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Abstract
It has been found that fuzzy sets, rough sets and soft sets are closely related concepts.
Many complicated problems in economics, engineering, social sciences, medical sci-
ence and many other fields involve uncertain data. These problems, which one comes
in real life, cannot be solved using classical mathematical methods. There are sev-
eral well-known theories to describe uncertainty, for instance, fuzzy set theory, rough
set theory, and other mathematical tools. But all of these theories have their inherit
difficulties as pointed out by D. Molodtsov. In 1999, D. Molodtsov introduced the
concept of soft sets, which can be seen as a new mathematical tool for dealing with
uncertainties. The concept of rough sets, proposed by Z. Pawlak as a framework for
the construction of approximations of concepts. It is a formal tool for modeling and
processing insufficient and incomplete information. Zhou and Wu first proposed the
concept of intuitionistic fuzzy rough sets (IFrough sets). The aim of this paper is to
introduce the concept of interval-valued intuitionistic fuzzy soft rough sets (IVIFS
rough sets). We also investigate some properties of IVIFS rough approximation oper-
ators. Some basic operations and properties are studied. Lastly applications have been
shown in decision making problems.
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1 Introduction

In [1], Zhou andWu first proposed the concept of IFS rough sets. It is the combination
of fuzzy soft relation and the intuitionistic fuzzy rough sets. They investigated some
properties of IFS rough approximation operators. Moreover, many new rough set
models have also been established by combining the Pawlak rough set with other
uncertainty theories, Feng et al. [2] provided a framework to combine fuzzy sets,
rough sets, and soft sets all together. It gives rise to several interesting new concepts
such as rough soft sets, soft rough sets, and soft rough fuzzy sets. The combination of
soft set and rough set models was also studied in [3].

In this paper, we propose the notion of interval-valued intuitionistic fuzzy soft
rough sets (IVIFS rough sets). We combine a IVIF soft relation with interval-valued
intuitionistic fuzzy rough sets. Then we define the upper and lower approximations
of any IVIF set on parameter set E. IVIFS rough sets can also be exploited to extend
many practical applications in real life. Therefore, we propose a novel approach to
decision making based on IVIFS rough set theory.

The rest of this paper is organized as follows. In Sect. 2, we review some basic
notions related to soft sets, fuzzy soft sets, intuitionistic fuzzy sets, interval-valued
intuitionistic fuzzy sets. In Sect. 3, we construct the definition of IVIFS rough sets and
investigate some of their interesting properties. We also investigate some properties of
IVIFS rough approximation operators. Section 4 is devoted to studying the application
of IVIFS rough sets. Section 5 explores knowledge discovering in COVID-19 pan-
demic. In particular it discusses about the people who affected severely in COVID-19.
We use IVIF soft rough operators for determining COVID-19 patients. Some conclu-
sions and outlooks for further research are given in Sect. 6.

Data science is an interdisciplinary field focused on extracting knowledge from data
sets, which are typically large (big data), and applying the knowledge and actionable
insights from data to solve problems in a wide range of application domains. The
field encompasses preparing data for analysis, formulating data science problems,
analyzing data, developing data-driven solutions, and presenting findings to inform
high-level decisions in a broad range of application domains.

Data Science and related technologies are critical in the fight against pandemics,
such as the 2003 severe acute respiratory syndrome coronavirus (SARS-CoV),
COVID-19, to enable governments and health managements figure out the best prepa-
ration and response. Big data, data mining, machine learning, and a variety of other
technologies can be used to swiftly and effectively evaluate data in order to track and
regulate COVID-19’s spread over the world [4–7]. Big data is currently a hot topic
among researchers, engineers, health-care executives, and administrators [8]. Several
academics havemade extensive use of datamining techniques to uncover hidden infor-
mation in large datasets [4–7]. The results obtained from the study by Liu et al. [6]
can be linked to India and other countries, which will be valuable in understanding
the virus transmission patterns among the population of different age-groups. Further
we study the references [8–13].
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2 Preliminaries

The following definitions and preliminaries are required in our future work.

Definition 2.1 ([14]) Let X be an ordinary set. A fuzzy subset α in X is the collection
of ordered pairs (x, μα(x)) with x ∈ X and a membership function μα: X → [0,1].
The value μα(x) of x denotes the degree to which an element x may be a member of
α. Thus a fuzzy subset α of X is denoted by α = {(x, μα(x)): x ∈ X} where μα(x)
= 1, indicates strictly the containment of the element x in α (full membership) and
μα(x) = 0 denotes that x does not belong to α(non-membership). Thus an ordinary
set is a special case of fuzzy set with a membership function which is reduced to a
characteristic function. Because of these generalities the fuzzy set theory has a wider
scope of applicability than the ordinary set theory in solving real problems.

