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Abstract
In each study testing the survival experience of one or
more populations, one must not only choose an appro-
priate class of tests, but further an appropriate weight
function. As the optimal choice depends on the true
shape of the hazard ratio, one is often not capable of get-
ting the best results with respect to a specific dataset. For
the univariate case several methods were proposed to
conquer this problem. However, most of the interesting
datasets contain multivariate observations nowadays. In
this work we propose a multivariate version of a method
based on multiple constrained censored empirical like-
lihood where the constraints are formulated as linear
functionals of the cumulative hazard functions. By con-
sidering the conditional hazards, we take the correlation
between the components into account with the goal of
obtaining a test that exhibits a high power irrespective
of the shape of the hazard ratio under the alternative
hypothesis.
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1 INTRODUCTION

In each study testing the survival experience of one or more populations, one must choose an
appropriate test. Many of those tests rely on the choice of a weight function. One can select an
optimal weight function if the true shape of the hazard ratio under the alternative hypothesis is
known, which is not the case in most applications.

As a result one is not capable of getting the best results with regard to a specific dataset. The
choice of the weight function influences the error rates. In certain situations a wrong choice of
the weight function may lead to a considerable power reduction as pointed out by Kosorok and
Lin (1999) and Klein and Moeschberger (1997). In the univariate case different methods were
proposed to solve the problem, for example, by Brendel, Janssen, Mayer, and Pauly (2014).

Another problem arises from the complexity of multivariate survival times. Even though in
current times of massive data ascertainment, data typically contains multivariate observations,
one might lack an appropriate method to model the true structure of the survival times.

For bivariate samples, many methods to analyze survival times have been proposed. The meth-
ods by Lin and Ying (1993) and Wang and Wells (1997) deal with nonparametric estimators of the
bivariate survival function under univariate censoring. An earlier approach by Dabrowska (1988)
can even deal with general bivariate censoring. Theoretical and computational performance com-
parisons of different estimators were conducted by Gill, van der Laan, and Wellner (1995) and
Wang and Zafra (2009), among others. A recent paper by Huang and Zhao (2018) also deals with
the bivariate survival function and uses empirical likelihood to obtain asymptotic confidence
intervals.

While we mainly focus on the bivariate time-to-event times, our method can easily be
extended to a higher dimensional case. For multivariate data with more than two response vari-
ables, methods have been proposed as well. For the multivariate case there exist less methods
than in the bivariate case due to the higher complexity and technical challenges. The most com-
mon model for multivariate time-to-event data is the Cox model. Further, the accelerated failure
time model is also often applied. A comparison of the Cox model and the accelerated failure
time model, among others, was performed, for example, by Clark, Bradburn, Love, and Altman
(2003b). But most multivariate methods have limitations. For example many models make para-
metric assumptions which may not be met, as does the Cox model which assumes proportional
hazards. Other methods might lack the ability to deal correctly with dependent or correlated
samples to their full extent, as their design might not pick up the correlation structure. The
assumption of independence between the components is sometimes implicitly assumed, even
though it is likely to be violated when dealing with different times-to-event of a single subject.
Tests assuming independence will fail, for example, when the marginal distributions are similar
for two samples, but the correlation differs. Most methods, which are primary, based on univariate
test statistics can solve this problem by integrating the covariance matrices into the multivariate
test statistics, as performed by Wei and Lachin (1984). An overview of multivariate survival anal-
ysis and what to consider when choosing a method for a specific dataset was given, for instance,
in Clark, Bradburn, Love, and Altman (2003a, 2003c, 2003d) and Clark et al. (2003b).

The focus in this paper is motivated by the approach proposed by Bathke, Kim, and Zhou
(2009). Their method is based on censored, multiply-constrained empirical likelihood, where
the constraints are formulated as linear functionals of the cumulative hazard functions. Their
simulations suggested that the test performed well along with an easy computation compared
to, for example, the function-indexed weighted log-rank tests which use extensive Monte-Carlo
simulations. The proposed method unfortunately could only deal with univariate observations.
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In this paper, following the approach of Bathke et al. (2009), we propose a multivariate test
statistic. In case of independent components, the approach introduced here reduces to that by
Bathke et al. (2009). Test procedures designed in an univariate manner are naturally not capable of
picking up correlations or dependencies. By considering the conditional hazards, we take the cor-
relation between the components into account with the goal of obtaining a test with a high power,
irrespective of the shape of the hazard ratio under the alternative hypothesis. When considering
real time-to-event data it is unlikely that the observations within one subject are uncorrelated. It
is critical to have test methods that are capable of detecting these data structures. This is why an
extension of the method proposed by Bathke et al. (2009) to the multivariate case is important.
Combining the conditional hazards and the constraints offers a new and well-functioning test
procedure that could be the foundation for further tests on multivariate survival times.

The paper is structured as follows. Section 2 deals with the theoretical aspects of the proposed
method for the one-sample case. Section 3 describes the results for the two-sample case. In Section
4 we give examples on how to apply the proposed method. The simulations and an application to
real data can be found in Section 5. The regularity conditions and the proofs of the main theorems
are given in the Appendix.

2 ONE-SAMPLE CENSORED EMPIRICAL
LOG-LIKELIHOOD WITH MULTIPLE CONSTRAINTS

We start by giving the results for the one-sample case. We propose two methods: one assumes
independence between the components, while the other one takes possible dependencies into
account.

Let X1,… ,Xn be independent, identically distributed d-dimensional observations with
Xi ∶= (X1i,… ,Xdi)T , distribution function FX0(t), marginal distribution functions FX01(t),… ,

FX0d(t), cumulative hazard function ΛX0(t), and marginal cumulative hazard functions
ΛX01(t),… ,ΛX0d(t). Due to right censoring we only observe

Tji = min{Xji,CX
ji} and 𝛿ji = 1{Xji ≤ CX

ji}, i = 1,… ,n, j = 1,… , d, (1)

with CX
i = (CX

1i,… ,CX
di)

T the censoring times, which are assumed to be independent, identically
distributed, and independent of the Xi’s.

2.1 One-sample EL with independent components

We assume in this section that the components of one observation vector are independent from
each other. Based on the censored observations, the empirical log-likelihood (EL) for component
j pertaining to its distribution FXj is given by

log EL(F̂Xj) =
∑

i
[𝛿ji log(ΔF̂Xj(Tji)) + (1 − 𝛿ji)log (1 − F̂Xj(Tji))], (2)

with F̂Xj the empirical marginal distribution function of component j = 1,… , d. The analogue of
Equation (2) based on the cumulative hazard function is given by

log EL(Λ̂Xj) =
∑

i
[djilog vji + (Rji − dji)log(1 − vji)], (3)
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where

dji =
n∑

l=1
1{Tjl = tji}𝛿jl and Rji =

n∑
l=1

1{Tjl ≥ tji},

with tji denoting the ordered, distinct values of Tji. Here, 0 < vji ≤ 1 are the discrete hazards of
component j at time tji. It is well known that the maximum of Equation (3) with respect to vji is
attained at the jumps of the Nelson–Aalen estimator for each component, that is, vji = dji∕Rji.

Let 𝜽 ∶= (𝜃11,… , 𝜃1k,… , 𝜃d1,… , 𝜃dk)T be a (k ⋅ d)-dimensional parameter defined via the
components’ cumulative hazard functions ΛX01,… ,ΛX0d,

𝜃jr = ∫ gjr(t) log(1 − dΛX0j(t)), r = 1,… , k, j = 1,… , d,

and a hypothesis testing problem

H0 ∶ 𝜃jr = 𝜇jr ∀j = 1,… , d, r = 1,… , k versus HA ∶ 𝜃jr ≠ 𝜇jr for some j and r, (4)

where gjr, j = 1, 2, r = 1,… , k are nonnegative functions, and 𝜽j = (𝜃j1,… , 𝜃jk)T and 𝝁j =
(𝜇j1,… , 𝜇jk)T are two vectors of constants.

The proposed constraints on the hazard vji for given functions gj1,… , gjk and constants
𝜇j1,… , 𝜇jk are given by∑

i
g1(tji) log(1 − vji) = 𝜇j1,… ,

∑
i

gk(tji) log(1 − vji) = 𝜇jk, j = 1, 2, (5)

where the sum is taken over all i for which vji ≠ 1.
Denote the maximum empirical likelihood estimators of ΔΛ̂Xj(tji) under constraints as v∗ji,

where Λ̂Xj is the empirical cumulative hazard function. Application of the Lagrange multiplier
method leads to

v∗ji = vji(𝝀j) =
dji

Rji + n𝝀T
j Gj(tji)

, j = 1,… , d,

where Gj(tji) = {gj1(tji),… , gjk(tji)}T, and 𝝀j ∈ Rk is a vector of Lagrange multipliers obtained by
solving the constraints for component j. Then the component-wise test statistic in terms of hazards
is given by

Wj = −2
[

max
vji

EL(ΛXj) (when (5) holds) − max
vji

EL(ΛXj)
]
. (6)

Theorem 1. Define a test statistic for the complete data set by W ∶=
∑d

j=1 Wj with Wj defined as in
Equation (6). Then, under regularity conditions specified in the Appendix and under H0 as given in
Equation (4), W is asymptotically chi-squared distributed with k ⋅ d degrees of freedom for n → ∞.

