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Puberty and metamorphosis are two major developmental transitions linked to the
reproductive maturation. In mammals and vertebrates, the central brain acts as a
gatekeeper, timing the developmental transition through the activation of a
neuroendocrine circuitry. In addition to reproduction, these neuroendocrine axes and
the sustaining genetic network play additional roles in metabolism, sleep and behavior.
Although neurohormonal axes regulating juvenile-adult transition have been classically
considered the result of convergent evolution (i.e., analogous) between mammals and
insects, recent findings challenge this idea, suggesting that at least some neuroendocrine
circuits might be present in the common bilaterian ancestor Urbilateria. The initial signaling
pathways that trigger the transition in different species appear to be of a single
evolutionary origin and, consequently, many of the resulting functions are conserved
with a few other molecular players being co-opted during evolution.

Keywords: metamorphosis, puberty, Urbilateria, Drosophila, sleep, juvenile-adult transition, neuro-hormonal
regulation, neuroendocrine axis
INTRODUCTION

Timing Metamorphosis as Compared to Puberty
Life is based on the transmission of genetic material across generations. In multicellular animals, the
most frequent (and consequently the most successful) strategy is through sexual reproduction. It
usually requires a juvenile-adult transition in order to reach sexual maturation. Both mammals and
insects trigger this process through a complex, multi-step neurohormonal signaling that may show
certain structural parallelisms (Figure 1) (1, 2). Indeed, the neuroendocrine axis is activated at the pre-
pubertal and pre-metamorphic stages by the activity of a group of neurons, which transmitted the
initial stimulus to the mammalian pituitary gland or the Drosophila PG (prothoracic gland). These
neurons, named GnRHn (Gonadotropin Release Hormone-expressing neurons) in mammals and
PTTHn (Prothoracicotropic Hormone-expressing neurons) in insects, project their axons out of the
brain barrier towards the ME (median eminence) or the PG to secrete the GnRH and PTTH
neuropeptides, respectively. GnRH activates its GPCR (G-protein-coupled receptor) named GnRHR
in the anterior pituitary cells inducing the circulating secretion of FSH (Follicle-stimulating Hormone)
n.org February 2021 | Volume 11 | Article 6022851

https://www.frontiersin.org/articles/10.3389/fendo.2020.602285/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.602285/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.602285/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Nuria.ROMERO@univ-cotedazur.fr
mailto:famartin@cajal.csic.es
https://doi.org/10.3389/fendo.2020.602285
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.602285
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.602285&domain=pdf&date_stamp=2021-02-12


Barredo et al. Timing Juvenile-Adult Transition
and LH (Luteinizing Hormone), which stimulates the production
of steroid hormones (estrogens) in the gonads. Instead, PTTH
activates its RTK (receptor tyrosine kinase) TORSO in the PG,
arousing the MAPK/ERK (mitogen-activated protein kinases/
extracellular signal-regulated kinases) signaling pathway, which
leads to the direct stimulation of a steroid hormone (ecdysone) (3,
4). Moreover, the awakening of PTTHn and GnRHn activity at
pre-metamorphic or pre-pubertal timing depends on the insect
AstA/AstAR1 (AllatostatinA) and the mammalian Kiss1/Kiss1R
(kisspeptin1) GPCR-dependent systems (Figure 1). The general
scheme is very similar in terms of the design of the molecular
players but not in the evolutive history, with the exception of
AstA/kiss1 (see below). In addition to the hierarchical regulation
of both axes, the different clusters of neurohormone-expressing
cells also act as regulatory hubs (1, 2). For instance, GnRHn
activity is controlled not only by kiss1 but also by other
neuropeptides like neurokinin-B, dynorphin, NPY and the
neurotransmitter GABA, among others (1).