A fuzzy set α can also be represented in the following way α = { x/μα(x), ∀ x ∈
X} or α = { (x, μα(x)): x ∈ X}The set of all fuzzy subset on X is denoted by IX. After
the introduction of concept of fuzzy sets by Zadeh, several researches generalized the
notion of the fuzzy set. The idea of “intuitionistic fuzzy set “ was first published by
Atanassov in 1983.

Definition 2.2 ([15]) Let a set E be fixed. An intuitionistic fuzzy set or IFS ‘A’ in E is
an object having the formA= {(x,μA(x), νA(x): x ∈ E)} where the functionμA: E→
I= [0, 1] & νA: E→ I= [0, 1] define the degree of membership and non-membership
respectively of the element x ∈ E to the set A & for every x ∈ E, 0 ≤ μA(x) + νA(x)
≤ 1. The rest part πA(x) = 1 − μA(x) − νA(x) is called the indeterministic part of x
and 0 ≤ πA(x) ≤ 1.

Definition 2.3 ([16] An interval valued fuzzy set) A over a universe set U is defined
as the object of the form A = {(x, μA(x): x ∈ U)}, where μA(x): U → Int ([0, 1]) is a
function, where Int ([0, 1]) denotes the set of all closed sub intervals of [0, 1].

Definition 2.4 ([17] An interval valued intuitionistic fuzzy set) A over a universe set U
is defined as the object of the form A = {< x, μA(x), γA(x) > : x ∈ U)}, where μA(x):
U → Int ([0, 1]) and γA(x): U → Int ([0, 1]) are functions such that the condition: ∀x
∈ U, supμA(x) + supγA(x) ≤ 1 is satisfied.

The class of all interval valued intuitionistic fuzzy soft sets on U is denoted by
IVIFSU. For an arbitrary set A ⊆ [0,1], we use A = inf A and

_
A = sup A.

Definition 2.5 ([18, 19]) Let R be an equivalence relation on the universal set U.
Then the pair (U, R) is called a Pawlak approximation space. An equivalence class
of R containing x will be denoted by [x]R. Now for X ⊆ U, the lower and upper
approximation of X with respect to (U, R) are denoted by respectively R*X & R*X
and are defined by

R∗X = {x ∈ U : [x]R ⊆ X} or ∪ {[x]R : [x]R ⊆ X}, x ∈ U

R ∗ X = {x ∈ U : [x]R ∩ X 
= φ} or ∪ {[x]R : [x]R ∩ X 
= φ}, x ∈ U

Now if R*X = R*X, then X is called definable otherwise X is called a Rough set.
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Definition 2.6 ([20–24]) Let U be an initial universe and E be a set of parameters. Let
P(U) denotes the power set of U and A ⊆ E. Then the pair (F, A) is called a soft set
over U, where F is a mapping given by F: A → P(U).

For any ε ∈ A, F(ε) ⊆ U may be considered as the set of ε-approximate elements
of the soft set (F, A).

Definition 2.7 ([25, 26]) Let U be an initial universe and E be a set of parameters. Let
I U be the set of all fuzzy subsets of U and A ⊆ E. Then the pair (F, A) is called a fuzzy
soft set over U, where F is a mapping given by F: A → I U.

For any ε ∈ A, F(ε) is a fuzzy subset of U. Let us denote the membership degree
that object x holds parameter ε by μF(ε)(x), where x ∈ U and ε ∈ A. Then F(ε)can be
written as a fuzzy set such that F(ε) = {(x, μF(ε)(x)): x ∈ U}.

Definition 2.8 ([27]) Let U be an initial universe and E be a set of parameters. Let I
U be the set of all fuzzy subsets of U and A ⊆ E. Now, F: A → IU, and α be a fuzzy
subset of A i.e. α: A → I = [0,1]. Let Fα be a mapping Fα: A → IU × I defined as
follows: Fα(ε) = (F(ε), α(ε)) then Fα is called generalised fuzzy soft set over the soft
universe (U, A).

For any ε ∈ A, F(ε) is a fuzzy subset of U. Let us denote the membership degree
that object x holds parameter ε by μF(ε)(x), where x ∈ U and ε ∈ A. Then F(ε)can be
written as a fuzzy set such that F(ε) = {(x, μF(ε)(x)): x ∈ U}.

Definition 2.9 ([28]) Let U be an initial universe and E be a set of parameters. Let I
FU be the set of all intuitionistic fuzzy subsets of U and A ⊆ E. Then the pair (F, A) is
called an intuitionistic fuzzy soft set over U, where F is a mapping given by F: A → I
FU.