Proof. Bathke et al. (2009) showed that the component-wise test statistics Wj are chi-squared
distributed with k degrees of freedom. As we assumed independence between the components,
and thus the test statistics, we obtain the desired result. ▪

Remark 1. Although the notation suggests that the number of constraints per component is
equal for all components, they may differ for the individual components, leading to different
degrees of freedom. More precisely let kj be the number of constraints for component j and define
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K = k1 +…+ kd. Then, the test statistic W is asymptotically chi-squared distributed with K
degrees of freedom under the null hypothesis.

Even though this yields a rather easy and intuitively interpretable test statistic, we encounter
serious limitations. We assumed independence between the components, which may be question-
able for many data sets. We tackle this problem using a more general approach in the next section.

2.2 General bivariate one-sample EL

Following the approach of Dabrowska (1988) and Vonta, Nikulin, Limnios, and Huber-Carol
(2008) for bivariate survival models using conditional hazards, we derive the asymptotic distri-
butions of the nonparametric maximum-likelihood estimator (NPMLE) for the hazards of the
bivariate survival function without constraints for the two-dimensional case and the asymptotic
distribution of the actual test statistics based on the empirical log-likelihood function. We point
out that the following sections are based on the assumption that the true underlying cumulative
hazard function is continuous, even if we do not explicitly state so. Let

ℒ = {Λ ∶ R
+ → R

+, continuous, nondecreasing,Λ(0) = 0,Λ(t) → ∞ for t → ∞}

be the class of continuous univariate cumulative hazard functions on R+. We define a joint
bivariate survival function S on R+ × R+ as proposed in Dabrowska (1988) by

dS(x, y) = exp
{
−Λ10

11(x) − Λ01
11(x) − Λ11

11(x)
}

dΛ10
11(x)

exp
{
−(Λ01

01(y) − Λ01
01(x)

}
dΛ01

01(y) for x < y,
dS(x, y) = exp

{
−Λ10

11(y) − Λ01
11(y) − Λ11

11(y)
}

dΛ01
11(y)

exp
{
−(Λ10

10(x) − Λ10
10(y)

}
dΛ10

10(x) for x > y,
dS(x, y) = exp

{
−Λ10

11(x) − Λ01
11(x) − Λ11

11(x)
}

dΛ11
11(x) for x = y,

where Λc d
a b ∈ ℒ with a and b indicating whether component 1 or 2, respectively, are event free

up to x and c and d indicating whether an event occurred in components 1 and 2 at time point
x. The notation is analogue to the one of the hazard rates, which are given below. This survival
function S(x, y) = P(X ≥ x,Y ≥ y) is indeed a bivariate survival function. A necessary condition
for the proposed method is that Λ11

11 ≡ 0 holds true, that is, the survival times of the components
are not identical

The observed bivariate time is given by T = (T1i,T2i) and the censoring indicator is given by
𝛿i = (𝛿1i, 𝛿2i). Denote the hazards by

𝜆10
11(t)dt = P(t ≤ X1 ≤ t + dt|X1 ≥ t,X2 > t),

𝜆01
11(t)dt = P(t ≤ X2 ≤ t + dt|X1 > t,X2 ≥ t),

𝜆10
10(t)dt = P(t ≤ X1 ≤ t + dt|X1 ≥ t,X2 < t),

𝜆01
01(t)dt = P(t ≤ X2 ≤ t + dt|X1 < t,X2 ≥ t).
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The empirical likelihood for n observations is the product V =
∏n

i=1Vi with

Vi =
∏

t

[
(1 − 𝜆10

11(t)dt)1{T1i>t}1{T2i>t} ⋅ (𝜆10
11(t)dt)1{T1i=t}1{T2i>t}𝛿1i

⋅ (1 − 𝜆01
11(t)dt)1{T1i>t}1{T2i>t} ⋅ (𝜆01

11(t)dt)1{T1i>t}1{T2i=t}𝛿2i

⋅ (1 − 𝜆10
10(t)dt)1{T1i>t}1{T2i<t}𝛿2i ⋅ (𝜆10

10(t)dt)1{T1i=t}1{T2i<t}𝛿2i𝛿1i

⋅(1 − 𝜆01
01(t)dt)1{T1i<t}1{T2i>t}𝛿1i ⋅ (𝜆01

01(t)dt)1{T1i<t}1{T2i=t}𝛿2i𝛿1i

]
.

For simplicity, denote the hazards with al ∶= 𝜆10
11(t1l)dt, bl ∶= 𝜆01

11(t2l)dt, cl ∶= 𝜆10
10(t1l)dt, and dl ∶=

𝜆01
01(t2l)dt, where tjl are the ordered distinct time points of jumps in component j. It follows that

the empirical log-likelihood EL is given by

∑
t1l

[
log(1 − al)

∑
i
(1{T1i > t1l}1{T2i > t1l}) + log(al)

∑
i
(1{T1i = t1l}1{T2i > t1l}𝛿1i)

]

+
∑

t2l

[
log(1 − bl)

∑
i
(1{T1i > t2l}1{T2i > t2l}) + log(bl)

∑
i
(1{T1i > t2l}1{T2i = t2l}𝛿2i)

]
(7)

+
∑

t1l

[
log(1 − cl)

∑
i
(1{T1i > t1l}1{T2i < t1l}𝛿2i) + log(cl)

∑
i
(1{T1i = t1l}1{T2i < t1l}𝛿1i𝛿2i)

]

+
∑

t2l

[
log(1 − dl)

∑
i
(1{T1i < t2l}1{T2i > t2l}𝛿1i) + log(dl)

∑
i
(1{T1i < t2l}1{T2i = t2l}𝛿1i𝛿2i)

]
,

where the sums over tjl are taken over those time points where al, respectively bl, cl, and dl are
strictly greater than zero, and excluding the last time point, as the hazards would be 1. Denote
the sums over ”i” by u1l,… ,u8l in the order they are given above, where l indicates that the sum
was taken at the lth time point of the first component, respectively, the second component.

Lemma 1. Maximizing the empirical log-likelihood function with respect to al, bl, cl, and dl, one
obtains the NPMLE

âl =
u2l

u1l + u2l
, b̂l =

u4l

u3l + u4l
, ĉl =

u6l

u5l + u6l
, d̂l =

u8l

u7l + u8l
.

Proof. Taking the derivatives of EL with respect to al, we obtain

−(1 − al)−1u1l + a−1
l u2l.

The derivative is zero for âl = u2l∕(u1l + u2l). For the other hazards similar calculations will lead
to the given NPMLE. ▪

When fixing the constraints we do not consider the four hazards individually, but combine
them such that only one hazard per component remains for the constraints. This will lead to a
reduction of the degrees of freedom, as for each constraint one degree of freedom is added to the
asymptotic sampling distribution of the test statistic. Define

v1l = P(T2 > t1l|T1 ≥ t1l) ⋅ al + P(T2 < t1l|T1 ≥ t1l) ⋅ cl.
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We estimate v1l by z1lal + z3lcl, where

z1l = (u1l + u2l)∕(u1l + u2l + u5l + u6l) = 1 − z3l.

The term v2l is defined similarly, namely,

v2l = P(T1 > t2l|T2 ≥ t2l) ⋅ bl + P(T1 < t2l|T2 ≥ t2l) ⋅ dl

and estimated by z2l ⋅ bl + z4l ⋅ dl with

z2l = (u3l + u4l)∕(u3l + u4l + u7l + u8l) = 1 − z4l.

The constraints are then imposed directly on v1l and v2l and are given in the form of∑
i

gjr(tji)log(1 − vji) = 𝜇jr, j = 1, 2, r = 1,… , k.

The function to maximize is given by

Gconstraint = EL(𝝀) +
2∑

j=1

k∑
r=1

n𝜆jr

[
𝜇jr −

∑
i

gjr(tji)log(1 − vji)

]
,

where EL(𝝀) denotes the log-likelihood function, as given in Equation (7), without the constraints
but with the modified hazards al(𝝀1),… , dl(𝝀2) instead of the Nelson–Aalen estimators plugged
in and 𝝀 = (𝝀1,𝝀2)T , 𝝀j = (λj1,… , λjk)T , j = 1, 2. Again, the last sum ranges over the distinct time
points excluding the last.

Remark 2. For survival times with absolutely continuous distribution, there is one event per time
point such that either al or cl will be zero. This also implies that v1l ≤ al if cl is zero or v1l ≤ cl if al
is zero. Taking additionally into account that we exclude the last time points such that u2l∕(u1l +
u2l) ≠ 1 and u6l∕(u5l + u6l) ≠ 1, we can even go as far as stating al, cl ≤ 0.5 and thus v1l ≤ 0.5.