The complexity of the mammalian neurohormonal axis (also
known as hypothalamic–pituitary–gonadal -HPG- or reproductive
axis) is reflected in the imbricated architecture of the cellular
circuitry in contrast with the apparent simple beauty of insect
one, with fewer cells and genes. Nevertheless, new players have been
found recently that added complexity and solved an apparent
paradox: whereas the PG down-regulation of ecdysteroidogenic
enzymes arrests the developmental transition (as shown by the
absence of pupariation), removing or silencing ptth or torso only
creates a delay in pupariation onset. In the last decade, several
studies have pointed out the PG as another node (in addition
to the brain), which also integrates signals to regulates
ecdysteroidogenesis. Indeed, Cruz and colleagues recently
described that prothoracic EGFR (Epidermal Growth Factor
Receptor) stimulated by VEIN and SPITZ ligands activate
Frontiers in Endocrinology | www.frontiersin.org 2
MAPK/ERK pathway in the PG, as PTTH/TORSO signaling also
does (5, 6). EGF signaling might compensate for ptth loss of function
(LOF). EGFR LOF causes developmental arrest, resembling the lack
of ecdysone (5). The autonomous PG expression of split and vein
ligand genes depends on ecdysone signaling itself, suggesting that
the EGFR pathway acts as an amplifying signal of the ecdysone
production in the PG, a role previously described for ecdysone/EcR
signaling (7, 8). Conversely, PTTHn are controlled by
developmental and environmental inputs like growing tissue
damages, photoperiod, over-crowding conditions, and ecdysone
itself (2, 8). PTTHn also receive inputs from other neuronal
circuits like the AstAn (9) and the corazonin (crz) neurons (10).
Therefore, it is suggested that PTTH might be the link between the
endocrine system and the internal/external milieu and other signals
like EGF and ecdysone itself are required autonomously in the PG
to ensure enough ecdysone surge to provoke metamorphosis (2).

Another enigma in the insect model comes from the difference
in the observed developmental delay between the ptth null mutant
(one day) and the PTTHn ablation (5 days). This suggests that
PTTHn may cause electrical stimulation of the prothoracic gland
to promote the release of ecdysone (11), or they may secrete
another signal(s) that regulates ecdysone synthesis (12). Future
studies are necessary to disclose the full PTTH neuronal function
in timing the juvenile to adult transition.
THE NEUROHORMONAL AXIS DURING
JUVENILE TO ADULT TRANSITION
AND FERTILITY

Previous to adolescence and near to birth, the mammalian
neurohormonal axis is active for a relatively short post-natal
FIGURE 1 | Neurohormonal axes triggering Juvenile-Adult (J/A) transition in mammals (left) and insects (right).
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period known as mini-puberty (13, 14). This initial increase in the
levels of sexual steroids is important for the correct development
of gonads. Whether something similar may also happen in insects
involving early pulses of ecdysone needs further investigation,
although in larval stages three small ecdysone peaks of unknown
function and non-related to ecdysis are described (15) After
triggering puberty, the mammalian hypophysiotropic axis
controls the overall pubertal process (somatic and sexual
maturation) through steroid hormones (Figure 2). In
Drosophila, the transition is commanded by ecdysone through
the metamorphosis process. However, the role of PTTH in
stimulating ecdysteroidogenesis during metamorphosis is not
clear. ptth null mutant animals do not show any defect on the
metamorphic process (12) although ptth transcription is highest
at this stage (20 times higher than at larval or adult stages) (16).
This result implies either that metamorphic PTTH does not
stimulate ecdysteroidogenesis or, alternatively, that the role of
PTTH in stimulating ecdysone synthesis during metamorphosis is
compensated when absent (Figure 2). Moreover, crz or AstA
silencing does not disturb metamorphic process itself. Therefore,
whereas GnRH is essential for the pubertal process since its
deficiency resulted in infertility and improper development of
gonads, lack of AstA, crz, and ptth does not disrupt
metamorphosis (like ecdysone absence does). This suggests the
existence of another intrinsic/regulatory mechanism of ecdysone
production in insects. Indeed, some hemimetabolous and
ametabolous insects lack ptth, and the involvement of CRZ in
Frontiers in Endocrinology | www.frontiersin.org 3
their metamorphic process has not been described (17–19).
Further studies should better clarify the existence of other
ecdysone regulatory/intrinsic mechanism that might question
the relevance of AstA, crz, and ptth signaling in timing Juvenile-
to adult transition. Hence, the role of the PTTH-PG axis in the
metamorphosis process itself remains controversial. Nevertheless,
there are pieces of evidence indicating that the PTTH-PG axis is
present during metamorphosis and regulates the rhythmicity of
eclosion (i.e., pupal emergence) (20). PTTH acts as an
intermediate player between the central clock, PDF-positive
neurons, and the PG to produce ecdysone in a coordinated and
timely manner to induce such rhythmic eclosion (20).

