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Gastroscopic examination is one of the most common methods for gastric disease diagnosis. In this paper, a multitarget tracking
approach is proposed to assist endoscopists in identifying lesions under gastroscopy. This approach analyzes numerous preobserved
gastroscopic images and constructs a gastroscopic image graph. In this way, the deformation registration between gastroscopic
images is regarded as a graph search problem. During the procedure, the endoscopist marks suspicious lesions on the screen and
the graph is utilized to locate and display the lesions in the appropriate frames based on the calculated registration model. Compared
to traditional gastroscopic lesion surveillance methods (e.g., tattooing or probe-based optical biopsy), this approach is noninvasive
and does not require additional instruments. In order to assess and quantify the performance, this approach was applied to stomach
phantom data and in vivo data. The clinical experimental results demonstrated that the accuracy at angularis, antral, and stomach
body was 6.3 +2.4 mm, 7.6 + 3.1 mm, and 7.9 + 1.6 mm, respectively. The mean accuracy was 7.31 mm, average targeting time was
56 ms, and the P value was 0.032, which makes it an attractive candidate for clinical practice. Furthermore, this approach provides

a significant reference for endoscopic target tracking of other soft tissue organs.

1. Introduction

Gastroscopic multitarget tracking can serve to advance the
surgical field by reducing the invasiveness of procedures.
For example, an endoscopist could mark suspicious lesions
during a gastroscopy, and the marked lesions could be tracked
and diagnosed in the follow-up surgery [1-3]. Further-
more, during the process of in vivo evaluation and therapy
planning, the preobserved lesion marked by the tracking
approach can be considered a navigation scheme to target
biopsy sites. This facilitates improvement of the precision of
the biopsy targeting and the validity oflesion analysis [4-6].

The traditional target tracking approach for endoscopy
is tattooing [7, 8]. During the tattooing procedure, the
endoscopist injects Indian ink into the lesion sites or marks
the lesion sites with argon plasma coagulation (APC) [9,
10]. In the follow-up examination, the tattooing markers
guide the endoscopist to track and retarget the lesion sites.

Unfortunately, this approach has its disadvantages. (1) Ink
may fade over time after several months. (2) Inking and APC
are invasive operations and damage the tissue. (3) The marker
created by ink and APC is procedurally cumbersome and
carries a risk of technical failure.

To overcome these disadvantages, many papers in the
literature have investigated target tracking techniques that
utilize novel approaches. Allain et al. introduced a biopsy
tracking method based on epipolar geometry and evalu-
ated the results’ uncertainty with a covariance matrix [11].
However, since the accuracy of using epipolar geometry as
an analytical tool depends largely on the view angle, this
method is not viable for a gastroscopy procedure. Helferty
et al., Vining et al,, and Zhang et al. took advantage of
virtual endoscopy to analyze and track lesions [12-14], but
the virtual endoscopy required extra CT or MRI scans, which
increased the operation expense. Moreover, the preoperative
static model could not represent the stomach’s deformation
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motion accurately. Ye and his coworkers [15] proposed a novel
online deformation method for pathological site tracking.
In this method, the stomach’s motion was regarded as a
local affine transformation. To the authors’ knowledge, a
local affine assumption is not able to ensure both reliability
and consistency in the modeling of the system. In other
studies, a force-position sensor or laser transmitter was
incorporated in the endoscope to aid the endoscopist in
lesion tracking [16, 17]; nevertheless, retargeting previous
biopsy sites is still challenging as the sensor’s accuracy may
be impaired by other medical devices (e.g., pacemakers). In
recent years, some atlas-based image registration approaches
have been introduced to solve the elastic registration of
MRI brain images [18-20]. Those approaches built an atlas
based on a large number of template images; the constructed
atlas could then be used as a platform for the registration
process. However, no related techniques have been proposed
to actualize endoscopic image registration due to the image
variability inherent to endoscopy.