Remark 3. As the true NPMLE of Gconstraint is rather complex to calculate, we will approximate
it. Using Remark 2, we approximate log(1 − v1l) by z1llog(1 − al) + z3llog(1 − cl) with an error of
order v2

1l, where one of the two terms is always equal to zero. In total, we approximate Gconstraint by

G∗
constraint = EL(𝝀) +

k∑
r=1

n𝜆1r

[
𝜇1r −

∑
i

g1r(t1i)(z1i log(1 − ai(𝝀1)) + z3i log(1 − ci(𝝀1)))

]

+
k∑

r=1
n𝜆2r

[
𝜇2r −

∑
i

g2r(t2i)(z2i log(1 − bi(𝝀2)) + z4i log(1 − di(𝝀2)))

]
, (8)

where the sum is taken over those time points t1l for which ai(𝝀1) ≠ 1 and ci(𝝀1) ≠ 1 and over t2i
for which bi(𝝀1) ≠ 1 and di(𝝀1) ≠ 1.

Remark 4. For noncontinuous distributions vjl can be close to zero just like in the continuous
case. It may, however, occur in such cases that we obtain high hazard rates at some of the jump
points. Thus the approximation as described in Remark 3 would not hold in general. Therefore,
we will exclude noncontinuous distributions in the following.
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Remark 5. The approximation is a true equation if the components are independent, that is, the
conditional hazards can be replaced by the regular hazards for the individual components. In this
case, the conditional hazard model simplifies to the sum of the univariate models and thus we
obtain the same results as in Section 2.1.

Remark 6. Instead of approximating Gconstraint one can also simply define the parameter 𝜃 under
the null hypothesis to be the weighted sum of the integrals with respect to the conditional
component-wise cumulative hazard function instead of the component-wise cumulative hazard
function. That is, define

𝜃1r = ∫ P(T2 > t|T1 > t)gr(t) log(1 − dΛX01|2>)
+ ∫ P(T2 < t|T1 > t)gr(t) log(1 − dΛX01|2<),

for the constraints on the first component, with ΛX01|2> and ΛX01|2< the conditional
component-wise cumulative hazard functions. Note that this approach might be more precise.
However, in order to test the hypothesis one must make assumptions on the conditional proba-
bilities, which are usually unknown and difficult to estimate in advance in the absence of a pilot
study.

Theorem 2. The NPMLE of Gconstraints, as given in Equation (8), are given by

â∗
l = al(𝝀1) =

u2l

u1l + u2l + z1ln𝝀T
1 G1(t1l)

, b̂
∗
l = bl(𝝀2) =

u4l

u3l + u4l + z2ln𝝀T
2 G2(t2l)

,

ĉ∗l = cl(𝝀1) =
u6l

u5l + u6l + z3ln𝝀T
1 G1(t1l)

, d̂
∗
l = dl(𝝀2) =

u8l

u7l + u8l + z4ln𝝀T
2 G2(t2l)

,

where 𝝀1 and 𝝀2 are obtained as the solution of the following 2k equations:

∑
i

g11(t1i)log(1 − v1i(𝝀1)) = 𝜇11,… ,
∑

i
g2k(t2i) log(1 − v2i(𝝀2)) = 𝜇2k, (9)

with v1i(𝝀1) ∶= z1lal(𝝀1) + z3lcl(𝝀1) and v2i(𝝀2) ∶= z2lbl(𝝀2) + z4ldl(𝝀2).
Further G1(t1l) ∶= (g11(t1l),… , g1k(t1l))T and G2(t2l) ∶= (g21(t2l),… , g2k(t2l))T .

Proof. Deriving the approximation of Gconstraint with respect to the λs simply results in the
constraints. For instance, the derivatives of Gconstraint with respect to (w.r.t.) al leads to

u2l

al
− u1l

1 − al
− n𝝀T

1 G1(t1l) ⋅
z1l

1 − al
.

Equalizing the previous expression to zero and solving for al leads to the NPMLE

â∗
l = u2l

u1l + u2l + z1ln𝝀T
1 G1(t1l)

.

The remaining derivations follow analogously. ▪
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Let the test statistic in terms of hazards be given by

W = −2{maxGconstraint − max EL(ΛX)},

where EL(ΛX ) is empirical log-likelihood as given in Equation (7).

Theorem 3. Suppose that the null hypothesis H0, as defined in Equation (4), holds for nonnega-
tive, random functions gjr(t) that are predictable w.r.t. the filtrationℱt = 𝜎{T1i1{T1i ≤ t}; 𝛿1i1{T1i ≤
t};T2i1{T2i ≤ t}; 𝛿2i1{T2i ≤ t}; i = 1,… ,n}. Then, under regularity conditions specified in the
Appendix, the test statistic W has asymptotically a chi-squared distribution with 2k degrees of
freedom, where k is the number of constraints per dimension.

As in the case of independent components we can vary the number of constraints per
component, such that for every component a fitting number of constraints can be chosen.

2.3 General d-dimensional one-sample EL

As mentioned earlier, the presented approach can be extended to any arbitrary number of compo-
nents. However, the notation in a case beyond the bivariate model gets rather complex. In general,
one considers all conditional hazards that could possibly occur. For the three-dimensional case
this would be

𝜆100
111(t)dt = P(t ≤ X1 ≤ t + dt|X1 ≥ t,X2 > t,X3 > t) =∶ a1(t),

𝜆100
110(t)dt = P(t ≤ X1 ≤ t + dt|X1 ≥ t,X2 > t,X3 < t) =∶ a2(t),

𝜆100
101(t)dt = P(t ≤ X1 ≤ t + dt|X1 ≥ t,X2 < t,X3 > t) =∶ a3(t),

𝜆100
100(t)dt = P(t ≤ X1 ≤ t + dt|X1 ≥ t,X2 < t,X3 < t) =∶ a4(t),

𝜆010
111(t)dt = P(t ≤ X2 ≤ t + dt|X1 > t,X2 ≥ t,X3 > t) =∶ b1(t),

𝜆001
111(t)dt = P(t ≤ X3 ≤ t + dt|X1 > t,X2 > t,X3 ≥ t) =∶ c1(t),

and so forth. In general, the number of conditional hazards in the d-dimensional case is given
by d ⋅ 2(d−1). The remaining derivations follow analogously to the bivariate case. Note that the
complete hazard is then summed up over all conditions, which are four for the three-dimensional
case. Explicitly this means for the hazard of the first component that

v1l = P(T2 > t1l,T3 > t1l|T1 ≥ t1l) ⋅ a1l +…+ P(T2 < t1l,T3 < t1l|T1 ≥ t1l) ⋅ a4l.

Denote the log-likelihood function, similar to Equation (7), by EL and consider constraints of the
form ∑

i
gjr(tji)log(1 − vji) = 𝜇jr, j = 1,… , d, r = 1,… , kj.

Then the function to maximize is given by

Gconstraint(𝝁) = EL(𝝀) +
d∑

j=1

kj∑
r=1

n𝜆jr

[
𝜇jr −

∑
i

gjr(tji)log(1 − vji)

]
.
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Theorem 4. Suppose that the null hypothesis as defined in Equation (4) holds for nonnegative,
random functions gjr(t). Under the regularity conditions specified in the Appendix, the test statistic
defined by

W = W(𝝁) ∶= −2{max Gconstraint(𝝁) − max EL(ΛX)}

has asymptotically a chi-squared distribution with
∑d

j=1 kj degrees of freedom with kj the number of
constraints in dimension j.

Remark 7. Although the multiple testing procedure is only applied to hypothesis testing here, it
can be used for other forms of inference as well. For example it could be used to obtain confidence
regions for a collection of the population quantiles. A straightforward way to construct confi-
dence regions for the true 𝜽0 = (𝜃011,… , 𝜃01k1 ,… , 𝜃0d1,… , 𝜃0dkd )

T works as follows. Define the
confidence region to contain all 𝝁 = (𝜇11,… , 𝜇dkd

)T for which the test statistic W(𝝁) as given in
Theorem 4 is smaller than the 1 − 𝛼-quantile of the chi-squared distribution with

∑d
j=1 kj degrees

of freedom.

3 TWO-SAMPLE CENSORED EL WITH MULTIPLE
CONSTRAINTS

As it is often of interest to not only test certain aspects of one sample but further to compare
it with a second sample, we expand the model to a two-sample censored EL. Now, additionally
to our partly censored sample of observations X1,… ,Xn, we have a second d-dimensional i.i.d.
sample Y1,… ,Ym with distribution function FY0(t), marginal distribution functions FY01(t), …,
FY0d(t), cumulative hazard functionΛY0(t), and marginal cumulative hazard functionsΛY01(t),…,
ΛY0d(t). Assume that the Yis, i = 1,… ,m, are independent of the Xjs, j = 1,… ,n. Again, the sam-
ple may be censored, such that we only observe Sji = min(Yji,CY

ji) and 𝜏 ji = 1{Yji ≤ Sji}, where the
CY

i = (CY
1i,… ,CY

di) denote the censoring times for the second sample, which shall be independent
from the Yi. Denote the ordered, distinct values of the Sji as sjl.

Note that we do not require independence between the individual components for this
method.