What is the role of these neurohormonal axes and their
neuropeptide players in the adult stage? Are they still
expressed and functional? In mammals, the pulsatile pre-
pubertal secretion of GnRH enables the final maturation of a
GnRH surge, which triggers the first ovulation (Figure 2) (21).
Subsequently, the HPG axis regulates the ovulatory cycle in the
female adult. In Drosophila, the fertility of adult females is also
controlled by the ecdysone produced at the ovaries since the
prothoracic gland degenerates by the end of metamorphosis (22,
23). In the adult brain, PTTH expresses in a group of neurons,
but during metamorphosis, the larval brain undergoes extensive
remodeling, and many new neurons are added. In this rewiring
scenario, no precise analyses have been done to determine
whether or not PTTH adult neurons are conserved from the
juvenile larval stage. Moreover, adult PTTHn does not show
FIGURE 2 | Schematic representation of the J/A neuroendocrine axis involvement during human (up) and Drosophila (down) lifespan. Juvenile stages (left), pubertal
or metamorphic stage (center), and adult stage (right).
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projections towards the ovaries to directly control ovary
ecdysteroidogenesis and reproduction (3). These observations
may imply that the adult neuroendocrine axis is not identical to
the larval one. Future research is needed to determine whether
PTTH control adult ecdysteroidogenesis and reproduction as the
mammalian neuroendocrine axis does.
TRANSITIONAL NEUROHORMONES
IN THE ADULT

In contrast with the reduced number of larval AstA-expressing
neurons, adult AstA expresses in several neurons and endocrine
cells (23). The existence of several AstA-producing cell
populations suggests distinct AstA roles in adult physiology,
including behavior. The most conserved and studied function of
AstA/AstAR signaling during adulthood refers to feeding and
hunger regulation (23, 24). The activity of AstA-expressing
neurons provides a satiety signal and regulates systemic Insulin
signaling. Lowering AstA levels in enteroendocrine secretory
cells (EESs) from the gut induces early midgut senescence and
shortens lifespan (24). In part, AstA mediates sugar-mediated
satiety through the mushroom body, inhibiting dopaminergic
input neurons that results in suppressed food search (25). This
suppression of neuronal dopamine activity is essential to form
long-term appetitive memory after sugar ingestion (26).

Sleep is also affected by AstA signaling in the Posterior Lateral
Protocerebrum (PLP) cell cluster. These neurons are targets of
the circadian PDF-expressing neurons, affecting sleep but not
rhythmicity (23). AstA functionally links PLPs with an
important sleep center such as the central complex through
AstAR1, although the physical connection is still missing (27).
Interestingly, input dopaminergic neurons of the mushroom
body also play a role in sleep regulation, but a possible role of
AstAn has not been explored yet (28). It is tempting to speculate
that AstA acts as a single key molecule that can coordinate an
energy-saving activity like a sleep state with general metabolic
homeostasis regulation at several levels.