For any ε ∈ A, F(ε) is an intuitionistic fuzzy subset of U. Let us denote μF(ε)(x)
and γF(ε)(x) by the membership degree & non-membership degree respectively that
object x holds parameter ε, where x ∈ U and ε ∈ A. Then F(ε) can be written as an
intuitionistic fuzzy set such that F(ε) = {(x, μF(ε)(x), γF(ε)(x)): x ∈ U}.

Now before we introduce the notion of the interval valued intuitionistic fuzzy soft
sets, let us give the concept of interval valued intuitionistic fuzzy set which was first
introduced by Atanassov and Gargov [17]. Actually an interval valued intuitionistic
fuzzy set is characterized by an interval–valued membership degree and an interval-
valued non-membership degree.

Definition 2.10 ([17] An interval valued intuitionistic fuzzy set (IVIFS for short)) A
on an universe set U is defined as the object of the form A = {< x, μA(x), γA(x) > :
x ∈ U}, where μA: U → Int ([0, 1]) and γA: U → Int ([0, 1]) are functions such that
the condition: ∀x ∈ U, supμA(x) + supγA(x) ≤ 1 is satisfied (where Int[0,1] is the set
of all closed intervals of [0,1]).

We denote the class of all interval valued intuitionistic fuzzy sets on U by IVIFSU.
The union and intersection of the interval valued intuitionistic fuzzy sets are defined

as follows:
Let A, B ∈ IVIFSU. Then

• the union of A and B is denoted by A ∪ B where
A∪B= {(x, [max(infμA(x), infμB(x)), max(supμA(x), supμB(x))], [min(infγA(x),
infγB(x)), min(supγA(x), supγB(x))]): x ∈ U}.
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• the intersection of A and B is denoted by A ∩ B where

A∩B= {(x, [min(infμA(x), infμB(x)),min(supμA(x), supμB(x))], [max(infγA(x),
infγB(x)), max(supγA(x), supγB(x))]): x ∈ U}.

Atanassov and Gargov showed in [17] that A ∪ B and A ∩ B are again IVIFSs.

Definition 2.11 ([2]) Let U be an universe set and E be a set of parameters. Let IVIFSU

be the set of all interval valued intuitionistic fuzzy sets on U and A ⊆ E. Then the
pair (F, A) is called an interval valued intuitionistic fuzzy soft set (IVIFS set) over U,
where F is a mapping given by F: A → IVIFSU.

In other words, an interval valued intuitionistic fuzzy soft set is a parameterized
family of interval valued intuitionistic fuzzy subsets ofU. For any parameter e∈A,F(e)
canbewritten as an interval valued intuitionistic fuzzy set such that F(e)={(x,μF(e)(x),
γF(e)(x)): x ∈ U} where μF(e)(x) is the interval valued fuzzy membership degree that
object x holds parameter e and γF(e)(x) is the interval valued fuzzy membership degree
that object x doesn’t hold parameter e.

Definition 2.12 ([1, 3, 29, 30]) Let U be an initial universe set and let E be a universe
set of parameters. For an arbitrary IF soft relation R over U × E, the pair (U, E, R) is
called a fuzzy soft approximation space. For anyA ∈ IF(E), the upper and lower IF soft
approximations of Awith respect to (U, E, R),denoted by R(A) and R(A) respectively
as follows:

R(A) = {< u, μR(A)(u), γR(A)(u) > |u ∈ U }

R(A) = {< u, μR(A)(u), γR(A)(u) > |u ∈ U }

where μR(A)(u) = ∨x∈E [μR(u, x) ∧ μA(x)]

γR(A)(u) = ∧x∈E [1 − μR(u, x) ∨ γA(x)]

μR(A)(u) = ∧x∈E [1 − μR(u, x) ∨ μA(x)]

γR(A)(u) = ∨x∈E [1 − μR(u, x) ∧ γA(x)]

The pair (R(A), R(A)) is an intuitionistic fuzzy soft rough set of A with respect to
(U, E,. R).

3 Interval-Valued Intuitionistic Fuzzy Soft Rough Sets

In [1], Zhou andWufirst presented the concept of intuitionistic fuzzy rough sets. In this
section, we introduce the definition of interval-valued intuitionistic fuzzy soft rough
sets. It is the combination of IVIF soft relation with the interval-valued intuitionistic
fuzzy rough sets.
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Wealso investigate someproperties of interval-valued intuitionistic fuzzy soft rough
approximation operators.