3.1 Bivariate two-sample EL

The EL function based on the two samples is given by

log EL(ΛX + ΛY) = ELX + ELY, (10)

where ELX corresponds to the EL function of the observations X , as given in Equation (7), and
ELY corresponds to the EL function of the observations Y , analogously to ELX . More explicitly,
ELY is given by

∑
s1l

[
log(1 − 𝛼l)

∑
i
(1{S1i > s1l}1{S2i > s1l}) + log(𝛼l)

∑
i
(1{S1i = s1l}1{S2i > s1l}𝜏1i)

]
∑
s2l

[
log(1 − 𝛽 l)

∑
i
(1{S1i > s2l}1{S2i > s2l}) + log(𝛽 l)

∑
i
(1{S1i > s2l}1{S2i = s2l}𝜏2i)

]
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∑
s1l

[
log(1 − 𝛾 l)

∑
i
(1{S1i > s1l}1{S2i < s1l}𝜏2i) + log(𝛾 l)

∑
i
(1{S1i = s1l}1{S2i < s1l}𝜏1i𝜏2i)

]
∑
s2l

[
log(1 − 𝜀l)

∑
i
(1{S1i < s2l}1{S2i > s2l}𝜏1i) + log(𝜀l)

∑
i
(1{S1i < s2l}1{S2i = s2l}𝜏1i𝜏2i)

]
,

where the sums over sjl are only taken over those time points where 𝛼l, respectively 𝛽 l, 𝛾 l, and 𝜀l
are truly greater than zero, and excluding the last time points, as there the hazards would be 1.
Again, we will denote the eight sums over i with ν1l,… , ν8l, in the same order as they appear above.

Lemma 2. Maximizing the log-likelihood function w.r.t. al,… , 𝜀l, one obtains the NPMLE

âl =
u2l

u1l + u2l
, b̂l =

u4l

u3l + u4l
, ĉl =

u6l

u5l + u6l
, d̂l =

u8l

u7l + u8l
,

�̂�l =
𝜈2l

v1l + 𝜈2l
, �̂� l =

𝜈4l

𝜈3l + 𝜈4l
, �̂� l =

𝜈6l

𝜈5l + 𝜈6l
, �̂�l =

𝜈8l

𝜈7l + 𝜈8l
,

where l indicates the time point of the jump.

Let us now consider a hypothesis testing problem for a 2k-dimensional parameter 𝜽 =
(𝜃11,… , 𝜃1k, 𝜃21,… , 𝜃2k)T w.r.t. the cumulative hazard functions ΛX and ΛY such that

H0 ∶ 𝜽 = 𝝁 vs. HA ∶ 𝜽 ≠ 𝝁, (11)

where

𝜃jr = ∫ gjr(t) log(1 − dΛX0j(t)) − ∫ hjr(t) log(1 − dΛY0j(t)), r = 1,… , k, j = 1, 2,

for some given functions gjr(t) and hjr(t). Then, the constraints imposed on vji and wji shall be
given by

𝜇jr =
∑

i
gjr(tji) log(1 − vji) −

∑
i

hjr(sji) log(1 − wji), (12)

with j = 1, 2, r = 1,… , k, and where the sum is taken over all distinct time points in each sam-
ple, excluding the last value as the hazard would be 1 at that time point. The wjis are defined
analogously to vjis,

w1i(𝝀1) ∶= 𝜁1l𝛼l(𝝀1) + 𝜁3l𝛾 l(𝝀1) and w2i(𝝀2) ∶= 𝜁2l𝛽 l(𝝀2) + 𝜁4l𝜀l(𝝀2).

Application of the Lagrange multiplier method on the likelihood with constraints as given in
Equation (12) shows that the NPMLE are given through

â∗
l = u2l

u1l + u2l + z1ln∗𝝀T
1 G1(t1l)

, b̂
∗
l = u4l

u3l + u4l + z2ln∗𝝀T
2 G2(t2l)

,

ĉ∗l = u6l

u5l + u6l + z3ln∗𝝀T
1 G1(t1l)

, d̂
∗
l = u8l

u7l + u8l + z4ln∗𝝀T
2 G2(t2l)

,

�̂�
∗
l = 𝜈2l

𝜈1l + 𝜈2l − 𝜁1ln∗𝝀T
1 H1(s1l)

, �̂�
∗
l = 𝜈4l

𝜈3l + 𝜈4l − 𝜁2ln∗𝝀T
2 H2(s2l)

, (13)

�̂�
∗
l = 𝜈6l

𝜈5l + 𝜈6l − 𝜁3ln∗𝝀T
1 H1(s1l)

, �̂�
∗
l = 𝜈8l

𝜈7l + 𝜈8l − 𝜁4ln∗𝝀T
2 H2(s2l)

,
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where G1(t1l), G2(t2l), H1(s1l), and H2(s2l) denote the vectors of constraints imposed on the hazards
at the time point tjl, respectively sjl, and n* is defined as min(n,m).

Let Gconstraint be given by

Gconstraint = ELX(𝝀) + ELY(𝝀)

+
2∑

j=1

k∑
r=1

n∗𝜆jr

[
𝜇jr −

(∑
i

gjr(tji) log(1 − vji) −
∑

i
hjr(sji) log(1 − wji)

)]
,

where ELX (𝝀) and ELY (𝝀) denote the log-likelihood function without constraints based on the
modified hazards al(𝝀),… , 𝜀l(𝝀) instead of the Nelson–Aalen estimators.

The two-sample test statistic is given by

W∗ ∶= −2(max Gconstraint − max(ELX + ELY)). (14)

Theorem 5. Suppose that the null hypothesis H0 ∶ 𝜃jr = 𝜇jr holds for all j = 1, 2 and r = 1,… , k,
that is,

𝜇jr = ∫ gjr(t) log(1 − dΛX0j(t)) − ∫ hjr(t) log(1 − dΛY0j(t)),

for nonnegative random functions gjr(t) and hjr(t) that are predictable w.r.t. the filtration ℱt spec-
ified in Appendix. Then, under further conditions specified in the regularity specification for the
two-sample case, as n* → ∞ and n∕m → c ∈ (0,∞), W *, as given in Equation (14), has asymptoti-
cally a chi-squared distribution with 2k degrees of freedom.

Again the number of constraints can be fitted individually to match each component. Needless
to mention, the number of constraints for the two samples must match.

3.2 General d-dimensional two-sample EL

As in the one-sample case, the proposed method works for any arbitrary number of compo-
nents. Due to complexity of notation we only sketch the idea of the general d-dimensional
two-sample test.

Let EL(λ) be the sum of the individual EL functions in each component with again the modi-
fied hazards instead of the Nelson–Aalen estimators. Further let EL be the sum of the individual
EL functions in each component with the Nelson–Aalen estimators for the hazards. The function
to maximize under the constraints, Gconstraint, is given by

Gconstraint = EL(𝝀) +
d∑

j=1

kj∑
r=1

n∗𝜆jr

[
𝜇jr −

(∑
i

gjr(tji) log(1 − vji) −
∑

i
hjr(sji) log(1 − wji)

)]
.

Theorem 6. Suppose that the null hypothesis H0 ∶ 𝜃jr = 𝜇jr holds for all j = 1,… , d and
r = 1,… , kj, that is,

𝜇jr = ∫ gjr(t) log(1 − dΛX0j(t)) − ∫ hjr(t) log(1 − dΛY0j(t)),



PARKINSON 769

for nonnegative random functions gjr(t) and hjr(t) that are predictable w.r.t. the filtration ℱt
specified in Appendix. Then under further conditions specified in the regularity specification for the
two-samplecase, as n* → ∞ and n∕m → c ∈ (0,∞),

W∗ = −2 {max Gconstraint − max EL} ,

has asymptotically a chi-squared distribution with
∑d

j=1 kj degrees of freedom.

4 APPLICATIONS

In this section we discuss different applications of Theorem 5. The constraints proposed in the
following are based on random yet predictable constraint functions gjr and hjr.

One application of Theorem 5 is based on constraints obtained by combining the log-rank
test with the Gehan test. We consider a two-sample problem with H0 ∶ ΛX (t) = ΛY (t) for all t ≥ 0
versus H1 ∶ ΛX (t) ≠ ΛY (t) for some t. Specifically the test statistics of the individual tests can be
given in the form of∑

i
h∗

j (tji, 𝜌, 𝛾)log(1 − vji) −
∑

l
h∗

j (sjl, 𝜌, 𝛾)log(1 − wjl) = 𝜇j, j = 1, 2,

where
h∗

j (u, 𝜌, 𝛾) =
(n + m

nm

)1∕2
Wj(u)𝜌(1 − Wj(u))𝛾

Rj1(u)Rj2(u)
Rj1(u) + Rj2(u)

, for 𝜌, 𝛾 ≥ 0,

as well as Rj1(u) =
∑

1{Tji ≥ u} and Rj2(u) =
∑

1{Sji ≥ u}.
If Wj(u) equals (Rj1(u) + Rj2(u))∕(n + m) then (𝜌, 𝛾) = (0, 0) corresponds to the log-rank statis-

tic and (𝜌, 𝛾) = (1, 0) corresponds to the Gehan–Wilcoxon statistic. Note that h∗
j (u, 𝜌, 𝛾), j = 1, 2,

are indeed predictable functions.
For the proposed method, we used∑

i
h∗

j (tji, 𝜌, 𝛾)log(1 − vji) −
∑

l
h∗

j (sjl, 𝜌, 𝛾)log(1 − wjl) = 0,

as constraints for the two combinations of (𝜌, 𝛾) mentioned above. More specifically, we applied
the constraint functions

gj1(u) = hj1(u) =
(n + m

nm

) Rj1(u)Rj2(u)
Rj1(u) + Rj2(u)

