traits without predefining trade-offs or trait

ranges [80–82]. Process-based models can be used as a filter to derive species trait distributions

and trade-offs restricted to match specific criteria of ecosystems (e.g. ecosystem structure,

long-term species coexistence and stability). Such pattern-oriented filtering further can help to

infer underlying mechanisms not only from prevailing species traits, but also from attributes

recorded in monitoring campaigns at various spatial and temporal scales [83, 84]. Species traits

collected in large databases can substantiate model parameterization of species-rich communi-

ties and can help to identify correlations between species traits. However, sample size and loca-

tion of collected traits are still not well-balanced across regions [85].

Satellite-based remote sensing provides novel approaches to long-term monitor grasslands

in high-resolution, but also still lack detailed knowledge beyond NDVI measurements (e.g.

MODIS products, [86]), the extent of grassland cover (e.g. [87–91]) and diversity indices (e.g.

[92]). In contrast, for forest ecosystems remote sensing already provides detailed knowledge

on forest states, for example in terms of forest structure and also partly species trait composi-

tion [93–95]. Studies that simulate remote sensing measurements within process-based forest

models (successfully applied for managed temperate and species-rich tropical forests) addi-

tionally aided the reliable interpretation of remotely sensed signals and derived indices [96,97].

Such combination of process-based grassland modelling with remote sensing measurements

could also open up new perspectives for interpreting remote sensing observations and extract-

ing knowledge on the state and dynamics of grasslands.

Supporting information

S1 Appendix. GRASSMIND 2.0 –grassland model.

(PDF)

S2 Appendix. Additional information on empirical data and input parameter of the grass-

land model GRASSMIND.

(PDF)

S1 Fig. Comparison of different degrees of detail of observation data on LAI used for the

inverse model parameterization. The example of F. pratensis monoculture is shown here.

The calibrated vegetation pattern (yearly mean values versus bi-annual measurements) is

framed by a blue rectangle (for bi-annual shown as inlet) while the other vegetation patterns

are shown for evaluation purposes. All four vegetation patterns are normalized and summa-

rized in a 1:1 plot (right panel).

(TIF)

S2 Fig. Illustration of the inverse model parameterization. In (A) each optimization and the

corresponding cost function is shown (using MAPE as cost function and the DDS algorithm
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for optimization). In (B) only successfully minimized optimization steps are displayed. See

methods for details.

(TIF)

S3 Fig. Illustration of the evaluation criteria. Examples of comparisons between virtually cre-

ated observed and simulated data points (black dots) to illustrate the different evaluation crite-

ria (the linear regression line is visualized in blue). In (A) virtual simulations match perfectly

virtual observations. In (B) the qualitative trend of observations is reproduced perfectly by

simulations (indicated by slope s = 1 and R2 of 1) while the positive intercept and nrmse shows

a systematic deviation. In (C) simulations and observations deviate from each other (reflected

by the low R2 and high nrmse) but reproduce on average the qualitative and quantitative trends

(due to intercept of I = 0 and slope of s = 1). In (D) and (E) examples which do not fulfill any

criteria optimally are shown. In each panel, the 1:1 grey dotted line illustrates optimal evalua-

tion criteria.

(TIF)

S4 Fig. Dynamics of vegetation height, LAI and vegetation cover for three species mono-

cultures. Black dots show observed values and colored lines represent the simulated dynamics

using GRASSMIND (black dots/colored lines show the annual average and vertical grey lines/

polygons denote the range of two single measurement values per year).

(TIF)

S5 Fig. Comparison of observed and simulated patterns in terms of aboveground biomass

(AGB), vegetation height and cover and leaf area index (LAI) for the species mixture. Each

dot reflects the comparison of an observed with a simulated yearly value of a selected pattern.

Colors identify the two species (orange–P. pratensis, blue–P. lanceolata, purple–total commu-

nity).

(TIF)

S6 Fig. Dynamics of (A) aboveground biomass and (B) vegetation cover for the species mix-

ture. Dots show observed values and colored lines represent the simulated dynamics using

GRASSMIND (both show the annual average and vertical grey lines/polygons denote the

range of two census values per year).

(TIF)

S7 Fig. Relative yield of (A) vegetation cover and (B) aboveground biomass for two species

included in the mixture. Bars show the simulated mixture performance of a species divided by

its monoculture performance. Black dots show the analogous empirical data. A relative yield of

1 (green dotted line) means that the species behaves in the mixture similar compared to its

monoculture (although in competition for space and resources with the other species). The

red dotted line (value of 0.5) represents the expected relative yield of a species in the mixture

(assuming both species equally distribute resources among them).

(TIF)

S8 Fig. Comparison of different observed vegetation attributes included as two-pair com-

bination in the inverse model parameterization. The calibrated vegetation patterns are

framed by a blue rectangle while the other vegetation patterns are shown for evaluation pur-

poses (example of F. pratensis monoculture, using MAPE as cost function). Green lines (and

shaded polygons) describe simulations (yearly mean and range) while black dots and grey

lines describe the observations (yearly mean and range). All four vegetation patterns are nor-

malized and summarized in a 1:1 plot (right panel).

(TIF)
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S9 Fig. Comparison of different observed vegetation attributes included as three-pair and

four-pair combinations in the inverse model parameterization. The calibrated vegetation

patterns are framed by a blue rectangle while the other vegetation patterns are shown for evalu-

ation purposes (example of F. pratensis monoculture, using MAPE as cost function). Green

lines (and shaded polygons) describe simulations (yearly mean and range) while black dots

and grey lines describe the observations (yearly mean and range). All four vegetation patterns

are normalized and summarized in a 1:1 plot (right panel).

(TIF)

S10 Fig. Comparison of different calibration methods for the inverse model parameteriza-

tion (example of F. pratensis monoculture, using MAPE as cost function). The calibrated

vegetation pattern (here on the example of AGB) is framed by a blue rectangle while the other

vegetation patterns are shown for evaluation purposes. Green lines (and shaded polygons)

describe simulations and black dots (with grey lines) the observations (yearly mean and annual

range). All four vegetation patterns are normalized and summarized in a 1:1 plot (right panel).

(TIF)

S11 Fig. Comparison of different cost functions for the inverse model parameterization

(example of F. pratensis monoculture). The calibrated vegetation pattern (here on the exam-

ple of AGB) is framed by a blue rectangle while the other vegetation patterns are shown for

evaluation purposes. Green lines (and shaded polygons) describe simulations and black dots

(with grey lines) the observations (yearly average and annual range). All four vegetation pat-

terns are normalized and summarized in a 1:1 plot (right panel).

(TIF)
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