Definition 3.1 LetU be an initial universe set and letE be a universe set of parameters.
For an arbitrary IVIF soft relation R over U × E, the pair (U, E, R) is called a IVIF
soft approximation space. For anyA ∈ IVIF(E), we define the upper and lower interva-
valued intuitionistic fuzzy soft approximations of Awith respect to (U, E, R), denoted
by R(A) and R(A) respectively as follows:

R(A) = {< u, μR(A)(u), γR(A)(u) > |u ∈ U }

where μR(A)(u) =
[
μl
R(A)

(u), μr
R(A)

(u)
]
, and γR(A)(u) =

[
γ l
R(A)

(u), γ r
R(A)

(u)
]
.

R(A) = {< u, μR(A)(u), γR(A)(u) > |u ∈ U }, where
μR(A)(u) =

[
μl
R(A)(u), μr

R(A)(u)
]
and γR(A)(u) =

[
γ l
R(A)(u), γ r

R(A)(u)
]
.

Therefore, R(A) = {< u, [μl
R(A)

(u), μr
R(A)

(u)], [γ l
R(A)

(u), γ r
R(A)

(u)] > |u ∈ U }

R(A) = {< u, [μl
R(A)(u), μr

R(A)(u)], [γ l
R(A)(u), γ r

R(A)(u)] > |u ∈ U }

where μl
R(A)

(u) = ∨x∈E [μl
R(u, x) ∧ μl

A(x)]

μr
R(A)

(u) = ∨x∈E
[
μr
R(u, x) ∧ μr

A(x)
]

γ l
R(A)

(u) = ∧x∈E
[
γ l
R(u, x) ∨ γ l

A(x)
]

γ r
R(A)

(u) = ∧x∈E
[
γ r
R(u, x) ∨ γ r

A(x)
]

μl
R(A)(u) = ∧x∈E

[
μl
R(u, x) ∨ μl

A(x)
]

μr
R(A)(u) = ∧x∈E

[
μr
R(u, x) ∨ μr

A(x)
]

γ l
R(A)(u) = ∨x∈E

[
γ l
R(u, x) ∧ γ l

A(x)
]

γ r
R(A)(u) = ∨x∈E

[
γ r
R(u, x) ∧ γ r

A(x)
]

The pair (R(A), R(A)) is an interval-valued intuitionistic fuzzy soft rough set (IVIF
soft rough set) of A with respect to (U, E, R).
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Theorem 3.2. R(A) and R(A) ∈ IVIF(u)

Proof

supμR(A)(u) + supγR(A)(u)

= μr
R(A)

(u) + γ r
R(A)

(u)

= ∨x∈E [μr
R(u, x) ∧ μr

A(x)] + ∧x∈E [γ r
R(u, x) ∨ γ r

A(x)]
≤ ∨x∈E [μr

R(u, x) ∧ μr
A(x)] + ∧x∈E [1 − μr

R(u, x) ∨ γ r
A(x)]

since μr
R(u, x) + γ r

R(u, x) ≤ 1

= ∨x∈E [μr
R(u, x) ∧ μr

A(x)] + 1 − ∨x∈E [μr
R(u, x) ∧ γ r

A(x)] = 1

Hence, R(A) ∈IVIF(U). Similarly, we have R(A))∈IVIF(U). We call R, R:
IVIF(E)→IVIF(U).

The upper and lower IVIF soft rough approximation operations respectively.

Example 3.3 Suppose that, U = {u1, u2, u3, u4}, is the set of four houses under
consideration of a decision maker to purchase. Let E be a parameter set where E =
{e1, e2, e3} = {expensive, beautiful, location}. Mr. X wants to buy the house which
qualities with the parameters of E.

Assume that Mr. decides the “attractiveness of the house’ by constructing an IVIF
fuzzy soft set (F, E) which is an IVIF soft relation R from U to E. It is presented by
the table:

R e1 e2 e3

u1 [0.5, 0.7], [0.1, 0.3] [0, 0.1], [0.5, 0.8] [0.3, 0.5], [0.2, 0.4]

u2 [0.1, 0.2], [0.4, 0.6] [0.2, 0.5], [0.3, 0.4] [0.5, 0.8], [0.1, 0.2]

u3 [0.1, 0.3], [0.4, 0.6] [0.2, 0.3], [0.3, 0.6] [0, 0.1], [0.5, 0.8]

u4 [0.2, 0.5], [0.1, 0.4] [0.3, 0.5], [0.2, 0.4] [0.1, 0.2], [0.4, 0.7]

Now suppose that Mr. X gives the optimum normal decision object A which is an
IVIF subset defined as A = {< e1, [0.4, 0.6], [0.1, 0.3] > , < e2, [0.1, 0.4], [0.3, 0.6] >
, < e3, [0, 0.1], [0.5, 0.8] >}.