, j = 1, 2, (15)

namely the log-rank statistic, and

gj2(u) = hj2(u) =
(n + m

nm

) Rj1(u) + Rj2(u)
n + m

, j = 1, 2, (16)

the Gehan–Wilcoxon statistic, to each component leading to four degrees of freedom.
A comparison of the combined test based on these constraints with the two individual tests

was performed in a simulation study. It corresponds to Simulation 4 in Section 5.
Further, it might be of interest to test whether two distributions which have identical

marginals are identically distributed also in the multivariate sense. In practice, it is possible that
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two datasets differ only in the correlation structure, which can easily go undetected. To this end,
one may apply functions of the form

f(t) = 1{∃j 𝗌.t. T2j = t, 𝛿2j = 1 𝖺𝗇𝖽 T1j > t}g(t), (17)

with g(t) a nonnegative predictable function. Applying, for instance, five constraints we can use
four to focus on testing the two datasets for equal marginals. Two may be used for the first com-
ponent, where one of them puts weight on early events, and the other one on late events, and the
same for the second component. The last constraint can be used to control whether the correla-
tion within each of the two datasets is similar, and it can be applied to either component. If it is of
the form Equation (17) it should be applied to the second component. As one can see in Section 5
this leads to a high rejection level if the correlation structure is not the same, even if the samples
are drawn from identical marginal distributions.

Instead of using random, predictable functions, one can also apply various deterministic func-
tions as constraints. Those can be chosen such that the test focuses on the part of the data where
differences are to be expected or are considered as critical time frames. For instance, if one is
only interested in detecting differences at the beginning of the study, constraints of the form
g1(t) = exp{−t} or g2(t) = 1{t ≤ t∗}, t∗ ∈ R+ can be applied. While g1(t) assigns greater weight
to earlier time points and lesser weight to later ones, g2(t) weights all time points up to a pre-
specified time point t* equally and does not consider later time points at all. On the other hand,
if one is interested in differences at later time points, one can apply constraints of the form
g1(t) = 1{t ≥ t∗}, t∗ ∈ R+ or g2(t) = log(t + 1), among others. Obviously, it is possible to combine
two constraints so that one detects differences at early time points and one at later time points.
Constraints of this form were used in the first simulation as given in Section 5.

5 SIMULATIONS AND DATA EXAMPLE

We provide simulation results that confirm the chi-squared limiting distributions of W and W*

and illustrate the small sample performance. Further, we ran some simulations to show how
dependency and correlation structures influence the results. We then compared the performance
of our test to various others. A real data example is provided to illustrate the proposed method.

All computations were performed using R (R version 3.3.2, R Core Team, 2017).

Simulation 1 (one-sample case). This simulation illustrates the empirical distribution of W
when the constraints are given by the functions

g1(t) = exp{−t}, g2(t) = 0.5t1{t ≤ 1}, g3(t) = 1{0.5 < t < 1.5}.

All constraints were applied to both components. We used the following distributions to generate
the bivariate random variables:

X1 ∼ exp(0.9), X2 ∼ exp(0.6), C1 ∼ exp(0.5), C2 ∼ exp(0.3).

The actual observed data was then created analogously to Equation (1). Censoring was roughly
one-third in each of the components. The observations were uncensored in both components in
42% of the cases.
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The Q-Q plot (Figure 1) is based on 10,000 runs and a sample size of 200. The resulting empirical
distribution of W agrees well with the theoretically derived 𝒳 2

6 -distribution.

Simulation 2 (two-sample case). In this simulation we illustrate the empirical distribution of
W* for the two-sample case. The constraints are given by the functions

g1(t) = exp{−t}, g2(t) = 0.5t1{t ≤ 1},
g3(t) = 1{t <= 0.9}, g4(t) = 2exp{−t}1{t > 0.5}.

The functions g1 and g2 were applied to the first component and the remaining two to the
second component. The two samples were drawn from the following marginal distributions:

X1,Y1 ∼ exp(0.9), X2,Y2 ∼ exp(0.6), CX
1 ,CY

1 ∼ exp(0.5), CX
2 ,CY

2 ∼ exp(0.3).

The simulated actual observations after censoring were again created according to Equation (1).
The amount of censoring was 36% for the first component and 73% for the second component.

The four Q-Q plots in Figure 2 are based on 10,000 runs and show different combinations of
sample sizes. The resulting empirical distribution of W generally agreed well with the theoret-
ically derived 𝒳 2

4 -distribution. However, in the case of m = n = 50 it only agreed well with the
theoretical distribution up to the 90% quantile.

Table 1 shows the Type I errors at various significance levels and different sample sizes. The
proposed combined test attained the Type I error quite well at the nominal levels for sample sizes
of n,m ≥ 70.

Simulation 3 (Dependency/correlation structure). The previous simulations were per-
formed with random variables which had independent components. The following simulations
show the influence of high dependency on the test statistic and the consequences of identically
distributed components but with different correlation structures in the two datasets. First, we
considered bivariate random variables which were identically distributed in both samples. For
the first component we drew samples according to

X1,Y1 ∼ exp(0.9), CX
1 ,CY

1 ∼ exp(0.3).

F I G U R E 1 Q-Q plot of the empirical
quantiles versus 𝒳 2

6 percentiles for sample size
200 in the one sample case, corresponding to the
theoretical result in Theorem 3 [Colour figure can
be viewed at wileyonlinelibrary.com]
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F I G U R E 2 Q-Q plot of the empirical quantiles versus 𝒳 2
4 percentiles for different sample sizes in the

two-sample case, corresponding to the result in Theorem 5 [Colour figure can be viewed at
wileyonlinelibrary.com]

𝜶

n m 0.01 0.05 0.1 0.15 0.2

50 50 0.0210 0.0667 0.1140 0.1593 0.2060

75 75 0.0128 0.0505 0.0945 0.1416 0.1886

150 150 0.0082 0.0468 0.0884 0.1302 0.1769

70 140 0.0132 0.0517 0.1007 0.1463 0.1925

T A B L E 1 Estimated
Type I errors at various
significance levels 𝛼
and different sample
sizes for two samples,
corresponding to the
theoretical results in
Theorem 5

http://wileyonlinelibrary.com
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The second components were obtained by X2 = 0.65X1 + 0.35X and Y2 = 0.65Y1 + 0.35Y, with
X,Y ∼ exp(0.6). Censoring was still considered to be i.i.d., such that CX

2 ,CY
2 ∼ exp(0.3). The cen-

soring accumulated to 25% in the first component and 30% in the second. Overall 55% of the
observations could be observed completely. For each dataset we simulated 200 observations. The
constraints were given by the functions

g1(t) = exp{−t}, g2(t) = 0.5t1{t ≤ 1},
g3(t) = 1{t <= 0.9}, g4(t) = 2exp{−t}1{t > 0.5}.

Here, g1 and g2 were applied to the first component, the remaining two to the second
component.

The Q-Q plot (Figure 3) is based on 10,000 runs. The resulting empirical distribution of W*

agreed with the theoretically derived 𝒳 2
4 -distribution up to the 90% quantile. For even stronger

dependencies, higher sample sizes are needed to obtain similar empirical results. Yet we can
conclude that with a sufficient number of observations, the proposed method can deal with
dependencies.

Correlation between the components may also be of interest in the case of multivariate data.
Extreme cases of testing two samples for equality could be given by having identical marginals but
different correlation structure. A test should reject the null hypothesis of identical joint survival
distributions in such cases. Both samples were simulated by

X1,Y1 ∼ exp(0.9), X2,Y2 ∼ exp(0.9), CX
1 ,CY

1 ∼ exp(0.2), CX
2 ,CY

2 ∼ exp(0.2).

To obtain a different correlation structure, the samples of X1 and of X2 were sorted. The corre-
lation of the true observations of X was given by .99 and for Y by 0. The actual observed data of
the X-sample, TX , was only correlated by .68. The correlation for the actual observed data for the
Y -sample remained the same. The constraints were given by

g1(t) = exp{−t}, g2(t) = 1{t ≤ 1.5}, g3(t) = 21{0.5 < t < 1.5},

and g4 as defined in Equation (17) with g(t) = 1. Again, the first two constraints were imposed
on component 1 and the other two on component 2. The simulated power was 81.79% indicating
that the proposed method indeed is capable of detecting differences in the correlation structure.
As one can see in Simulation 4, other methods have limited capability to detect such differences.