In this paper, a computer aided endoscopic target tracking
method is proposed. This noninvasive method does not
require extra instruments, conferring significant advantages
in comparison to other approaches. Moreover, this system
can predict image registration and track the target lesions for
an arbitrary gastroscopic image sequence, even if the defor-
mation between two frames is large. This was accomplished
by estimating the similarity of a large number of preobserved
sequences of gastroscopic images. With the assumption that
the stomach’s deformation is not large between very similar
frames, the registration between similar frames is treated
as a rigid transformation. A gastroscopic image graph is
then constructed. In the graph, every frame is designated
as a node; the rigid-transformed frames are directly con-
nected nodes and rigid matrixes represent the edges between
direct connected nodes. For indirectly connected nodes,
the registration estimation is treated as a graph search
problem, indicating that nonrigid deformation registration
can be estimated by many local rigid transformations. In this
paper, a mature graph search method known as Dijkstra’s
Algorithm was adopted to ascertain the optimal pathway
in the graph and determine the deformation model. To
describe it clearly in this paper, the frames where the targets
were originally marked by the endoscopist are designated
as reference images, while the following frames where the
targets are tracked are labeled as moving images. During the
procedure, in order to determine the targets’ locations, the
reference images and moving images are matched with the
nodes in the graph, and afterwards, the desired deformation
can be described as the pathway between corresponding
graph nodes. Subsequently, the marked targets are tracked
based on the estimated deformation model through the use
of the pathway search method.

It should be noted that the construction of the graph
is required only once; thus, the computational cost for a
tracking task depends on matching the reference and moving
images with graph’s nodes and searching the proper pathway
to calculate the deformation. There are two processes used
to improve the performance: (1) the proposed graph is
organized as a hierarchical structure and makes the matching

Computational and Mathematical Methods in Medicine

process both effective and fast; (2) the edge’s rigid matrix
provides a matching direction which can direct the tracked
images to seek out the most suitable node in the graph.
Experiment results demonstrate that the registration can be
performed in real time.

2. Methods

The Methods section is formatted as follows: basic registra-
tion method selection, which is fundamental for estimating
node similarity and constructing gastroscopic graphs, is
introduced in Section 2.1. In Section 2.2, a detailed scheme
covering similarity estimation and graph representation is
presented. Section 2.3 elucidates the process of matching
reference and moving images with the graph. Finally, in
Section 2.4, the graph search algorithm is demonstrated.

2.1. Basic Registration Method Selection. In the graph, we
assume that the similar images can be connected directly;
thus, a reasonable registration method should be adopted to
estimate the similarity before graph construction. Although a
wide range of registration methods have been developed over
recent decades [21, 22], there is an absence of a gold standard
for the evaluation of gastroscopic sequence registrations. It
is essential to validate the feasibility of current registration
methods to determine the most suitable feature detector as
the gastroscopic images’ similarity estimation standard.

In order to employ the most suitable estimation method,
five common, widely used feature detectors (Shi-Tomasi,
SIFT, FAST, SURE and CenSurE) [23-27] were selected.
An estimation framework, known as forward-backward, was
applied [28] to evaluate the selected methods’ accuracy
and robustness. This framework detects and matches image
features from the first frame to the last frame, and afterwards,
features are tracked backward to the first frame. If a feature
is perfectly detected and matched, it should return to its
initial location in the first frame. Otherwise, the distance
between the original location and tracked location is con-
sidered forward-backward error (FB error). In this paper,
the five selected registration methods were used to evaluate
gastroscopic images. Moreover, to estimate the robustness
of these methods, a series of standard Gaussian noises with
different scalars (standard deviation) were added to the
original gastroscopic images, and the FB error was regarded
as criteria for accuracy and robustness. The evaluation results
are shown in Figure 1.

As we can see from Figurel, for original images
(Figure 1(a)), all the features’ FB distance detected by SIFT
was smaller than 13 pixels, and almost 60% of the features
had a FB error smaller than 5 pixels, indicating SIFT’s higher
accuracy in comparison to the other methods. Furthermore,
from Figures 1(b) to 1(f), we can see SIFT also demonstrated
a better performance in robustness than the other tested
methods for gastroscopic images.