By virtue of Definition 3.1

μl
R(A)

(u1) = ∨{(0.5 ∧ 0.4), (0 ∧ 0.1), (0.3 ∧ 0)} = ∨{0.4, 0, 0} = 0.4

μr
R(A)

(u1) = ∨{(0.7 ∧ 0.6), (0.1 ∧ 0.4), (0.5 ∧ 0.1)} = ∨{0.6, 0.1, 0.1} = 0.6

γ l
R(A)

(u1) = ∧{(0.1 ∨ 0.1), (0.5 ∨ 0.3), (0.2 ∨ 0.5)} = ∧{0.1, 0.5, 0.5} = 0.1
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γ r
R(A)

(u1) = ∧{(0.3 ∨ 0.3), (0.8 ∨ 0.6), (0.4 ∨ 0.8)} = ∧{0.3, 0.8, 0.8} = 0.3

μl
R(A)(u1) = ∧{(0.1 ∨ 0.4), (0.5 ∨ 0.1), (0.2 ∨ 0)} = ∧{0.4, 0.5, 0.2} = 0.2

μr
R(A)(u1) = ∧{(0.3 ∨ 0.6), (0.8 ∨ 0.4), (0.4 ∨ 0.4)} = ∧{0.6, 0.8, 0.4} = 0.4

γ l
R(A)(u1) = ∨{(0.5 ∧ 0.1), (0 ∧ 0.3), (0.3 ∧ 0.5)} = ∨{0.1, 0, 0.3} = 0.3

γ r
R(A)(u1) = ∨{(0.7 ∧ 0.3), (0.1 ∧ 0.6), (0.5 ∧ 0.8)} = ∨{0.3, 0.1, 0.5} = 0.5

μl
R(A)

(u2) = 0.1 γ l
R(A)

(u2) = 0.3

μr
R(A)

(u2) = 0.4 γ r
R(A)

(u2) = 0.6

μl
R(A)

(u2) = 0.1 γ l
R(A)

(u2) = 0.5

μr
R(A)

(u2) = 0.2 γ r
R(A)

(u2) = 0.8

μl
R(A)

(u3) = 0.1 γ l
R(A)

(u3) = 0.3

μr
R(A)

(u3) = 0.3 γ r
R(A)

(u3) = 0.6

μl
R(A)

(u3) = 0.3 γ l
R(A)

(u3) = 0.2

μr
R(A)

(u3) = 0.6 γ r
R(A)

(u3) = 0.3

μl
R(A)

(u4) = 0.2 γ l
R(A)

(u4) = 0.1

μr
R(A)

(u4) = 0.5 γ r
R(A)

(u4) = 0.4

μl
R(A)

(u4) = 0.2 γ l
R(A)

(u4) = 0.3

μr
R(A)

(u4) = 0.4 γ r
R(A)

(u4) = 0.5

Thus R(A) = {< u1, [0.4, 0.6], [0.1, 0.3] > , < u2, [0.1, 0.4], [0.3, 0.6] > , < u3, [0.1,
0.3], [0.3, 0.6] > , < u4, [0.2, 0.5], [0.1, 0.4] >}.

&R(A) = {< u1, [0.2, 0.4], [0.3, 0.5] > , < u2, [0.1, 0.2], [0.5, 0.8] > , < u3, [0.3,
0.6], [0.2, 0.3] > , < u4, [0.2, 0.4], [0.3, 0.5] >}.

4 Application of IVIF Soft Rough Approximation Operators
in DecisionMaking Problem

In this article we first adopt the ring sum operation and ring product operation in the
following way:

4.1. H = R(A) ⊕ R(A)

= {< u, [(μl
R(A)

(u) + μl
R(A)(u) − (μl

R(A)
(u).μl

R(A)(u)), (μr
R(A)

(u) + μr
R(A)(u)
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− (μr
R(A)

(u).μr
R(A)(u))],

[(γ l
R(A)

(u).γ l
R(A)(u), γ r

R(A)
(u).γ r

R(A)(u)]|u ∈ U }

4.2. G = R(A) ⊗ R(A)

= {< u, [(μl
R(A)

(u).μl
R(A)(u)), (μr

R(A)
(u), μr

R(A)(u))],
[(γ l

R(A)
(u) + γ l

R(A)(u) − γ l
R(A)

(u).γ l
R(A)(u)), (γ r

R(A)
(u), γ r

R(A)(u))]|u ∈ U }

Thus from Example 3.3.

R(A) ⊕ R(A)

= {< u1, [0.52, 0.76], [0.03, 0.15] > , < u2, [0.19, 0.52], [0.15, 0.48] > , < u3, [0.37,
0.72], [0.06, 0.18] > , < u4, [0.36, 0.70], [0.03, 0.2] >}.