As discussed above, the insect AstA system is evolutionary
related to the mammalian GAL and KISS1 system. The small
neuropeptide GAL and its three described receptors are widely
distributed in several neuronal populations of the central and
peripheral nervous systems and in other tissues such as
gastrointestinal tract (29). In contrast, Kiss1 expression is more
restricted to particular neuronal populations of the hypothalamus
(rostral periventricular area -R3PV- and arcuate nucleus -ARH-)
and the amygdala (1). KISS1n are classically related to reproduction;
however, their axons project to many other targets than solely
GnRHn. Concerning feeding and metabolism, controversial data
propose that the activation of GAL signaling has a transiently (up to
24 h) positive effect on sugar feeding ameliorating insulin resistance
(29). A recent work implies the lateral hypothalamic subset of GALn
in regulation of food reward, however the implication of GAL
signaling is not studied (30). KISS1n themselves control feeding
behavior, albeit independently from KISS1 signaling (31).
Frontiers in Endocrinology | www.frontiersin.org 4
A KISS1-related effect on metabolism has been reported in
Kiss1R-deficient aged (but not young) mice, which are obese
without increased feeding (32–34). Therefore, GAL and KISS1 are
somehow connected to feeding and metabolism regulation, but they
do not play the essential role that the AstA system does.

By comparison, the link between GAL signaling and sleep is
well established. Preoptic GAL neuronal activity and expression
are essential for sleep rebound after sleep deprivation (35). These
results indicate that GALn, by means of GAL, is the output of the
sleep homeostat in vertebrates. KISS1 function itself is not related
to sleep regulation, although Kiss1n from the arcuate nucleus do
play a key role in the control of circadian rhythms such as sleep,
temperature, locomotor activity, and food consumption, probably
downstream of the central clock (36). The most extensively
established functions of GAL signaling are anxiety/depression
and addiction, which are often co-morbid with addictive
behaviors (37). Increased GAL signaling is associated with
depression-like states. GALR 1 and 3 mediate this effect by
interacting with the Serotonin receptor whereas GALR2 plays
an opposite antidepressant and anxiolytic role (38). This
differential effect may explain why increased GAL activity
induces alcohol consumption, but it protects against other
drugs of abuse (such as nicotine and opiates) (38). KISS1
signaling also has an impact on anxiety-like behaviors, which
may be GnRH/estrogen-mediated or exclusively Kiss1R-mediated
in the hippocampus (39). KISS1 regulates reproduction-related
behaviors such as male sexual preference mediated by GnRH
neurons, although a copulatory behavior like lordosis (the arching
of female back in response to male copulation) is controlled by
Kiss1n independently of KISS1 (40). A possible relation of AstA
pathway with anxiety-like or addiction behaviors remains to be
studied in Drosophila models of such behaviors. The only
suggestive data is that high levels of AstA induce aggressiveness
in Africanized honeybees (41).

In the adult brain, ecdysone regulates circadian rhythmicity
through Let7 (although it is not clear where ecdysone is
produced) (42). ptth mRNA is also detected in adult heads,
with levels that change following a 24-h cycle (42). It has been
proposed that PTTH controls adult ecdysone production
participating in a regulatory feedback loop of the circadian
clock although down-regulating ptth receptor torso does not
produce any rhythmic alterations in the locomotion activity (20,
42), a classical readout of circadian rhythm in some insect and
mammalian models. According to a ptth reporter that reflects
faithfully larval and pupal expression, ptth expression in the
adult is restricted to the Ellipsoid Body, a part of the Central
Complex associated with sleep regulation (3, 27). This expression
pattern is compatible with a role for ptth in sleep, although this
possibility remains unexplored until now. In adult stages, PTTH
behavioral function requires further studies, as well as its role in
biological rhythms and steroid production.

