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Abstract
Imaging plays a fundamental role in the managing childhood neurologic, neurosurgical and neuro-oncological disease. 
Employing multi-parametric MRI techniques, such as spectroscopy and diffusion- and perfusion-weighted imaging, to the 
radiophenotyping of neuroradiologic conditions is becoming increasingly prevalent, particularly with radiogenomic analyses 
correlating imaging characteristics with molecular biomarkers of disease. However, integration into routine clinical practice 
remains elusive. With modern multi-parametric MRI now providing additional data beyond anatomy, informing on histology, 
biology and physiology, such metric-rich information can present as information overload to the treating radiologist and, as 
such, information relevant to an individual case can become lost. Artificial intelligence techniques are capable of modelling 
the vast radiologic, biological and clinical datasets that accompany childhood neurologic disease, such that this information 
can become incorporated in upfront prognostic modelling systems, with artificial intelligence techniques providing a plausible 
approach to this solution. This review examines machine learning approaches than can be used to underpin such artificial 
intelligence applications, with exemplars for each machine learning approach from the world literature. Then, within the 
specific use case of paediatric neuro-oncology, we examine the potential future contribution for such artificial intelligence 
machine learning techniques to offer solutions for patient care in the form of decision support systems, potentially enabling 
personalised medicine within this domain of paediatric radiologic practice.

Keywords Artificial intelligence · Children · Machine learning · Magnetic resonance imaging · Neuroradiology · 
Radiogenomics

Introduction

In recent years interest has focussed on the use of radiom-
ics, the extraction of vast amounts of quantitative features 
from standard medical imaging (via data-characterising 
algorithms) to improve the radiophenotyping of neurologic 
disease. The process of enabling computers to perform this 
task and indeed learn from such data to facilitate clinical 
decision-making is often referred to as artificial intelligence 
(AI). Such approaches have been employed in multiple 
applications in paediatric neuroradiology, particularly in 
regard to neuro-oncology [1]. This article reviews the tech-
niques used to underpin AI in paediatric neuroimaging. We 
examine the strengths and weaknesses of such techniques 
and highlight specific applications within the gamut of pae-
diatric neuroimaging, in which they have been employed. 
In regard to brain tumours in children, we discuss why such 
systems are required going forwards and, using exemplars 
within paediatric neuro-oncological imaging, we examine 
what the future of such systems might hold.
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Machine learning techniques

Artificial intelligence is the concept of making a computer 
system “clever” and, in a radiologic setting, able to make 
decisions based on the imaging data presented to it. Machine 
learning refers to how we afford computers the opportunity 
to do this. Rather than having to program a system to per-
form a decision-making task in paediatric neuroradiology, 
machine learning is where effective computer algorithms 
are developed that learn from experience (like a human) and 
create models, with associated decision-making skills, from 
a given body of supplied data. In the imaging domain, such 
data incorporate the imaging study itself.

There has been rapid proliferation in the application of 
machine learning techniques in health care over recent years, 
secondary to the evolution of electronic health care records, 
increasing patient data accrual, and a growing interest in 
health informatics [2, 3]. Machine learning techniques are 
often applied to conditions where traditional statistical analy-
sis might not generate accurate results. An example of this 
would be modelling large feature-rich datasets from imaging 
studies with relatively small sample sizes of patients, where 
there is a non-Gaussian distribution and class imbalances 
(e.g., relative numbers of specific tumour type) [4, 5]. Several 
machine learning applications in health care have achieved 
physician-level accuracy when tasked with diagnosing skin, 
breast and chest lesions using imaging data alone [6–9].

Machine learning models tend to follow two general 
schema, supervised or unsupervised approaches, with the 
former defined by whether they “learn” from a provided and 
characterised training dataset [10]. Unsupervised learning 
techniques do not use training data but rather draw inferences 
from unlabelled data without any pre-defined outputs. Super-
vised learning algorithms, when applied to relatively small 
data sets as seen in paediatric neuroradiologic settings, can 
be prone to overfitting [11]. They are, however, on the whole, 
advantageous in that the categories and classifiers generated 
are interpretable by humans, based on the labelled data used 
to train them. We continue by examining some supervised 
machine learning techniques and looking at specific paediat-
ric neuroimaging applications underpinned by them.