Now,

R(A) ⊗ R(A)

= {< u1, [0.08, 0.24], [0.37, 0.65] > , < u2, [0.02, 0.08], [0.65, 0.92] > , < u3, [0.03,
0.18], [0.44, 0.72] > , < u4, [0.04, 0.2], [0.37, 0.7] >}.

We observe that R(A) ⊕ R(A)&R(A) ⊗ R(A) are both IVIF subsets.

4.3. Consider the Example 3.3 we have computed IVIF soft rough approximation
operators R(A) and R(A) of the optimal normal decision object A. In Sect. 4 (article
4.1 and 4.2) we define and calculate H = R(A) ⊕ R(A) and G = R(A) ⊗ R(A). The
ring sum operation and ring product operation as follows:

Here,

R(A) ⊕ R(A) = {< u1, [0.52, 0.76], [0.03, 0.15] >, < u2, [0.19, 0.52], [0.15, 0.48] >,

< u3, [0.37, 0.72], [0.06, 0.18] >, < u4, [0.36, 0.70], [0.03, 0.2] >}

Obviously the optimal decision is u1 (since the max of the membership value is
0.76 (which is the max. of the others) and max of the non-membership value is 0.15(
which is the min. of the others). Thus Mr. X will purchase the house u1.

Now, we consider the ring product operation.
Here,

R(A) ⊗ R(A) = {< u1, [0.08, 0.24], [0.37, 0.65] >, < u2, [0.02, 0.08], [0.65, 0.92] >,

< u3, [0.03, 0.18], [0.44, 0.72] >, < u4, [0.04, 0.2], [0.37, 0.7] >}

It is noted that the optimal decision is still u1(since the max of the membership
value is 0.24(which is the max. of the others) and max of the non-membership value
is 0.65(which is the min. of the others). Hence the Mr. X will purchase the house u1.
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4.4.

(i) R(A) =∼ R(∼ A)

(ii) R(A) =∼ R(∼ A)

where ~ A is the complement of A.

Proof From definition we have, R(A) = {< u, [μl
R(A)

(u), μr
R(A)

(u)], [γ l
R(A)

(u),

γ r
R(A)

(u)] > |u ∈ U }.

= {< u, [(∨x∈E [μl
R(u, x) ∧ μl

A(x)]), (∨x∈E [μr
R(u, x) ∧ μr

A(x)])],
[(∧x∈E [γ l

R(u, x) ∨ γ l
A(x)]), (∧x∈E [γ r

R(u, x) ∨ γ r
A(x)])] > |u ∈ U } (1)

∼ R(∼ A) = {< u, [γ l
R(∼A)(u), γ r

R(∼A)(u)], [μl
R(∼A)(u), μr

R(∼A)(u)], > |u ∈ U }
= {< u, [(∨x∈E [μl

R(u, x) ∧ γ l
∼A(x)]), (∨x∈E [μr

R(u, x) ∧ γ r∼A(x)])],
[(∧x∈E [γ l

R(u, x) ∨ μl
∼A(x)]), (∧x∈E [γ r

R(u, x) ∨ μr∼A(x)])] > |u ∈ U },
= {< u, [(∨x∈E [μl

R(u, x) ∧ μl
A(x)]), (∨x∈E [μr

R(u, x) ∧ μr
A(x)])],

[(∧x∈E [γ l
R(u, x) ∨ γ l

A(x)]), (∧x∈E [γ r
R(u, x) ∨ γ r

A(x)])] > |u ∈ U }
(2)

[γ l
∼A(x) = μl

A(x), γ r∼A(x) = μr
A(x), μl

∼A(x) = γ l
A(x), μr∼A(x) = γ r

A(x)]

From (1) and (2)R(A) =∼ R(∼ A).
Similarly, R(A) =∼ R(∼ A).

Example 4.5 Let the IVIF soft relation R be

R e1 e2 e3

u1 [0.5, 0.7], [0.1, 0.3] [0, 0.1], [0.5, 0.8] [0.3, 0.5], [0.2, 0.4]

u2 [0.1, 0.2], [0.4, 0.6] [0.2, 0.5], [0.3, 0.4] [0.5, 0.8], [0.1, 0.2]

u3 [0.1, 0.3], [0.4, 0.6] [0.2, 0.3], [0.3, 0.6] [0, 0.1], [0.5, 0.8]

u4 [0.2, 0.5], [0.1, 0.4] [0.3, 0.5], [0.2, 0.4] [0.1, 0.2], [0.4, 0.7]

And A = {< e1, [0.4, 0.6], [0.1, 0.3] > , < e2, [0.1, 0.4], [0.3, 0.6] > , < e3, [0, 0.1],
[0.5, 0.8] >} be the optimal normal decision object.