Conversely, the adult role of CRZ has been studied in much
more detail in regards to stress signaling metabolism and
reproduction-related behaviors (43). crz is expressed in the
somata of neurosecretory cells, among others. Down-regulation
of crz in these cells or crzR in the IPCs (Insulin Producing Cells)
February 2021 | Volume 11 | Article 602285
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prolongs survival in flies exposed to starving conditions, and also
affect lipid and glucose metabolism (44). The knockdown of crzR
in salivary glands and fat body (functionally equivalent to
mammalian fat cells and liver) causes similar metabolic
phenotypes, including increased triacylglyceride levels and
feeding, after exposure to different stress conditions (45).
Furthermore, in the marine bristle worm Platynereis dumerilii
CRZ signaling coordinates metabolic state with the lunar phase
in order to achieve the final size and induce sexual maturation
(46). Intriguingly, crz- and crzR- expressing neurons in the
abdominal ganglia regulate sperm transfer and copulation
duration in males (47). The activation of CRZ signaling is
sufficient to mimic ejaculation-caused reward, driving
appetitive memories and reducing ethanol consumption (48).
It was previously shown that CRZ regulates ethanol sensitivity
and detoxification (43).

The presence of many GnRH neurons outside the hypothalamus
in transparentized human fetuses, and the expression of GnRHR in
several adult brain structures (which include the cortex, spinal cord,
cerebellum, and hippocampus) suggest that GnRH signaling plays
additional roles even after adolescence (49, 50). Most of them
depend on its estrogenic activity, like fertility. Low GnRH levels
and high GnIH (Gonadotropin Inhibitory Hormone, the main
GnRH antagonist), correlate with the severity of human
insomnia, probably through circadian estrogens regulation (51,
52). The role of estrogens in sleep and metabolism has been
extensively studied and is described elsewhere (53). In addition,
given the increasing evidence that GnRH signaling has
neurotrophic, neuroprotective, and regenerative functions, it has
been proposed that combined therapy of GnRH with Growth
Hormone may be beneficial following neural damage (50). For
instance, GnRH signaling in the female hippocampus regulates the
synaptic plasticity through an estrogen-mediated mechanism (54).
COMPARISON OF NEUROHORMONAL
AXES AND THEIR EVOLUTIONARY
ORIGIN

One controversial issue is how similar the overall design of
GnRHn and PTTHn neuroendocrine hubs is since both trigger
very similar processes, puberty and metamorphosis, respectively.
In humans, GnRHn unmyelinated projections have unipolar or
bipolar morphology that functions as a dendrite and axon
simultaneously, a structure named dendron (55). These
projections travel to the ME of the pituitary gland covering
distances over 1–3 mm (56). Once in the ME, GnRHn
projections branch into multiple short axons with “specialized”
neuroterminals boutons that target the blood vessels from the
closed portal vasculature. There, GnRH is released to act on the
anterior pituitary gland (57). In Drosophila, PTTHn projections
also have a very simple unipolar morphology that functions
simultaneously as a dendrite and axon and travels a long distance
of up to 500 µm to reach the PG (3, 58). PTTHn projections
branch into multiple short axons with “specialized” terminal
Frontiers in Endocrinology | www.frontiersin.org 5
boutons that target individual PG cells (12). GnRHn exhibit
pulse and surge modes of activity to control fertility. Whereas the
LH surge requires functional soma-proximal dendrites and distal
dendron, the distal dendron integrates synaptic information to
drive pulsatile GnRH secretion (59). Recent studies indicate the
presence of regulatory mechanisms controlling GnRHn and
PTTHn projections into the ME/PG, respectively (9, 60, 61).
Actually, various genes involved in the Semaphorin signaling,
like semaphorin-3A (Sema3A), neuropilin (Nrp1 or Nrp2)
coreceptors, and its receptor plexin-A1 (PlxnA1), have been
implicated in the guidance of GnRH neuronal migration, its
survival and adult GnRHn plasticity affecting fertility (60, 62–
66). Whereas PTTH neuronal development and migration
towards the PG needs to be elucidated, a recent study suggests
that PTTH neurons are also suffering from axon remodeling
during the juvenile period (9). Drosophila Semaphorin signaling
is well conserved, and it has also been implicated in axon
guidance and synaptic plasticity (67). Interestingly, silencing
the homologous of PlxnA1 (pLexB receptor) in the PG caused
a delayed onset of metamorphosis, suggesting that a similar
mechanism regulates PTTH neuronal growth (68). Further
studies should investigate the involvement of Drosophila
Semaphorin signaling pathway in PTTH neuroterminal
remodeling, migration towards the PG or survival, expanding
or not the similarities between PTTH and GnRH neuronal
development and physiology.