Supervised machine learning techniques

Artificial neural networks

Technique

Artificial neural networks (ANNs) are so termed because 
of their resemblance to a biological neural network. They 
are composed of a network of nodes that are interlinked by 

connections, which are weighted. This connection weight-
ing increases or decreases the strength of the connection 
between nodes and auto-adjusts as the model learns from 
its training data. Typically, ANNs consist of layers of node 
networks, with the output generated after data have tra-
versed the network and reached the last layer [12, 13].

Applications

Artificial neural networks have received significant expo-
sure of late given their success with, for example, chest 
radiograph characterisation, often being described as “big-
data” analysis. However, only moderate successes have 
been observed in brain tumour imaging, predominantly in 
the adult neuro-oncology sphere [14–18]. A major issue 
with their application in paediatric neuroimaging is that 
the radiologic analysis of “big-data” is far removed from 
the requirements of machine learning within the paediatric 
neuroimaging domain. For example, a chest radiograph is 
a single image for which hundreds of thousands of training 
images are available, as opposed to paediatric brain imag-
ing, for which the training dataset is several orders of mag-
nitude smaller in number of images and is far more hetero-
geneous. In some paediatric neuroradiologic applications, 
ANNs have had good success in a targeted form. This is best 
illustrated in the determination of ventricular size to stratify 
children into normal or hydrocephalic. Quon et al. [19] were 
able to undertake such an analysis with an accuracy score 
of 94.6% in hydrocephalus vs. 85.6% in controls based on a 
training set of T2-weighted MR images from approximately 
399 children (Fig. 1). Other groups have had similar success 
in paediatric hydrocephalus with evolutionary changes in 
ANN techniques [20]. ANN performance can be enhanced 
through the application of attention-based neural networks, 
which are capable of producing spatial maps that highlight 
regions of interest for either object detection or interpreta-
tion. This approach is useful when dealing with large vol-
umes of complex imaging data, such as MRI brain data sets. 
Attention-based ANNs applied to fetal MRI data sets were 
successful in aging fetal brain and detecting anomalies, 
achieving area-under-the-curve (AUC) values of up to 90% 
[21, 22]. Similarly, convolutional neural networks (CNNs) 
have also successfully segmented fetal MRI, improving the 
antenatal diagnosis of spina bifida [23].

Support vector machines

Technique

Support vector machines (SVMs) analyse and group labelled 
input data into classes, separated by the widest plane 
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(support vector). They are often used in cases where there 
is a non-linear relationship between data, and, as such, a 
separation plane is not easily distinguishable. They tend to 
be used to categorise data into binary groups, e.g., “is this 

tumour a pilocytic astrocytoma or a medulloblastoma?” 
However they can be nested to allow for more complex 
decision-making.

Fig. 1  Artificial neural 
networks. a, b Deep learning 
model (blue) and ground truth 
manual (green) segmentation 
of a representative control (a) 
and hydrocephalus (b) using 
axial T2-weighted MR images. 
Reproduced from [19]
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Applications

A significant proportion of paediatric neuroimaging relates 
to neonatal imaging and attempts to generate outcome pre-
diction relating to possible neuro-trauma. The authors of 
this paper had some success in this regard using the thick-
ness of the corpus callosum (measured on a single sagittal 
T1-weighted MR image), to determine whether a child had 
suffered from hypoxic–ischaemic brain injury [24]. Principal 
component analysis identified that children who had suf-
fered from such an injury were statistically more likely to 
have thinning of the posterior body of their corpus callosum. 
This was as hypothesised, given the radiation of white matter 
fibres through this region of the corpus callosum from the 
perirolandic cortex, which represents an area of the brain 
often seen to be damaged in children with spastic cerebral 
palsy as a result of acute profound hypoxic–ischaemic brain 
injury. SVM stratification of children into either normal or 
hypoxic–ischaemic brain injury based on corpus callosum 
widths was then possible with an accuracy of 95% (Fig. 2; 
[24]). Raji et al. [25] used a similar technique to analyse 
adolescents who had suffered from traumatic brain injury 
(TBI) on the basis of edge density imaging — again, using 
SVMs to stratify into normal or in this case mild TBI. This 
technique, which yielded an accuracy of 94% (with sensi-
tivity of 79% and specificity of 100%), was able to outper-
form neurocognitive testing in this regard [25]. SVMs have 
also successfully classified a range of MRI abnormalities on 
fetal brain, including functional connectivity, brain maturity 
and severe fetal abnormalities, with accuracies of 79–84% 
[26–28].