Consequently, in this paper, we adopted SIFT as the basic
registration method to estimate the similarity in gastroscopic
images. In practice, we found the following two simplified
heuristic strategies for SIFT worked well in our methods.
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FIGURE I: Five tested method registration results. From (a) to (f), the registration methods were applied to original gastroscopic and noise
images (the Gaussian noise scalar varies from 0.01 to 0.5). For each registration method, the initial detected feature number was 200; thus,
the ideal matching features’ number was also 200. In the figures, the color curves represent the number of the detected features whose FB
error is smaller than the corresponding FB error threshold (unit: pixels).



(1) The SIFT descriptor was detected in a multiscale
space. Generally, the main computational costs
depend on establishing the multiscale space. Some
researchers have found that the performance of SIFT
improves exponentially with the reduction of the
image scale [29]. In a real gastroscopy procedure,
the endoscope’s focal length is fixed, and the motion
range of the endoscope is limited by the narrow
gastric cavity; thus, the image scale cannot change
drastically. In our research, almost 90% of features
in the gastroscopic sequences were concentrated
between 1 and 3 image scale degrees. As a result, the
registration method in this paper detects sift features
between image scales of 1 and 3.

(2) The original SIFT was designed as a vector of 128
dimensions to make the descriptor robust to changes
in brightness, scale, and rotation. To accelerate the
performance, this paper simplifies the descriptor to
32 dimensions. Furthermore, to the analysis resistant
to the influences of variances in illumination, the
elements of the vectors bigger than 0.4 were nor-
malized to 1. It should be noted that the normalized
SIFT vectors did not eliminate the illumination but
suppressed the effects, which could be recognized
in the similarity estimation method discussed in the
following section.

2.2. Graph Construction. The construction of the gastro-
scopic graph should adhere to two conditions.

(1) Every image node should be connected with every
other node directly or indirectly because isolated
nodes are useless in estimation of deformation and
target tracking.

(2) The number of connected edges should be as small
as possible, which is beneficial for searching the
most reasonable pathway in the graph as quickly as
possible.

The similarity estimation should be defined to determine
whether the gastroscopic nodes were connected directly or
indirectly. In this paper, the similarity of the two nodes, image
i and image j, was defined as

M,

Sij max (Fpi,ij)' ¢))

In (1), Fp; and Fp; denote the feature points detected by

the simplified SIFT. M, denotes the matched points. §;; varies

fromOtol, with§; =1 and S;j = O being indications of highly

consistent or differing images, respectively. Here, we assume

the image nodes that qualify the following condition can be
connected:

Sij > h. (2)

In this paper, we utilized an iterative process to determine
the optimal h. It can be described as the following steps.

Step 1. Hundreds of image samples from real gastroscopic
image sequences were selected randomly and each of
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the images was clustered with other images. Subsequently, a
series of similarity was calculated, assuming By, as Min(S;;)
and By, as Max(S;).

Step 2. Calculate the initial /1 as

h = Bygh — A (Bhigh = Byyy)- (3)
Here, A = 0.1.

Step 3. The affine matrix for the matched image pairs was
estimated under the condition: S;; > h. The affine matrix was
calculated by the RANSAC algorithm [30] and denoted by H,
and H ;. Image j was warped to image i by an affine transform,
and the normalized cross correlation (NCC) was utilized for
validating the similarity assumption:

T TN T (x,y) T (H (x,))

helght I ( y) zw1dth helght J (H (x y))
(4)

Dify; =

idth
I

The more closely the Dif; approximates to 1, the higher
the similarity of the images is, and the more reasonable the
affine assumption is. The experimental results show that if
Dif; > 0.8, the affine transformation is reasonable.

Step 4. Whether all image pairs satisfy S;; > h under the
condition of Dif;; > 0.8 was evaluated. If not, B, was set as
h, and Steps 2 and 3 were repeated. Otherwise, if conditions
were satisfied, the algorithm exited and returned the optimal
h.

NCC was eschewed in favor of the simplified SIFT
detector as the basic registration solution due to its lower
computational burden.

After calculating the optimal s, we assumed the graph as
a matrix:

In (5), g;; denotes the pathway weight from node i to node
j. N denotes the number of the elements in the graph, and the
weight can be represented as

{(SU,H i)> Sy>h
9ij = (0,0), otherwise,
(6)
{(sﬂ,H i) Si>h,
9ji = (0,0), otherwise.