Then ~ A = {< e1, [0.1, 0.3], [0.4, 0.6] > , < e2, [0.3, 0.6], [0.1, 0.4] > , < e3, [0.5,
0.8], [0, 0.1] >}.

We show that ∼ R(∼ A) = R(A).
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In Example 3.3 we have

R(A) = {< u1, [0.2, 0.4], [0.3, 0.5] >, < u2, [0.1, 0.2], [0.5, 0.8] >,

< u3, [0.3, 0.6], [0.2, 0.3] >, < u4, [0.2, 0.4], [0.3, 0.5] >} (1)

Now we calculate ∼ R(∼ A) by the Definition 3.1
Hence R(∼ A)= {< u1, [0.3, 0.5], [0.2, 0.4] > , < u2, [0.5, 0.8], [0.1, 0.2] > , < u3,

[0.2, 0.3], [0.3, 0.6] > , < u4, [0.3, 0.5], [0.2, 0.4] >}

Thus ∼ R(∼ A) = {< u1, [0.2, 0.4], [0.3, 0.5] >, < u2, [0.1, 0.2], [0.5, 0.8] >,

< u3, [0.3, 0.6], [0.2, 0.3] >, < u4, [0.2, 0.4], [0.3, 0.5] >}
(2)

From (1) and (2) ∼ R(∼ A) = R(A).
Similarly ∼ R(∼ A) = R(A).

4.6. Theorem (1) R(A ∩ B) = R(A) ∩ R(B)

(ii) R(A ∪ B) = R(A) ∪ R(B)

(iii) R(A ∩ B)R(A) ∩ R(B)

(iv) R(A ∪ B) ⊇ R(A) ∪ R(B)

Proof

R(A ∩ B) = {< u, μR(A∩B)(u), γR(A∩B)(u) > |u ∈ U }
R(A ∩ B) = {< u, [μl

R(A∩B)(u), μr
R(A∩B)(u)], [γ l

R(A∩B)(u), γ r
R(A∩B)(u)] > |u ∈ U }

= {< u, [(μl
R(A)(u) ∧ μl

R(B)(u)), (μr
R(A)(u) ∧ μr

R(A)(u))],
[(γ l

R(A)(u) ∧ γ l
R(B)(u)), (γ r

R(A)(u) ∧ γ r
R(A)(u))] > |u ∈ U }

= {< u, [{∧x∈E [γ l
R(u, x) ∨ μl

A(x)} ∧ {∧x∈E [γ l
R(u, x) ∨ μl

B(x)}, {∧x∈E [γ r
R(u, x) ∨ μr

A(x)}∧
{∧x∈E [γ r

R(u, x) ∨ μr
B(x)}], [{∨x∈E , μl

R(u, x) ∧ γ l
A(x)} ∧ {∨x∈E [μl

R(u, x) ∧ γ l
B(x)},

{∨x∈E [μr
R(u, x) ∧ γ r

A(x)} ∨ {∨x∈E [μr
R(u, x) ∧ γ r

B(x)}], > |u ∈ U }

= {< u, [{∧x∈E [γ l
R(u, x) ∨ μl

A(x)}, {∧x∈E [γ r
R(u, x) ∨ μr

A(x)}], [{∨x∈E [μl
R(u, x) ∧ γ l

A(x)},
{∨x∈E [μr

R(u, x) ∧ γ r
A(x)}] ∧ [{∧x∈E [γ l

R(u, x) ∨ μl
B(x)}, {∧x∈E [γ r

R(u, x)∨
μr
B(x)}], [{∨x∈E [μl

R(u, x) ∧ γ l
B(x)}, {∨x∈E [μr

R(u, x) ∧ γ r
B(x)}] > |u ∈ U }

= {< u, R(A) ∩ R(B) > |u ∈ U }.

Here,
R(A) = [{∧x∈E [γ l

R(u, x) ∨ μl
A(x)}, {∧x∈E [γ r

R(u, x) ∨ μr
A(x)}],

[{∨x∈E [μl
R(u, x) ∧ γ l

A(x)}, {∨x∈E [μr
R(u, x) ∧ γ r

A(x)}] .

R(B) = [{∧x∈E [γ l
R(u, x) ∨ μl

B(x)}, {∧x∈E [γ r
R(u, x) ∨ μr

B(x)}],
[{∨x∈E [μl

R(u, x) ∧ γ l
B(x)}, {∨x∈E [μr

R(u, x) ∧ γ r
B(x)}]
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R(A ∩ B) = R(A) ∩ R(B)

Similarly we have R(A ∪ B) = R(A) ∪ R(B)

R(A ∩ B)R(A) ∩ R(B)

R(A ∪ B) ⊇ R(A) ∪ R(B)

5 Application of IVIF Soft Rough Operators in Determining COVID-19
Patients

Early detection or prediction is very important to reduce the fatalities of COVID-19
patients. A method using IVIF soft rough operators is used to analyze the identify of
Covid-19 patients.