Decision trees

Technique

Decision trees process observations about an object 
(branches) into conclusions about an item’s target value 
(leaves). Decision tree analysis is a decision modelling pro-
cess with weighting of the branches at each step of the tree. 
This is an open process, in contrast to the black box ANNs 
discussed earlier, in that the branches and weights are visible 
and interpretable to end users. By way of example, in brain 
tumour assessment, the branches could consist of the ana-
tomical location of a suspected tumour and advanced metric 
MRI features, with the final leaf representing the predicted 
tumour diagnosis. Decision trees also offer feature selection, 
in that features can be removed to improve the efficiency of 
the model. Decision trees are able to process large volumes 
of both numerical and categorical data, which is imperative 
in modern health care. However, decision trees are suscepti-
ble to small alterations in the training data set causing dras-
tic changes in the final classification, while overly complex 

trees can lead to overfitting of training data and the inability 
to process novel data correctly [29, 30].

Applications

Decision tree analysis has also been used in the field of neo-
natal imaging to aid in diagnosis and prognostication. Liu 
et al. [31] used such a technique to analyse features on MRI 
to better characterise between acute bilirubin encephalopa-
thy and normal myelination patterns. This study was inter-
esting for two reasons. First, it included both radiomic data 
as well as radiologist-defined imaging features. Hence it is 
an exemplar of harnessing the power of the radiologist in 
conjunction with computer-aided imaging analysis. Second, 
it compared machine learning techniques and found that in 
this setting the AUC of the decision tree analysis was 94.6%, 
compared to 93.1% for SVM, given the same dataset. The 
latter point illustrates that in most imaging AI applications, 
the application of multiple machine learning techniques is 
often necessary to determine the best approach to the data 
being modelled. A one-size-fits-all paradigm is not optimal 
going forwards as more of these systems are developed for 
clinical applications in paediatric neuroradiology.

Decision trees have also been used in another important 
role of machine learning in paediatric neuroimaging — that 
of data analysis to inform on neuroimaging in clinical trials. 
As more and more studies become reliant on multi-paramet-
ric data, we require more complex methodologies to analyse 
and model the resultant imaging findings. One example is 
the authors’ decision tree classifier, used in a randomised 
controlled trial in children with neurofibromatosis type 1 
(NF1)-related autism who were being treated with simvas-
tatin [32]. In this work the neuroimaging included multi-
voxel gamma aminobutyric acid (GABA) spectroscopy, 
perfusion imaging, diffusion tensor imaging and resting-
state functional MRI as well as standard anatomical assess-
ment, an exemplar of the types of complex imaging studies 
that are becoming ever more commonplace as our imaging 

Fig. 2  Support vector machine (SVM) stratification. a Midline sag-
ittal T1-weighted MR image shows a normal corpus callosum in 
a 6-year-old age-matched male control. The image also shows the 
placement of regions of interest and 99th-percentile widths. b The 
width profiles (95% confidence interval of the mean) for each centile 
generated for the control cases (blue) and the age-matched cases of 
profound hypoxic–ischaemic brain injury (yellow). c SVM stratifica-
tion performed on the imaging dataset for each participant with clas-
sification into one of two groups: (1) hypoxic–ischaemic brain injury 
or (2) developmental delay control. Receiver operator characteristics 
curves show classification (correct classification = true positive) into 
either the hypoxic–ischaemic brain injury group or the control group. 
Note the high degree of stratification, with an area under the curve of 
over 95% relating to both groups. This demonstrates the power of this 
technique when applied to this particular imaging metric. As such, 
it points towards machine learning callosal analysis in translational 
clinical and academic applications. Reproduced from [24]

◂
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sequences develop. Making sense of these data presents a 
real challenge, which AI can help facilitate. In the simvasta-
tin study [32], a random forest classifier was able to classify 
children into those who had been treated with simvastatin 
versus controls with an accuracy of 79%. This is potentially 
indicative of the gains such applications will afford us in 
the future.