Here, H;; represents the affine transform matrix from
node i to node j and is calculated by RANSAC algorithm.
Obviously, H;; = Hj_i1 and §;; =

2.3. Registration with Graph. During a gastroscopy, the endo-
scopist marks a region of concern on the reference image,
and the region is retargeted on the following moving images.
In this case, the reference image and moving image should
be matched with the graph to determine their corresponding
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FIGURE 2: Workflow of registration with the graph. The black lines
indicate the nodes that can be connected directly. The red solid lines
indicate the matching process of reference image and moving image
to seek out the most similar nodes in the graph. The red dash lines
indicate the pathway search process. The target tracking result is
displayed as blue region on the reference image and moving image.

nodes. Subsequently, the pathway is identified from the
graph, as well as the deformation model between the refer-
ence image and moving image. Finally, the desired region
is transformed on the moving image. Figure 2 describes the
registration workflow with the graph.

The pathway search issue is explicated in Section 2.4. We
emphatically describe the process of seeking out the most
similar nodes in this section.

Here, we utilized NCC to ascertain the most suitable node
in the system. Because the captured gastroscopic images vary
largely over the course of the procedure, the graph construc-
tion required numerous preobserved images. For example, in
our experiment, almost 40,000 images were compiled to con-
struct the graph (endoscope model Olympus GIF-QX 260).
Identification of the most suitable node requires analysis
of each candidate individually at considerable computation
cost. Two processes were enacted to ensure the fidelity of
performance of the analysis.

(1) We divided the graph into subgraphs according to
the anatomic sites (e.g., angularis, antral lesser cur-
vature, antral greater curvature, antral posterior wall,
and antral anterior wall). During the procedure, the
reference image (or moving image) matches with a
certain node in the graph randomly; if Dif;; < 0.2,
we consider that the reference image (or moving
image) cannot be grouped to a suitable node in the
current subgraph, and a node from another subgraph
is selected in the subsequent matching process.

(2) In the graph, the connected nodes represent their
relationship as an affine matrix, which not only
provides a solution for estimating the refinement
deformation, but also offers direction for targeting
the most similar node in the graph (e.g., the trans-
lation and rotation from node i to node j). When
matching reference image (or moving image) with
a certain node n,, an estimated affine transform is
calculated as H;, . Supposing the nodes that connect

with n, are recorded as [n;,n,,n;,...], the affine
relationship is represented as an affine matrix vector:
(H,, > Hy ny> Hypppy - - -]. Before subsequent match-
ing, H;, is compared with all the elements in the
affine matrix vector, and the most similar element
indicates the corresponding node that has the most
consistent movement with the reference image (or
moving image). Therefore, this corresponding node
is considered the matching node in the successive
matching process.

2.4. Pathway Determination. After designating reference
images and moving images to nodes within the graph, the
desired deformation registration should be regarded as a
pathway search problem. Because (6), the edge’s weight is
represented as the similarity of the affine transformation
between directly connected nodes, the searched pathway
should have the most similarity under the corresponding
affine transform.

In the field of computer science, Dijkstra’s algorithm [31]
is a classic pathway search method; this method generates the
shortest pathway tree to solve the single-source, shortest path
search-problem using nonnegative edge path costs. Many
medical issues have been addressed utilizing this algorithm.
For instance, Ehrhardt et al. took advantage of Dijkstra’s
algorithm to estimate lung motion [32]; additionally, Pantazis
et al. and Liu et al. used it to register MRI cortical structures
[33, 34]. In this paper, this algorithm was applied to estimate
the most reasonable pathway in the gastroscopic graph.
Assume the reference image is i, and its corresponding node is
n;, while the moving image is j, and its corresponding node is
n;. The pathway search algorithm can be described as follows.

Step 1. Image i and image j are matched directly by (1), and
the affine transform matrix is obtained as Hi; and HJ'.i.

Step 2. Assuming node k() is connected with node i, the
edge weight between them can be calculated as follows:

EW,, =SSD (an"i (nodek),H,, (node ])) .

In (7), node k and node j are warped to image 7, and the

sum of the squared difference (SSD) is applied to estimate

the edge weight. The smaller the EW,, , the higher the

probability that node k is regarded as a candidate in the
desired pathway.