People of all ages can be affected by the new corona virus. Older people and
peoplewith pre-existingmedical conditions ( such asAsthma, Diabetes, Heart disease,
Cancer) appear to be more vulnerable to becoming severely ill with the virus. Most
common symptoms are (1) fever (2) dry cough (3) tiredness. Less common symptoms
are (a) aches and pains (b) sore throat (c) diarrhea (d) conjunctivitis (e) headache (f)
loss of taste or smell (g) a rash on skin or coloration of fingers or toes. Lastly serious
symptoms are (i) difficulty breathing or shortness of breath (ii) loss of speech or
movement. People seek immediate medical attention if they have serious symptoms.
COVID-19 surge is a spread -sheet based tool that hospital administrators and public
health officials can use to estimate the surge in demand for hospital based services
during the COVID-19 pandemic. A user of COVID-19 surge can produce estimate of
the number of COVID-19 patients that need to be hospitalized the number requiring
ICU care and the number requiring ventilator support. In this paper we discuss about
the people who affected severely in COVID-19. For further study we refer [31, 32].

Suppose that, U = {p, q, r , s} is the set of four patients under consideration of a
decision maker. Let E be a parameter set where E = {e1, e2, e3} = {fever, dry cough,
tiredness}. The doctor wants to locate the COVID- 19 patients with the parameters of
E.

Assume that the doctor decides to locate the COVID-19 patients by constructing an
IVIF fuzzy soft set (F, E) which is an IVIF soft relation R from U to E. It is presented
by the table as in Example 3.3

R e1 e2 e3

p [0.5, 0.7], [0.1, 0.3] [0, 0.1], [0.5, 0.8] [0.3, 0.5], [0.2, 0.4]

q [0.1, 0.2], [0.4, 0.6] [0.2, 0.5], [0.3, 0.4] [0.5, 0.8], [0.1, 0.2]

r [0.1, 0.3], [0.4, 0.6] [0.2, 0.3], [0.3, 0.6] [0, 0.1], [0.5, 0.8]

s [0.2, 0.5], [0.1, 0.4] [0.3, 0.5], [0.2, 0.4] [0.1, 0.2], [0.4, 0.7]
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Now suppose that the doctor gives the optimum normal decision object A which is
an IVIF subset defined as A = {< e1, [0.4, 0.6], [0.1, 0.3] > , < e2, [0.1, 0.4], [0.3, 0.6]
> , < e3, [0, 0.1], [0.5, 0.8] >}.

Then R(A) = {< p, [0.4, 0.6], [0.1, 0.3] > , < q, [0.1, 0.4], [0.3, 0.6] > , < r, [0.1,
0.3], [0.3, 0.6] > , < s, [0.2, 0.5], [0.1, 0.4] >}.

&R(A) = {< p, [0.2, 0.4], [0.3, 0.5] > , < q, [0.1, 0.2], [0.5, 0.8] > , < r, [0.3, 0.6],
[0.2, 0.3] > , < s, [0.2, 0.4], [0.3, 0.5] >}.

From 4.3, R(A) ⊕ R(A) = {< p, [0.52, 0.76], [0.03, 0.15] > , < q, [0.19, 0.52],
[0.15, 0.48] > , < r, [0.37, 0.72], [0.06, 0.18] > , < s, [0.36, 0.70], [0.03, 0.2] >}.

Now, according to the experts if the max. of the membership value is ≥ 0.75 and
max. value of the non membership value is ≤ 0.25 in,R(A) ⊕ R(A) then the patient
is suffering from COVID-19. Thus in this example the patient p is surely effected by
COVID-19. The patients r and s should be under observation. The patient q is free
from COVID-19.

6 Conclusion

In this paper, we have first proposed the concepts of IVIFsoft rough sets. We investi-
gated some properties of IVIF soft rough sets in details. In addition, a new decision
method based on IVIFsoft rough sets is proposed. Moreover, practical applications
based on IVIF soft rough sets is applied to show its validity. We also believe that the
decision making method developed here is expected to attract the researchers working
in these areas. Actually, there are at least two aspects in the study of rough set theory:
constructive and axiomatic approaches, so is the same to IVIF soft rough sets. So
further work should consider the axiomatic approaches to IVIF soft rough sets and
the modification of the proposed decision method. In 4.3, it is to be noted that no
algorithms are needed for taking the decision.
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