Naïve Bayesian classifiers

Technique

Naïve Bayesian classifiers are probabilistic classifiers that 
assume that all imaging variables available in a study are 
independent of one another, when generating the probability 
that a diagnosis is of a particular type. They have the advan-
tage that they require relatively small training data sets, but 
in general terms they are currently thought to perform com-
paratively less well against other techniques.

Applications

The diagnosis of autistic spectrum disorder is made based 
on clinical neuropsychological/psychiatric assessments in 
children. These children often have brain scans to look 
for underlying structural or associated germline conditions 
that might present with autistic spectrum disorder, e.g., 
single aberrant gene conditions such as NF1 or tuberous 
sclerosis. The majority of children with autistic spectrum 
disorder, however, do not have such underlying conditions 
and thereby have idiopathic autistic spectrum disorder. 
To date, such cases were not thought to have an underly-
ing structural aetiology that was identifiable on imaging. 
Chen et al. [33], however, took structural MRI data in such 
children and through the application of a naïve Bayesian 
classifier made optimal use of these data by analysing a 
three-dimensional histogram of oriented gradients (a form 
of image processing descriptor) in various regions of the 
brain, e.g., the frontal gyrus and hippocampus, amongst 
others; this preliminary work, which also analysed data 
from multiple centres, achieved a maximal AUC accuracy 
of 84.9% in regard to identifying MRI-based biomarkers to 
differentiate children with autistic spectrum disorder from 
normal controls. This is an exemplar of the use of AI to 
extract maximal information from an imaging dataset in a 
manner that had not been achievable.

Naïve Bayesian classifiers have also been successful 
when applied to MR imaging of another rare cohort with 
a small available imaging training data set: children with 
antenatally diagnosed fetal abnormalities. Naïve Bayes-
ian classifiers were capable of classifying abnormalities 
including agenesis of the corpus callosum, Dandy-Walker 
variants, colpocephaly, mega-cisterna magna, cerebellar 

hypoplasia and polymicrogyria with accuracies of 
63–91% [27].

Linear discriminant analysis

Technique

Linear discriminant analysis (LDA) classifies cases by iden-
tifying relationships between combinations of features that 
can discriminate two or more types using continuous inde-
pendent variables, which are in turn analysed against a final 
categorical dependent variable. However, LDAs assume nor-
mal distribution of data with homogeneous variance; this 
can be an unsafe assumption to make in small cohorts of a 
rare disease process such as those in children’s neuroimag-
ing. However, there have been some successful applications 
in the neonatal setting.

Applications

Gui et al. [34] used an LDA to compare the longitudinal 
changes in regional brain volumes (including cerebrospi-
nal fluid, cerebellar, unmyelinated white matter and grey 
matter volumes) in preterm infants (26–36 weeks of gesta-
tional age at birth), then again at term equivalence. Using 
this LDA approach, they then modelled these volumes and 
their changes, with the addition of various perinatal factors 
such as sepsis or a persistent ductus arteriosus. The models 
derived used outcome measures of both motor and neuro-
cognitive function at 18 months and 5 years of age. This is 
important in regard to the incorporation of clinical factors 
into the imaging model. The ability of machine learning 
techniques to integrate such data is a major advance in our 
ability to prognosticate for children beyond what would be 
possible using imaging alone, especially given the fact that 
most of these childhood diseases represent complex biologi-
cal systems that can only be described in terms of multiple 
different domains of data.

Unsupervised learning algorithms

Any discussion regarding AI in paediatric neuroradiology 
must include a review of unsupervised learning algorithms, 
although, as mentioned, the relatively small number yet 
feature-rich datasets in this clinical domain result in limited 
success in this domain of radiologic practice. K nearest neigh-
bours (kNNs) are pattern recognition systems that classify a 
new tumour into a previously recognised type within which 
the majority of its features would fall [35]. Whilst kNNs are 
an appealing technique because no assumptions are placed on 
the data and the system constantly evolves, they only work 
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optimally when dealing with small numbers of input vari-
ables (unlike the imaging datasets discussed here). Whilst 
kNNs have been applied to hydrogen 1 (1H) MR spectroscopy 
data to classify adult brain tumours [36, 37], they have had 
little success in the analysis of paediatric brain tumours and 
no significant application in any other domains of paediatric 
neuroradiology.