Simulation 4 (Comparison with other methods). We compare the small and moderate sam-
ple size behaviors of the proposed combined tests, as described in the first application in Section
4, to two tests from the G𝜌,𝛾 family of Harrington and Fleming (1982). As the constraints corre-
spond to the weight functions of the log-rank statistic and the Gehan statistic, we compared the
combined constraints to the individual tests. For all three tests, we estimated the Type I errors for
one null hypothesis and the power for five different alternatives. The size of the simulation was
10,000 for the null model and 5,000 for each of the alternative models A–E, as defined in Table 2.
The sample size for the small sample size setting was given by 50 X-observations and 50
Y -observations. For the moderate sample size setting we had 150 X-observations and 150
Y -observations. The five different survival configurations for the power analyses A–E are
described as follows. A corresponds to identical marginals but different correlation structure, B
to one component identically distributed and one different, C to crossing hazards, D to ordered
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hazards with early differences, and E to ordered hazards with late differences. Samples were
generated both without censoring and with exponentially distributed censoring with parame-
ter λ1 = 0.5 for the first component and λ2 = 0.3 for the second component such that censoring
amounted to 66% and 64% in the two components in case of the null model. Further information
on the modeling can be found in Table 2.

For alternative A, an additional constraint was added to the second component, which was
given by the constraint function in Equation (17) with g(t) = 1. The other constraints corre-
spond to Equations (15) and (16), which are random predictable functions w.r.t. the filtration we
specified in the Appendix B1. Both constraints were applied to each component.

From Tables 3 and 4, the proposed method had comparable performance to the two individual
test statistics. In configurations A and C, it performed significantly better than the two individual
tests, even though the sample size of 50 was fairly small. In scenarios where only the marginals dif-
fered in one component and the correlation structure was similar, it performed poorly compared
to the log-rank test and the Gehan–Wilcoxon test. In the scenarios for early differences in the haz-
ard functions, it obtained almost the performance level of Gehan–Wilcoxon, while the log-rank
test lost a lot of power. For late differences in the hazards, it was the opposite. As an additional
comparison between the amount of constraints, we performed additional tests on alternative E,
where we added a fifth constraint corresponding to the constraint function in Equation (17) with
g(t) ≡ 1. The resulting Type II error dropped in that case from 73.52 to 60.72 in the censored case
and from 27.14 to 21.24 in the uncensored case. In the later case it slightly outperformed the
log-rank test. Adding an additional constraint led to a lower error rate in this scenario. All tests
performed better when no censoring occurred, yet one could observe similar patterns as in the
censored case for the power comparisons.

Tables 5 and 6 show that similar results were obtained for moderate sample sizes. All test
obtained lower error rates than in the small sample case, but the same properties as in the small
sample simulations can be noticed. The strengths of the newly proposed test can be seen here
even more clearly in scenarios A and C, which correspond to correlation and crossing hazards,
respectively.
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200 in the two-sample case, corresponding to
the theoretical result in Theorem 5 [Colour
figure can be viewed at wileyonlinelibrary.com]
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5.1 Data example

In order to illustrate our results on a real dataset, we chose the dataset retinopathy from
the R-package survival. This package contains the core survival analysis routines. The dataset
includes 394 observations out of a total of 197 patients from the Diabetic Retinopathy Study, which
was conducted by the National Eye Institute. The observed data was part of a trial on laser coag-
ulation as a treatment to delay diabetic retinopathy. Each patient received laser treatment on one

T A B L E 2 Hazard
functions for the
configurations used in
the power studies
(Simulation 4)

Configuration Hazard functions df

A λX1(t) = λX2(t) = λY1(t) = λY2(t) = 0.9, 5
t ≥ 0
cor(X1,X2) = 0.99, cor(Y1,Y2) = 0

B λX1(t) = λX2(t) = λY1(t) = 0.9, t ≥ 0, 4
λY2(t) = 0.5, t ≥ 0

C 𝜆X1(t) =
⎧⎪⎨⎪⎩

0.9, t ≤ 0.5

0.6, t > 0.5
, 𝜆X2(t) =

⎧⎪⎨⎪⎩
0.7, t ≤ 0.5

0.4, t > 0.5
4

𝜆Y1(t) =
⎧⎪⎨⎪⎩

0.6, t ≤ 0.5

0.9, t > 0.5
, 𝜆Y2(t) =

⎧⎪⎨⎪⎩
0.4, t ≤ 0.5

0.7, t > 0.5

D 𝜆X1(t) =
⎧⎪⎨⎪⎩

0.9, t ≤ 0.5

0.7, t > 0.5
, 𝜆X2(t) =

⎧⎪⎨⎪⎩
0.4, t ≤ 0.5

0.6, t > 0.5
4

𝜆Y1(t) =
⎧⎪⎨⎪⎩

0.4, t ≤ 0.5

0.7, t > 0.5
, 𝜆Y2(t) =

⎧⎪⎨⎪⎩
0.9, t ≤ 0.5

0.6, t > 0.5

E 𝜆X1(t) =
⎧⎪⎨⎪⎩

0.7, t ≤ 0.4

0.9, t > 0.4
, 𝜆X2(t) =

⎧⎪⎨⎪⎩
0.6, t ≤ 0.4

0.5, t > 0.4
4

𝜆Y1(t) =
⎧⎪⎨⎪⎩

0.7, t ≤ 0.4

0.5, t > 0.4
, 𝜆Y2(t) =

⎧⎪⎨⎪⎩
0.6, t ≤ 0.4

0.9, t > 0.4

T A B L E 3 Small sample simulation results of Type I error and Type II error in percent with
n = m = 50 for a null (N) and for five different alternative survival distribution configurations
(A–E) with censored data for three test statistics

N A B C D E

Combined Constraints 4.83 38.42 66.14 70.94 45.90 73.52

Log-rank 5.62 93.44 46.60 91.48 56.16 57.68

Gehan 5.29 94.24 59.12 91.28 35.04 82.40
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of their eyes, while the other remained untreated to obtain a baseline. The eye for treatment was
randomly chosen. The two observations per patient contain some basic information which is the
same in both and the time to vision loss in the treated and untreated eye, as well as the risk fac-
tor for each eye. The time to vision loss was measured from initiation of treatment to the time
when visual acuity dropped below 5/200 for two visits in a row. As no event could occur within
the first 6.5 months of the study, all survival times were reduced by this duration. The survival
times were subject to univariate censoring. All patients were considered to have "high-risk" for
diabetic retinopathy as defined by the Diabetic Retinopathy Study.

The patients can be split into two groups, juvenile and adult diabetes. As the types of diabetes
are assumed to have differing progress, it is of interest to analyze the joint survival function of
both eyes. The null hypothesis which was analyzed in the following was that both juvenile as well
as adult diabetes had the same joint survival function of both eyes. Denote the times to blindness
in the treated eye by X1 for the juvenile group and by Y1 for the adult group. Further let X2 be the
survival time of the untreated eyes in the juvenile group and let Y2 be the time in the adult group.
With 114 juvenile patients and 83 adult patients, we have enough observations to narrow the
error rate. Censoring rates were 68% for X1, 55% for X2, 78% for Y1, and 40% for Y2. In the juvenile
group 21% of the patients could be completely observed, in the adult group 17% of the patients.

For the newly proposed method, the constraints (15) and (16) were chosen. In a second cal-
culation we added a fifth constraint, corresponding to Equation (17) with g(t) = 1 applied to the
second component.

Both tests did not reject the null hypothesis at level 5%. The p values of the new test method
were given by p1 = .2297 and p2 = .1733. Former analyses by Huang and Zhao (2018) and Huster,
Brookmeyer, and Self (1989) concluded that the null hypothesis should be rejected. However,
both did not actually conduct tests on the similarity of the survival functions. Huster et al. (1989)
conducted tests on the similarities of the covariates and rejected the null hypothesis of equal
influence of the covariates, while Huang and Zhao (2018) only conducted some visual analysis

T A B L E 4 Small sample simulation results of Type I error and Type II error in
percent with n = m = 50 for a null (N) and for five different alternative survival distribution
configurations (A–E) with uncensored data for three test statistics

N A B C D E

Combined Constraints 5.00 29.32 40.50 43.16 40.10 27.14

Log-rank 5.60 93.60 26.28 75.74 64.36 21.74

Gehan 4.99 94.68 41.14 93.72 38.84 56.72

http://wileyonlinelibrary.com
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T A B L E 5 Moderate sample simulation results of Type I error and Type II error in percent
with n = m = 150 for a null (N) and for five different alternative survival distribution
configurations (A–E) with censored data for three test statistics

N A B C D E

Combined Constraints 4.99 29.76 15.00 22.00 2.82 18.46

Log-rank 5.38 94.16 3.90 85.54 10.68 8.12

Gehan 5.22 94.10 10.82 83.92 0.86 53.62

T A B L E 6 Moderate sample simulation results of Type I error and Type II error in percent
with n = m = 150 for a null (N) and for five different alternative survival distribution
configurations (A–E) with uncensored data for three test statistics

N A B C D E

Combined Constraints 5.40 25.58 0.98 1.38 1.82 0.06

Log-rank 5.22 94.00 0.40 34.38 20.60 0.12

Gehan 5.23 93.92 2.28 91.08 1.44 10.00

of the individual estimators of the survival function and their confidence intervals. By examining
Figure 4, not rejecting the null hypothesis does not seem entirely unreasonable.

The proposed test tends to be conservative for very small sample sizes and small sample sizes
with a high censoring rate. This could already be observed in the univariate case.