Step 3. Applying Dijkstra’s algorithm to determine the path-
way, the most reasonable pathway has the minimum sum of
edge weight.

Step 4. Assuming the calculated pathway is [n,,1,,15,... ,
n;_1,n;], the estimated deformation between image i and
image j can be represented as

Hij = Hn,-an ,H

iyt gttt nj_

(8)

1n°

Consequently, the target region in reference image i can
be retargeted in the moving image j by (8).
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(c)

(d)

FIGURE 3: (a)-(b) show the phantom model, and (c)-(d) are images captured by the endoscope.

(a) (b)

FIGURE 4: Phantom experiment results. (a) is the reference image, and (b) is the moving image; the time interval between them was 2.8 s in
the captured sequence. The results show that six markers were retargeted on the moving images, and three markers in the reference images
were missing, marked with red circle in (a), which is considered a reasonable discrepancy. The mean accuracy was 0.78 mm, and the variance

of the accuracy was 0.142.

3. Experimental Results

3.1. Phantom Experiment. The proposed graph was tested
on both the stomach phantom and in vivo data. In the
phantom experiment, an Olympus QX 260 endoscope was
used to capture a gastroscopy image sequence that included
almost 23,000 frames which were then utilized to construct
the graph. The frame resolution was 560 * 480, and the
graph construction process took 3 hours to complete. Several
markers were labeled on the phantom model’s surface, which
were used for simulating the traditional biopsy process (see
Figure 3).

During the experiment, the markers were considered
as global truth to determine the accuracy of the graph.
The distance between the green markers was the retargeted
results, and its corresponding global truth was regarded as
the accuracy (see Figure 4).

3.2. Clinical Experiment. In the subsequent section, three real
gastroscopic images sequences were captured from the angu-
laris, antral structures, and stomach body in real gastroscopy
procedures. All the volunteers who participated in the study
agreed to the written consent of experimental evaluation
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FIGURE 5: Clincal experiment results. The first row is the retargetting results of the angularis, the middle row is antral structures, and the
bottom row is the stomach body. The first image in every row is the reference image, where the green circles are the markers created by
endoscopist, and the following images display the lesion retargetting results. The lesions were retargeted every 40 frames; thus, the time interval
between adjacent frames is 1 second. To distinguish the markers, all the markers were labled by number. Due to the fold and deformation of
the gastric internal surface, the target lesions may have been missed during the procedure. From the figures, it is indicated that this method
is sensitive to missing markers and can retarget them when they appeared in the follow-up frames.

and the follow-up medical data analysis. The study protocol
conformed to the ethical guidelines of the 1975 Declaration of
Helsinki (6th revision, 2008) and was approved by the ethics
committee of Sir Run Run Shaw Hospital prior to initiating
this study. Additionally, the gastroscopy examination was
designed by an experienced clinician and performed by
a skilled endoscopist in accordance with the conventional
clinical protocol. The Olympus QX 260 endoscope was used;
the frame rate of the captured image sequence was 25 f/s, and
the resolution was 560 s 480.

During the procedure, the endoscopist steered the scope
inspecting the gastric internal surface and labeled suspicious
lesions with a virtual green circle instead of traditional
tattooing techniques; afterwards, the captured frames and
lesions’ location were transmitted to a workstation (CPU:
Intel(R) Core(TM) i5-3570 3.40 GHz, RAM: 16.00 GB, OS:
Windows 7(64 bit)), where the lesions’ locations were cal-
culated in the subsequent frames based on the constructed
graph. The targeting results were shown on the gastroscopic
workstation’s screen, as shown in Figure 5.

As the in vivo procedure lacked the global truth markers,
we utilized the forward-backward method to evaluate the
accuracy of the tracked lesions. We regarded each lesion
marker’s location in the tracked frames as a random variable
and took advantage of Kullback-Leibler divergence (Dy; ) to
measure the similarity of the distributions:

Phackaward (%)
Dy (Pbackward (%) I Porward (X)) = Z Pac - >
xeX *forward (X)

)

Prorward (%)
DKLZ (Pforward (x) ”Pbackward (X)) = Z PML'
xeX * backward (x)

TaBLE 1: The accuracy of the retarget process.