Potential pitfalls with machine learning 
techniques

As stated, machine learning limitations include overfitting of 
data and sensitivities to outliers. At an end-user level, clini-
cians might be reluctant to accept the output of a black box 
classifier system such as an advanced neural network because 
the decision-making process is not fully visible. This is per-
haps reflected in the low translational uptake of decision sup-
port systems into routine clinical practice. There is also a lack 
of standardised legal regulation as exists for medical devices, 
and there are no clear legal guidelines about independent 
mathematical interrogation and validation of outputs gener-
ated by AI systems. These factors also hamper the acceptance 
of such systems into routine clinical practice [38]. Finally there 
is the ethical consideration regarding the use of large volumes 
of patient data and integrating said data from multiple patient 
sources into one repository and an analysis system built upon 
such a data construct. Problems can arise regarding ownership 
of data and consent for an individual’s data to be captured 
into a machine learning system, as well as security considera-
tions when sharing data between institutions and AI systems. 
Because applied machine learning in paediatric neuroimaging 
and indeed health care as a whole is in its relative infancy, 
issues relating to data management, ownership and consent 
are likely to arise [39, 40].

Artificial intelligence in paediatric 
neuro‑oncology

Having reviewed the differing AI techniques that have 
been applied in paediatric brain imaging, we now exam-
ine the specific use case of paediatric neuro-oncology to 
inform the best suited roles for such methodologies in 
future clinical use.

Diagnosis

Brain tumours represent the most common solid tumour 
reported in children [41]. Despite advances in diagnos-
tic adjuncts, neurosurgical techniques, adjuvant treat-
ment and supportive care, they remain the leading cause 
of paediatric cancer-related deaths [42]. Paediatric brain 

tumours present a significant challenge to treating clini-
cians for several reasons, including neurosurgical acces-
sibility, lesional intimacy with surrounding critical struc-
tures, potential metastatic dissemination and the impact 
of therapy on the developing brain. Recently, these fac-
tors have been supplemented by an emerging awareness 
of biological heterogeneity within pre-defined tumour 
entities, leading to expanded tumour subgroupings and 
evolving risk stratification systems based upon this intra-
tumoural molecular landscape [43–48]. These considera-
tions are compounded by relatively small patient numbers 
when compared to either adult counterparts or non-central 
nervous system (CNS) tumours [41, 49, 50]. This presents 
a high-dimensional data problem: a deep, multi-faceted, 
feature-rich data set generated from a small number of 
patients to whom traditional statistical analysis is often 
not applicable, therein making accurate outcome predic-
tion challenging [1].

The diagnosis of a childhood brain tumour is largely 
standardised historically; conventional MR imaging is 
acquired at presentation before proceeding to surgery in 
the form of either biopsy, debulk or resection, with tissue 
samples undergoing morphological assessment by a his-
topathologist. Over recent years, the advent of molecular 
techniques such as genomic arrays, gene expression profil-
ing, fluorescent in situ hybridisation (FISH), and genome 
sequencing and methylomics has refined our understand-
ing of paediatric brain tumours beyond simple histological 
classifications, identifying inherent subgroups within pre-
defined tumour entities based upon shared genetic aberra-
tions and biological behaviour [44–49, 51–54].

Noninvasive radiologic tumour assessment has also 
evolved in recent years through the advent and appli-
cation of multi-parametric MRI, including diffusion-
weighted imaging, perfusion-weighted imaging and MR 
spectroscopic sequences [55]. Modern advanced MRI is 
now capable of generating physiological and biochemi-
cal features of a lesion, producing detailed information 
beyond simple anatomical description [56]. Clearly, 
improved radiologic diagnostic accuracy at the time of 
clinical presentation is a vital adjunct to the treating clini-
cian, facilitating improved planning regarding the neces-
sity for aggressive surgery, the accuracy of information 
imparted to patients and parents, and the ability to plan 
adjuvant oncological therapy — all factors in which AI 
might provide additional data to aid in individual-case 
decision-making.