6 CONCLUSION

On the basis of a previous univariate approach based on empirical likelihood, we developed a mul-
tivariate testing procedure for hazards in the survival context with censored observations. Using
constraints and conditional hazards, our method is capable of testing various aspects of a dataset
containing time-to-event observations. It was shown that our proposed method is asymptotically
consistent. The finite sample simulation studies further showed that the power of the proposed
method depends on the underlying power associated with the individual constraints. For higher
sample sizes, it has approximately the power of the better underlying individual test. In scenarios
in which the greatest difference of two datasets lies in the correlation structure, the proposed test
outperformed the individual tests from the family of test statistics introduced by Harrington and
Fleming (1982).
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APPENDIX A. PROOF OF THE ONE-SAMPLE CASE

A1. Regularity specification for the one-sample case
Let X1,… ,Xn be i.i.d. d-dimensional random variables with cumulative distribution function
FX0(t) and marginals FX01(t),… ,FX0d(t). The cumulative hazard function is denoted as ΛX0(t) and
the marginals as ΛX01(t),… ,ΛX0d(t). We observe the d-dimensional vectors Ti = min(Xi,CX

i ) and

https://doi:10.1214/aos/1176346055


PARKINSON 779

𝛿i = 1{Xi ≤ CX
i }, where CX

i are i.i.d. censoring times, independent of Xi, and the minimum and
the indicator function are considered component-wise. The cumulative distribution function of
the CX

i is FCX (t). The distribution functions FX0(t) and FCX (t) do not have common discontinuities.
Let gj1(t),… , gjk(t), j = 1,… , d, be nonnegative left continuous functions such that none can

be expressed by a linear combination of the remaining functions. Further it shall hold for all
functions

0 < ∫
|gjr(t)|w(1 − ΔΛX0j(t))

(1 − FX0j(t))
∏

j
(1 − FCXj(t))

dΛX0j(t) < ∞, w = 1, 2, j = 1,… , d, r = 1,… , k.

This condition guarantees the asymptotic normality of the Nelson–Aalen estimators of the indi-
vidual components (cf. Gill, 1983, theorem 2.1). Note that the functions gjr(t) may be random, yet
they need to be predictable w.r.t. a filtration. Considering d = 2, the filtration is given by ℱt =
𝜎{T1l1{T1l ≤ t}; 𝛿1l1{T1l ≤ t};T2l1{T2l ≤ t}; 𝛿2l1{T2l ≤ t}; l = 1,… ,n}. Through this we are capa-
ble of applying the martingale central limit theorem, as Λ̂(X)

NA,j(t) − ΛX0j(t) is a martingale, where
Λ̂(X)

NA,j denotes the Nelson–Aalen estimator of component j. Furthermore, for all random functions
gjr(t) there must exist a nonrandom left continuous function gjr0(t) such that sup

t≤maxTji

|gjr(t)∕gjr0(t)| =
op(1) for j = 1,… , d and r = 1,… , k as n → ∞.

A2. Preparation of the proof of Theorem 3
Let d = 2 and f(𝝀) be given by∑

l
log(1 − al(𝝀1))u1l + log(al(𝝀1))u2l + log(1 − bl(𝝀2))u3l + log(bl(𝝀2))u4l

+ log(1 − cl(𝝀1))u5l + log(cl(𝝀1))u6l + log(1 − dl(𝝀2))u7l + log(dl(𝝀2))u8l, (A1)

with 𝝀 = (𝝀T
1 ,𝝀

T
2 )T, 𝝀j = (λj1,… , λjk)T , j = 1, 2, k the number of constraints per component, and l

ranging over all distinct time points an event occurred excluding again the last one as it would be
1. For cases where a hazard is zero we will define the corresponding summand to be zero. Note
that we will drop the indices of 𝝀 if it is clear from the context whether 𝝀1 or 𝝀2 is considered.

In order to show that the NPMLEs of L are indeed the maximums we compute the derivatives
of f w.r.t. all λs and evaluate it at zero.

Without loss of generality we derive f only for λ1r, r = 1,… k, then

𝜕

𝜕𝜆1r
f(𝝀) =

∑
l

u1l

1 − al(𝝀)
𝜕(1 − al(𝝀))

𝜕𝜆1r
+ u2l

al(𝝀)
𝜕al(𝝀)
𝜕𝜆1r

+ u5l

1 − cl(𝝀)
𝜕(1 − cl(𝝀))

𝜕𝜆1r
+ u6l

cl(𝝀)
𝜕cl(𝝀)
𝜕𝜆1r

=
∑

l

(
−u1l

1 − al(𝝀)
+ u2l

al(𝝀)

)
𝜕al(𝝀)
𝜕𝜆1r

+
(

−u5l

1 − cl(𝝀)
+ u6l

cl(𝝀)

)
𝜕cl(𝝀)
𝜕𝜆1r

.

Evaluating this at 𝝀 = 0 we obtain

𝜕

𝜕𝜆1r
f(𝝀)|𝝀=0 =

∑
l

⎛⎜⎜⎝−
u1l
u1l

u1l+u2l

+ u2l
u2l

u1l+u2l

⎞⎟⎟⎠
𝜕al(𝝀)
𝜕𝜆1r

+
⎛⎜⎜⎝−

u5l
u5l

u5l+u6l

+ u6l
u6l

u5l+u6l

⎞⎟⎟⎠
𝜕cl(𝝀)
𝜕𝜆1r

=
∑

l
0 ⋅

𝜕al(𝝀)
𝜕𝜆1r

+ 0 ⋅
𝜕cl(𝝀)
𝜕𝜆1r

= 0.
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The derivation w.r.t. the second component follows analogously. Computing the second derivative
f ′ ′ (0) =∶ D we can already see from the first derivative that if we take partial derivatives of f(𝝀)
w.r.t. λ1r and then λ2s, r, s = 1,… , k we will obtain zero for all values of 𝝀. Thus we will only
calculate it for λ1r and λ1s, r, s = 1,… , k. The 1r × 1s-th element of the 2k × 2k matrix D is given by

D1r × 1s =
𝜕2

𝜕𝜆1r𝜕𝜆1s
f(𝝀)|𝝀=0 .

Denote u1l + u2l + z1ln𝝀T
1 G1(t1l) by 𝛾1l and u5l + u6l + z3ln𝝀T

1 G1(t1l) by 𝛾3l. Now the second deriva-
tive is given by

𝜕

𝜕𝜆1s

[∑
l

(
−u1l

1 − al(𝝀)
+ u2l

al(𝝀)

)
(−u2lz1lng1r𝛾

−2
1 ) +

(
−u5l

1 − cl(𝝀)
+ u6l

cl(𝝀)

)
(−u6lz3lng1r𝛾

−2
3 )

]

=
∑

l
u2lz1l ng1r

𝜕

𝜕𝜆1s

[(
u1l

u1l + z1ln𝝀T
1 G1(t1l)

− u2l

u2l

)
𝛾−1

1

]

+
∑

l
u6lz3l ng1r

𝜕

𝜕𝜆1s

[(
u5l

u5l + z3ln𝝀T
1 G1(t1l)

− u6l

u6l

)
𝛾−1

3

]
=
∑

l
u2lz2

1l n2g1rg1s𝛾
−1
1 (−u−1

1l ) +
∑

l
u6lz2

3ln
2g1rg1s𝛾

−1
3 (−u−1

5l ).

For 𝝀 = 0 we then obtain

D1r × 1s = −
∑

l

(
u2l

u1l

z2
1ln

2g1rg1s

u1l + u2l
+ u6l

u5l

z2
3ln

2g1rg1s

u5l + u6l

)
.

Using the fact that z1l∕(u1l + u2l) = z3l∕(u5l + u6l) we can rearrange D1r×1s to

−
∑

l
n2g1rg1s

z1l

u1l + u2l

(
u2l

u1l
z1l +

u6l

u5l
z3l

)
.

The values of D2r×2s, r, s = 1,… , k can be calculated analogously. Then D is the block diagonal
matrix

D =

(
D1×1 0

0 D2×2

)
,

where D1×1 is the matrix with the entries D1r×1s, r, s = 1,… , k and D2×2 analogously. By a now
standard counting process martingale assumption we see that the elements of −D∕n converge in
probability to the elements of D*.

Define

Y1l ∶=
𝛿1lnz1(T1l)�̃�

T
1 G1(T1l)

u1l(T1l) + u2l(T1l)
and Y3l ∶=

𝛿1lnz3(T1l)�̃�
T
1 G1(T1l)

u5l(T1l) + u6l(T1l)
, l = 1,… ,n,

where z1(T1l) is simply z1l∗ with t1l∗ = T1l, analogously for z3(T1l). As T1l are defined to be i.i.d.
we can conclude that Y1l and Y3l are i.i.d. as well. Due to the regularity specification it holds that
E(Y 2

1i) < ∞ and E(Y 2
3i) < ∞.
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Lemma 3. Let Y1i and Y3i be as above. Under the regularity specifications it holds that

1∕n
n∑

i=1
(Y 2

1i + Y 2
3i) (A2)

converges to

∫
(�̃�T

1 G1)2dΛX01

(1 − FX01)
∏

j
(1 − FCXj)

.