Unlike Drosophila PTTHn, which directly innervate the
prothoracic gland itself, Lepidoptera PTTHn release PTTH into
the hemolymph from their specialized nerve endings in the corpus
allatum (CA) (69). The CA is the endocrine organ that produces
Juvenile hormone (JH), the primary negative regulator of PTTH in
the Lepidoptera Manduca sexta. JH drops upon the organism
attainment of a critical weight allowing PTTH titters to rise and
induce metamorphosis (70). In Drosophila, the function of JH on
ecdysone synthesis has been the center of controversies. Indeed,
removal of total JH by CA ablation or the use of different null
mutants does not advance metamorphosis as expected by releasing
the potential JH inhibitory effect on ecdysteroidogenesis (71).
However, the silencing of the JH receptor exclusively in the PG
induces ecdysone biosynthesis and triggers the precocious initiation
of pupariation (72, 73). It has been proposed that this difference
reflects a secondary effect of JH in the Insulin-mediated growth
pathway, which antagonizes the direct timing effect on the PG.
Further studies are needed to better clarify this point. Differences in
the neuroendocrine connectivity between Drosophila andManduca
might reflect species-specific variances in ecdysone regulation.
Indeed, in other insects like Bombyx mori, PTTHn also innervates
the CA, raising the possibility that PTTHn projections towards the
CA is a general trait in insects (74). Furthermore, Drosophila PTTH
functions as a neuropeptide on the PG, whereas Lepidoptera PTTH
acts as a circulating hormone (3, 12, 69). Indeed, PTTH inManduca
sexta and Bombyx mori shows more similarities with the
mammalian GnRH, which does not directly reach the hypophysis
and acts as a secreted hormone into the circulating portal vessels.

Another pending question in the field is whether or not
genes involved in the mammalian and insect neuroendocrine
February 2021 | Volume 11 | Article 602285
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circuitry are evolutionary related, given the evolutionary distance
(Figure 3A). Several phylogeny studies propose that the insect
AstA system is evolutionary related to the mammalian GAL and
KISS1, the mammalian gatekeeper of puberty (75–79). Indeed,
gal and kiss emerged from the same ancestral gene precursor, and
most likely this divergence occurs before protostome and
deuterostome separation since kissR sequences have been
found in protostomes such as annelids and mollusks (Figure
3A) (78–80). Based on neuropeptide receptor analysis, the
AstA system was initially evolutionarily associated with GAL
(Figure 3B) (75, 76). Functional studies in the Drosophila
AstA system support this evolutionary relation since AstA
participates in similar biological processes as GAL (sleep, food
intake, metabolism, gut physiology, and others; see above).
Nevertheless, more recent phylogeny and gene synteny studies
on the receptors and mature peptides might indicate that AstAR
Frontiers in Endocrinology | www.frontiersin.org 6
and KISS1R emerged after GALR gene divergence from the
common ancestral gene (Figure 3C) (77, 78). This model is
also reinforced by our finding that AstA regulates the juvenile-
to-adult transition, as Kiss1 does in mammals (9). Moreover,
KISS signaling in the non-chordate deuterostome sea cucumber
Apostichopus japonicus regulates both reproductive and non-
reproductive (glucose metabolism) functions as the AstA system
does in Drosophila, hinting to a possible dual ancestral role for
KISS/AstA signaling (81). These data favor the hypothesis that
AstAmay be the true kiss1 orthologue while gal is a kiss1 paralog
gene. Further studies are required to determine the precise
mammalian AstA orthologous and paralogous conclusively.