Advanced multi‑parametric magnetic resonance 
imaging techniques

Routine contrast-enhanced diagnostic MRI, whilst provid-
ing adequate anatomical description of a lesion, does not 
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describe its physiological or metabolic behaviour. In addi-
tion, there is radiologic diagnostic overlap when assessing 
many childhood brain tumours because they can display 
similar T1, T2 and contrast-enhanced appearances. Nei-
ther is the extent of contrast enhancement in paediatric 
brain tumours indicative of tumour grade, unlike their adult 
counterparts [57]. Indeed, low-grade pilocytic astrocyto-
mas (World Health Organization [WHO] grade I) enhance 
vividly, whilst H3K27-mutated diffuse midline gliomas of 
the pons (WHO grade IV) can display minimal contrast 
enhancement [58, 59].

It is hoped that multi-parametric MRI techniques will 
supplement conventional imaging data of brain tumours, 
providing more accurate, noninvasive in vivo radiopheno-
typing and radiologic determination of tumour molecular 
sub-groups where appropriate [55, 56, 60–70]. Indeed, diffu-
sion-weighted imaging (DWI), perfusion-weighted imaging 
(PWI) and MR spectroscopy are now routinely acquired as 
part of the initial assessment of a child with a brain tumour.

Radiogenomics in paediatric brain tumour imaging

It is anticipated that through such techniques, improved 
tumour characterisation might better inform prognosis when 
compared with standard imaging metrics such as tumour 
dimensional size or volume [1, 71–73]. Moreover, correlat-
ing advanced radiophenotypes with tumour molecular biol-
ogy data, termed radiogenomics, might improve outcome 
prediction capabilities further. Radiogenomics studies have 
identified discrete imaging signatures for proven molecular 
tumour subgroups in brain tumours, including the most com-
mon paediatric malignant lesion, medulloblastoma — signa-
tures that could have roles as predictive biomarkers [60–62, 
66]. Taking this further, radiogenomics multi-institutional 
studies have demonstrated proof-of-concept results for the 
prediction of medulloblastoma subgroups from diagnostic 
MR imaging using AI [61, 62, 74].

Artificial intelligence techniques in neuro‑oncology 
imaging

Diagnosis

As discussed, there are instances where these machine learn-
ing techniques, now at the forefront of AI research in pae-
diatric brain imaging, have been able to extract additional 
data from pre-existing imaging studies. Indeed, ANNs have 
had some success at predicting posterior fossa tumour types 
using such approaches to stratify pilocytic astrocytoma, 
medulloblastoma, ependymoma and diffuse midline glioma 
of the pons [75] using only T2-weighted imaging. Deci-
sion trees have also had some success in identifying prog-
nostic factors for survival in recurrent adult glioblastoma 

multiforme (WHO grade IV glioma), as well as classifying 
between low- and high-grade gliomas [76, 77]. In children, 
the neuro-oncological success of these techniques has been 
more modest but still represents opportunity for future work. 
Considering LDAs, there has been some success in using 
1H MR spectroscopy and DWI data from paediatric brain 
tumours so achieve successful categorisation of medullo-
blastomas, ependymomas, infiltrating gliomas and pilocytic 
astrocytomas [78–81].

Support vector machines have been used in the field of 
MRI texture analysis in brain tumours, an application of 
machine learning that quantifies imaging data to generate an 
image texture, a feature usually imperceptible to the human 
eye [82, 83]. Texture analysis provides value to the clinician 
because it makes use of the whole tumour imaging data-
set and, as such, accounts for intra-tumour heterogeneity, 
which might not be captured by a single site or even multi-
site biopsy [83]. Texture analysis has successfully diagnosed 
and graded brain tumours, discriminating among pilocytic 
astrocytomas, medulloblastomas and ependymomas with an 
accuracy of up to 95% [83–86].

Building upon the use of texture analysis, Orphanidou-Vla-
chou et al. [87] combined the power of both LDA and a prob-
abilistic neural network to classify posterior fossa tumours 
into medulloblastoma, pilocytic astrocytoma or ependymoma, 
with 86–93% accuracy based on their validation leave-one-out 
cross-validation of the techniques used. This application of AI 
in diagnostic assessment provides a future adjunct to diagnos-
tic efficacy and interestingly can be performed on standard-
acquisition T1- and T2-weighted imaging.