Accuracy percent Mean (mm) Variance (mm)
Angularis 0.93 6.3 2.4
Antrum 0.87 7.6 3.1
Stomach body 0.95 6.9 1.6

In (9), Proryard a0d P, avarg denote the lesion marker’s
distribution in the forward and backward procedure. As the
definition of Kullback-Leibler divergence, if the target result
is accurate, the distribution of the lesion in the forward
procedure is very similar to the distribution in the backward
procedure. In this case, the Dy, and Dy, were small and of
the same order. In this paper, we regarded a lesion’s trajectory
as accurate only when Dy, < 0.1 and Dy;, < 0.1.

In Table1, the endoscopist marked 100 lesions on the
angularis, antrum, and stomach body, respectively. The 300
lesions were then evaluated using forward-backward method.
The accuracy percent, mean, and variance indicate the
percent of lesions whose divergence value was smaller than
0.1, average FB error of lesion location, and fluctuation,
respectively. The diameter of the biopsy forceps was 0.8 cm,
which provided a gold standard for converting pixels to
millimeters.

The clinical experimental results demonstrated that the
accuracy at the angularis was 6.3 +2.4 mm, at the antrum was
7.6+ 3.1 mm, and at the stomach body was 6.9 + 1.6 mm. The
mean accuracy was 7.3l mm. Because forceps diameter was
used as a global truth in this process, this new methodology
had the similar precision to traditional tattooing protocols.
In order to further compare these techniques, we tested the
operation time of this method and tattooing.
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TABLE 2: Operation time comparison.
Tattooing (ms) Graph (ms)
(marking/targeting) (marking/targeting)
Angularis 1758/0 12/47
Antrum 1372/0 12/42
Stomach body 1231/0 12/45

In Table 2, the operation time was divided into two
components. The marking time indicates the time spent on
creating the marking during gastroscopy. For tattooing, it
included invasive operation and ink injection; for the graph
method, the reference image was mapped with the graph.
Additionally, the targeting time shows the computational
time necessary for targeting the markers in the follow-up
frames. Obviously, for tattooing, the targeting time was zero
due to the physical symbolic nature of the tattoo; for graph
method, including matching moving images with the graph
and deformation registration determination.

Because tattooing was a cumbersome operation, even
skilled endoscopists needed more than 10 s to mark the lesion
with ink. Moreover, the risk of injection failure might occur,
and, in this case, the endoscopists have to make the injection
more than one time. In contrast, graph based marking
method required less time (12 ms) than lesion tattooing. The
targeting time for the graph method was almost 50 ms. To
realize lesion tracking in real-time during gastroscopy, we
calculated the lesion’s position every three frames.

4. Discussion and Conclusion

In this paper, a target tracking method for gastroscopic
image sequence was proposed. The proposed method can
be applicable for clinical biopsy procedure. Comparing with
traditional biopsy method, this method is noninvasive and
does not require additional instruments. This method also
provides a solution for postoperative lesion review and
intraoperative navigation in the followups, which will be
validated with further experimentation in the future.

The experiment results demonstrate that the method’s
accuracy and operation time were satisfactory for clinical
practice. Compared to traditional lesion surveillance meth-
ods, the marker created by this method is recorded by the
workstation, a platform where stability of stored information
is not sensitive to time, unlike ink-based targeting. Addition-
ally, this method’s technical operation had a shallow learning
curve for endoscopists and had a lower risk of operation
failure.

Due to the mechanics and movement of the intestinal
system, variety in gastroscopic images, representation varies
largely; these obstacles necessitate specific solutions for a
graphical representation of image sequences of the intestinal
tract. We constructed an independent graph for a corre-
sponding gastroscopic device (e.g., Olympus QX 260). The
experimental results show that this methodology is viable for
the targeting procedure. Because the endoscope moves flexi-
bly in the stomach, the reference images and moving images

Computational and Mathematical Methods in Medicine

may not be categorized to appropriate nodes in the current
graph. In the future, a graph update scheme will be considered
to extend the graph for further tracking. Additionally, future
studies will be focused on validating the graph’s accuracy with
a large number of patients, endoscopists, and gastroscope
devices.
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