Whereas AstA and Kiss1 are evolutionarily related, GnRH and
ptth are non-homologous genes. PTTH, a cysteine knot protein,
was the first hormone/neuropeptide identified in insects (82). It
is part of the noggin/noggin-like family, an extracellular
A

B D

E

C

FIGURE 3 | Evolutionary origins of the neuroendocrine gene network. (A) Animal phylogenetic diagram showing the position of mammals and insects. (B–D)
Schematic representation of different hypothetical gene evolution for GalR, AstAR, kissR, GnRHR, and crzR. (E) Speculative neuroendocrine axis controlling J/A
transition of Urbilateria (left) that has been evolutionary conserved in insects (center) and mammals (left).
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regulator of BMP (Bone Morphogenetic Protein) signaling first
characterized in vertebrates (2). However, ptth has evolved from
a noggin-like gene exclusively in insects being a common
component of holometabolous, with no conservation in other
insect species or in vertebrates (19). On the other hand, the
PTTH receptor Torso (4) is an RTK, similar to the large numbers
of RTKs present in animal genomes, making difficult its precise
identification for evolutionary studies. However, some
phylogenetic relationship analyses determine that torso
appeared before the divergence of lophotrochozoans and
ecdysozoans but not after the divergence of deuterostomes and
protostomes (Figure 3A) (19).

GnRH neuropeptide and its receptor GnRHR do exist in
Arthropoda, which include insects. Evolutionary analyses suggest
that a common ancestral gene in the Bilateria family gave rise to
GnRHR and crzR (corazonin receptor) through gene duplication;
after that crzR was lost in the vertebrates (Figure 3D) (83, 84).
The second gene duplication in Arthropoda from GnRHR gave
rise to Adipokinetic Hormone (AKHR) and AKH/CRZ-related
peptide Receptors (ACPR), the latter being lost in Drosophila (not
shown). Functional experiments uncovered an essential role of
AKH in energy/metabolism homeostasis, acting as the equivalent
of the mammalian glucagon, and providing evidence that AKH
does not function as the ortholog of GnRH (85). Accordingly,
circuitry analyses in Drosophila demonstrated that AKH positive
neurons do not show a direct innervation to the prothoracic
gland as PTTH neurons do or as GnRH neurons connect with
the pituitary gland (86). Interestingly, crz is expressed in a group
of neurons (CRZn) that project towards both the PTTHn and
PG. Early in development crzR is expressed and functional in
PTTHn and not in the PG, thus regulating systemic growth
PTTHn-mediated but not the metamorphosis timing (10). These
observations may indicate that the CRZ-PTTH circuit is more
likely a recent innovation in insects. Alternatively, a cross-talk
between CRZ neurons and AstAn may exist, which would
suggest a more persuasive homology between the mammalian
and insect neuroendocrine systems than previously thought (10).