Support vector machines have also been successfully used 
to categorise tumour grade by combining conventional data 
with additional multi-parametric imaging information such 
as diffusion tensor imaging and PWI data [88]. In addi-
tion, they have been used to predict survival after surgery 
for adults with gliomas and metastases, with accuracy rates 
of up to 95%, utilising MRI and clinical, surgical resection 
and histopathological assessment data [89–93]. Li et al. [94] 
used a successful SVM approach to differentiate pilocytic 
astrocytomas from ependymomas on the basis of preopera-
tive imaging, with a sensitivity of 93% and specificity of 
80%, yielding an overall accuracy of 88%. Similar success 
has been seen through the use of naïve Bayesian classifiers, 
where they have successfully classified and graded brain 
tumours using multi-parametric MRI datasets [95, 96]. How-
ever, they have performed comparatively less well against 
other techniques such as SVMs and random forest classifiers.

Outcome prediction

Whilst the majority of neuro-oncological uses of AI in 
brain imaging have focused on tumour stratification, excit-
ing opportunities are presenting themselves in regard to 
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outcome prediction. An exemplar of such an approach that 
harnesses the power of human/computer interaction is the 
work by Liu et al. [97] in predicting the risk of cerebellar 
mutism syndrome in children with posterior fossa tumours, 
based on their preoperative imaging and a C.45 (type of 
decision tree methodology) decision tree analysis (Fig. 3). 
This system used radiologist identification of the location 
of the tumour, invasion or compression of structures by the 
tumour, and age of the child to determine risk of cerebel-
lar mutism syndrome, with a risk stratification accuracy of 
88.8%. This type of approach has the power to significantly 
alter our discussions regarding prognostication with patients 
and their parents, as well as alerting the treating team to 
potential outcome issues preoperatively.

Neuroimaging datasets

Rare diseases such as paediatric brain tumours often pre-
sent diagnostic challenges, particularly if the presenting 
radiologic phenotype is incongruent from any established 

radiologic diagnostic pattern or the local radiologic team 
lacks specialist experience within a particular field. A 
means of improving radiologic diagnosis of rare disease 
is through contribution of imaging features to shared data-
bases, allowing comparison of newly presenting imaging 
features against a larger, previously unavailable reference 
library.

Open-access public datasets are now widely available, 
including OpenN EURO. org (sharing platform for MRI and 
electrocardiogram data), the UK Biobank (large medical 
database including neuroimaging), the Enhancing Neuro-
Imaging Genetics through Meta-analysis (ENIGMA) Con-
sortium (collaborative network of large-scale studies from 
over 70 institutions) and the Human Connectome Project 
(neural data compilation). These resources aim to increase 
available sample sizes beyond that of a single institution, 
generating data sets that might allow investigation of previ-
ously inscrutable questions. The breadth of data available on 
OpenN euro. org has contributed to a wide range of studies, 
including human brain connectome, deductive reasoning 
function in children, white matter disease in schizophrenia 

Fig. 3  A C.45 decision tree with the highest accuracy (91.0%, 81/89) 
to predict cerebellar mutism syndrome (CMS). This decision tree was 
based on radiologic identification of specific imaging features includ-
ing cerebellar hemisphere invasion, bilateral middle cerebellar pedun-

cle (MCP) invasion, dentate nucleus (DN) invasion, preoperative 
radiologic diagnosis of ependymoma, MCP compression and age. n 
number, yr year. Reproduced from [97]

http://openneuro.org
http://openneuro.org
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and bipolar disease, and automatic prediction of MRI image 
quality [98–101].When accessing such resources, care 
should be taken to check for updating datasets and process-
ing pipelines and models, as well as ongoing quality control 
adjustments made by the host organisation; all of these fac-
tors can impact study outcomes [102–106].

Successful applications of specific paediatric radiologic 
databases include the INTERPRET (not an acronym) and 
Autism Brain Imaging Data Exchange (ABIDE) projects. 
The INTERPRET project successfully accrued 1H MR 
spectroscopy features of brain tumours, a feature that not all 
radiologists could interpret, forming the basis of a linear-
discriminant-analysis-driven decision-support system. The 
INTERPRET decision support system aimed to be a uni-
versally accessible to physicians and biochemists, allowing 
the input of new case data from any MRI scanner. Accurate 
tumour classification was achieved in 69–85% of test set 
analyses, although the authors recommended further evalu-
ation of classification performance limits of the model and 
encountered issues with data quality control in early model 
iterations [107, 108].