It is tempting to speculate that an ancestral common
neurohormonal axis regulating metamorphosis existed in
Urbilateria (the putative common ancestor of protostomes and
deuterostomes), which would probably have an initial ciliated
free-swimming (pelagic) larval phase (Figure 3E) (87). This axis
would diverge to mammalian KISS1/GnRH and insect AstA/
CRZ. Not surprisingly, non-chordate deuterostomes like sea
cucumber and starfish have functional KISS and GnRH
signaling, respectively (81, 88), and the metamorphosis of
an ancient chordate like the Ascidian Ciona is triggered by
GABA-induced GnRH release (89). In this scenario, PTTH/
TORSO signaling might have been co-opted later on during
insect evolution and somehow substituted the transitional
developmental function of CRZ (Figure 3E). In contrast, CRZ
kept its role in systemic growth and food intake during
starvation-induced stress response (67). Supporting this
hypothesis, in the diptera-like Oriental fruit fly (Batrocera
dorsalis) CRZ signaling regulates juvenile-adult transition,
although ptth/torso genes are also present in the genome with
Frontiers in Endocrinology | www.frontiersin.org 7
no discernable role on pupariation (90, 91). Also, the initiation of
Manduca ecdysis depends on CRZ activity, and the role of ptth
on Manduca pupariation is firmly established (82, 92). In
summary, we propose that a functional neuroendocrine axis
comprising ancestral KISS/GnRH-like signaling, which
regulated juvenile-adult transition and probably also stress-
related metabolism, existed in Urbilateria (Figure 3E). Despite
posterior modifications in other functions and the incorporation
of new genes, this surprising conservation among phyla would
mean that separating immature juveniles and sexually mature
adults might be a successful and most likely unique evolutionary
event. It will be of interest to explore this hypothesis further.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The genetic network involved in the developmental switch display
several functions in adulthood. While puberty and metamorphosis
present common features regarding the central role of the brain
controlling steroid production to initiate the developmental
transition, the neuroendocrine axis looked simpler in insects
than in mammals. The central neurons controlling gland
hormone production involves GnRH and PTTH signaling
pathways, with no sequence homology between GnRH/GnRHR
and ptth/torso genes. These observations would suggest that both
neurohormonal axes are just functionally analogous. However, we
recently found thatAstA is theDrosophila homolog for kisspeptin1,
thus challenging this simple view. Moreover, a recent report on
Drosophila crz together with novel evolutionary aspects of kiss-
GnRH systems indicated that puberty and metamorphosis might
be homologous processes. These data open the question of
whether the neuroendocrine axis represents an evolutionary
convergence or an evolutionary conserved mechanism timing
Juvenile-to-adult transition between mammals and insects. Even
if there are clear similarities between pubertal and metamorphic
mechanism, several differences are also present.

In mammals, the adult HPG axis control steroid production
to regulate fertility. In Drosophila, whereas it is not clear whether
or not PTTH or CRZ regulate steroid production, steroid
(ecdysone) does control adult fertility. The neuroendocrine
gene network has also been found to regulate adult physiology
and behavior both in mammals and Drosophila. GAL/KISS and
AstA are involved in feeding/metabolism and sleep regulation,
although with differential relevance. This may indicate not only
the maintenance of putative ancestral metabolic roles but also the
acquisition of novel functions. So the question is if we can model
any dysregulations of the neuroendocrine axis or associated
complex human pathologies (such as anxiety and addiction) in
a simpler model system like Drosophila.

Future research might lead to a better understanding of the
endocrine network evolution and confirm (or refute) the common
origin of the neuroendocrine axis that controls the developmental
transition to adulthood. Distinguishing similarities and
differences in the juvenile to adult transition between mammals
February 2021 | Volume 11 | Article 602285
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and invertebrates is an essential step in the process of using model
organism to allows the identification of target elements to assay
potential remedies to multifactorial ailments.
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Quintanar JL. Growth hormone (GH) and gonadotropin-releasing hormone
(GnRH) in the central nervous system: A potential neurological combinatory
therapy? Int J Mol Sci (2018) 19:1–21. doi: 10.3390/ijms19020375

51. Xia L, Chen GH, Li ZH, Jiang S, Shen J. Alterations in Hypothalamus-
Pituitary-Adrenal/Thyroid Axes and Gonadotropin-Releasing Hormone in
the Patients with Primary Insomnia: A Clinical Research. PloS One (2013)
8:1–21. doi: 10.1371/journal.pone.0071065

52. Joffe H, Crawford S, Economou N, Kim S, Regan S, Hall JE, et al.
A Gonadotropin-Releasing Hormone Agonist Model Demonstrates That
Nocturnal Hot Flashes Interrupt Objective Sleep. Sleep (2013) 36:1977–85.
doi: 10.5665/sleep.3244
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