The ABIDE aggregated more than 1,000 functional MRI 
scans of 539 children with autistic spectrum disease and 
case-matched controls, identifying common features in 
regions of known dysfunction in autism spectrum disease 
(mid- and posterior insular and posterior cingulate cortex) 
and also regions less frequently evaluated. This shared data-
base demonstrates the potential benefits of pooling multiple 
source datasets in confirming established features, and in the 
discovery of novel features of rare diseases [109].

Open-access shared data sets present data security and 
confidentiality issues, particularly in the context of rare 
diseases; re-anonymisation has been possible in datasets 
anonymised as per National Institutes of Health guidelines, 
leading to some collaborative efforts maintaining private-
access databases [110–112].

Summary

Multi-parametric MRI is becoming established within the 
imaging community for assessing paediatric brain tumours. 
The hope is that the feature-rich data generated will lead 
to improved radiomic feature extraction and, in certain 
instances, correlation with molecular subgroups. While 
radiogenomics and radiophenotyping studies are described, 
such data are not routinely integrated to enable up-front risk 
stratification and outcome prediction for children with brain 
tumours. Relapse and recurrence rates and time windows 
for such events have not been predicted using this approach. 
Artificial intelligence, underpinned by the machine learn-
ing techniques discussed here, offers a potential solution for 
enabling personalised medicine within this domain.

Artificial intelligence provides us with useful tools for han-
dling large volumes of high-dimensional data generated from 
modern medical imaging practice. Applying machine learn-
ing models to paediatric brain multi-parametric MRI data 
and integrating the accompanying genetic, histopathological, 
clinical and surgical data should enable better risk-stratification 
systems, better prognostic prediction and individualised sur-
veillance protocols for children depending on their underlying 
diagnosis. The clinical translation of such systems is occurring 
through the implementation of the machine learning techniques 
described here and the AI underpinning clinical decision-sup-
port systems. A clinical decision-support system is defined as 
any piece of software that takes, as input data, the information 
about a clinical situation and produces, as output, the inferences 
regarding the clinical situation that can assist practitioners with 
their decision-making [113]. Clinical decision-support systems, 
and the machine learning techniques underpinning them, are 
gradually becoming accepted into medical application in view 
of both their data handling capabilities and predictive outputs 
[113, 114], particularly because the volume of information 
assimilated in modern medical practice (as is evidenced by the 
large volumes of imaging data generated in a modern paediatric 
neuro-imaging study) can be potentially prohibitive to human 
decision-making performance [115, 116].

We predict that validation and integration of neuroimag-
ing AI applications into mainstream clinical practice will 
occur in two stages. First, classification and outcome predic-
tion clinical decision support systems will be trialed in paral-
lel to established clinical practices such as neuro-oncology 
multi-disciplinary team meetings, assessing performance in 
direct comparison to local expert clinical opinion. Second, 
models that demonstrate potential will then be prospectively 
trialed with unseen data under the conditions of a formal 
trial. With respect to paediatric neuroimaging applications, 
validation of applications might be a long-term process in 
view of small patient cohorts and sporadic presentations of 
certain conditions. There is also the challenge of integrating 
such systems into existing health informatics infrastructure; 
at present most National Health Service (NHS) systems are 
not capable of incorporating such models, nor are they con-
ducive to automated data collection. The Topol Report has 
advised focused funding for digital transformation within the 
NHS to aid in development of such projects.

Meaningful contributions to the field can be made at a 
local level through the contribution of well-organised data 
sets of rare disease imaging, particularly where advanced 
metric imaging has been performed. Data should ideally be 
contributed to secure open-access databases that encourage 
collaborative work in rare-disease fields. Collaborative ini-
tiatives should be encouraged between clinicians and data 
scientists to ensure application of appropriate data handling 
and machine learning algorithms, and the development of 
clinician-led AI projects within health care.
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In the next decade, we expect to see the gradual accept-
ance and deployment of such clinical diagnosis decision sup-
port systems into clinical paediatric neuroradiology as they 
are translated from the academic domains discussed here to 
the workstation and, most important, become valuable tools 
for use in routine clinical practice.
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