The convergence is of order Op(1).

Proof. The sum in Equation (A2) can be rearranged to∑
t1l

(�̃�T
1 G1(t1l))2(u2l + u6l)

n
u1l + u2l + u5l + u6l

𝛿1l.

Define Z(t) =
∑n

i=1 1{T1i ≥ t}. Then the term u1l + u2l + u5l + u6l can be replaced by Ẑ(t1l). Further
δ1l = 1 if u2l + u6l ≠ 0 and zero otherwise. We obtain

∑
t1l

(�̃�T
1 G1(t1l))2

Ẑ(t1l)∕n
(u2l + u6l).

Now we can rewrite this in terms of the Nelson–Aalen estimator,

∫
∞

0

(�̃�T
1 G1(t))2

Ẑ(t)∕n
dΛ̂NA,1,

where Λ̂NA,1 denotes the Nelson-Aalen estimator of the first component. Analogue to Lemma 4.1
of Dabrowska (1988) the supremum norm of the component-wise cumulative hazard function
converges to zero, which follows from the Glivenko–Cantelli Theorem and simple algebra under
the regularity specifications.

Applying Lenglart’s inequality and using lemma 3.1.3.9 of Spreij (1990) we can switch the
integral w.r.t. the true component-wise cumulative hazard function.

Further, the empirical distribution given through Ẑ(t)∕n converges uniformly to (1 − FX01)
(1 − FCX ). Thus the convergence of the sum holds true. ▪

Lemma 4. Define Zn ∶= max
1≤i≤n

Y1i, with Y1i i.i.d.random variables, and E(Y2
1i) < ∞. It follows that

Zn = op(n1/2) a.s. as n → ∞.

Proof. This follows from lemma A1 of Pan and Zhou (2002). ▪

Lemma 5. Assume the data are such that the NPMLEs of EL are asymptotically normal and the
variance–covariance matrix Σ defined in the proof is invertible. Then for the solution 𝝀X = (𝝀T

1 ,𝝀
T
2 )T

of the constrained problem (9), corresponding to the null hypothesis H0, as given in Equation (4), it
holds that n1/2𝝀X converges in distribution to N(0,Σ).
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Proof. Define 𝝓(s) = (𝜙11(s1),… , 𝜙1k(s1), 𝜙21(s2),… , 𝜙2k(s2)) with 𝜙jr(tji) =
∑

i gjr(tji)
log(1 − vji(sj)) − 𝜇jr for j = 1, 2, r = 1,… , k and s = (sT

1 , sT
2 )

T ∈ R2k. Then 𝝀X is the unique solu-
tion of 𝝓(s) = 0 under the regularity specification. Thus we can expand the term 𝝓(𝝀) to
𝝓(0)+𝝓′(0)𝝀 + op(n−1/2), where 𝝓′(0) is a 2k × 2k matrix. The next part proves that this indeed
holds true. Rewrite 𝝀j = pj�̃�j, where ||�̃�j|| = 1, j = 1, 2. Then,

0 = �̃�
T
𝝓(𝝀) =

∑
l
�̃�

T
1 G1(t1l)log(1 − v1l(𝝀1)) − �̃�

T
1𝝁1

+
∑

l
�̃�

T
2 G2(t2l)log(1 − v2l(𝝀2)) − �̃�

T
2𝝁2.

We can split these terms up in a part without the Lagrange multiplier and a part with,∑
l
�̃�

T
1 G1(t1l)log(1 − v1l(0)) − �̃�

T
1𝝁1 (i)

+
∑

l
(�̃�T

1 G1(t1l)[log(1 − v1l(𝝀1)) − log(1 − v1l(0))]) (ii)

+
∑

l
�̃�

T
2 G2(t2l)log(1 − v2l(0)) − �̃�

T
2𝝁2 (iii)

+
∑

l
(�̃�T

2 G2(t2l)[log(1 − v2l(𝝀2)) − log(1 − v2l(0))]) (iv).

Again we will only consider the terms (i) and (ii) in the following as the other terms follow
analogously.

It holds that term (i) is of order op(n−1/2) under the null hypothesis. This follows directly from
the properties of the NPMLEs.

The term (ii) can be split into the two terms

B1 =
∑

l
�̃�

T
1 G1(t1l)z1l[log(1 − al(𝝀1)) − log(1 − al(0))],

and

B2 =
∑

l
�̃�

T
1 G1(t1l)z3l[log(1 − cl(𝝀1)) − log(1 − cl(0))],

with an error of order op(max v1l). We will rearrange and estimate B1. It holds, when applying|𝜀1 − 𝜀2| ≤ | log (𝜀1) − log(𝜀2)| for 𝜀1, 𝜀2 ∈ (0, 1], that

|B1| ≥ |||||
∑

l
�̃�

T
1 G1(t1l)z1l[1 − al(𝝀1) − 1 + al(0)]

|||||
=
|||||
∑

l
z1l�̃�

T
1 G1(t1l)

u2lz1ln𝝀T
1 G1(t1l)

(u1l + u2l)(u1l + u2l + z1ln𝝀T
1 G1(t1l))

|||||
=

||||||||
∑

l

p1nu2l(z1l�̃�
T
1 G1(t1l))2

(u1l + u2l)2 + (u1l + u2l)2 z1lp1n�̃�T
1 G1(t1l)

u1l+u2l

|||||||| .
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Analogously for B1 and B2 we obtain in total

|B1 + B2| ≥ |||||
∑

l

p1nu2l(z1l�̃�
T
1 G1(t1l))2

(u1l + u2l)2 + (u1l + u2l)2 z1lp1n�̃�T
1 G1(t1l)

u1l+u2l

+
∑

l

p1nu6l(z3l�̃�
T
1 G1(t1l))2

(u5l + u6l)2 + (u5l + u6l)2 z3lp1n�̃�T
1 G1(t1l)

u5l+u6l

|||||
=
|||||
∑

l

[ z2
1l

(u1l + u2l)2

p1nu2l(�̃�
T
1 G1(t1l))2

1 + z1l
u1l+u2l

p1n�̃�T
1 G1(t1l)

+
z2

3l

(u5l + u6l)2

p1nu6l(�̃�
T
1 G1(t1l))2

1 + z3l

u5l+u6l
p1n�̃�T

1 G1(t1l)

]|||||.
As it holds that z1l∕(u1l + u2l) = z3l∕(u5l + u6l), we can merge the two sums and obtain|||||||

∑
l

p1

1 + p1n z1l
u1l+u2l

�̃�
T
1 G1(t1l)

z2
1ln(u2l + u6l)(�̃�

T
1 G1(t1l))2

(u1l + u2l)2

|||||||
≥ |p1|

1 + |p1|n max
l

z1l�̃�
T
1 G1(t1l)

u1l+u2l

∑
l

(z1l�̃�
T
1 G1(t1l))2n(u2l + u6l)

(u1l + u2l)2 .

From Lemma 3 it follows that the sum in the last expression is of order Op(1), under the regularity
specification the requirements for Lemma 4 are fulfilled and the maximum in the denominator
is of order op(n1/2). Hence |p1| is of order Op(n−1/2). The proof for the remaining terms follows
analogously and the expansion above is valid. ▪

Therefore,
n1∕2𝝀 = 𝝓

′ (0)−1(−n1∕2𝝓(0)) + op(1).

The elements 𝜙′
rs of 𝝓′(0) can easily be computed, and are equivalent to −Drl∕n where r, l =

1,… , 2k. By the counting process martingale central limit theorem, we can show that n1/2𝝀

converges in distribution to N(0,Σ𝜙) with Σ𝜙 = lim 𝝓′(0). All together we obtain that n1/2𝝀

converges in distribution to N(0,Σ) with Σ ∶= lim (𝝓′(0))−1. Note that Σ−1 = D*.

A3. Proof of Theorem 3
Let f(𝝀) be defined as in Equation (A1), then W = −2(f(𝝀x) − f(0)), where 𝝀x denotes the Lagrange
multiplier of the optimum. By Taylor expansion, which is valid as 𝝀x is close to zero, we obtain

W = 2
{

f(0) − f(0) − f ′(0)𝝀x −
1
2
𝝀T

x D𝝀x + op(1)
}
,

where D is again the matrix of the second derivative of f(𝝀) w.r.t. 𝝀. From the preparation part
we have f ′(0) = 0 and we can simplify W to −𝝀T

xΣ𝝀x + op(1). Note that −Σ is symmetric and
positive definite for large enough n. This follows from the convergence of −D∕n to a positive
definite matrix D* = Σ−1, see proof of Lemma 5. Now W = 𝝀T

x (−D)1∕2(−D)1∕2𝝀x + op(1) and as
n1∕2𝝀T

x (D1∕2n−1∕2) converges in distribution to N(0, I), we obtain that W converges in distribution
to 𝒳 2

2k.
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APPENDIX B. PROOF OF THE TWO-SAMPLE CASE

B1. Regularity specification for the two-sample case
Let X1,… ,Xn be i.i.d. d-dimensional random variables as already defined in Section A.1. Let
Y1,… ,Yn be i.i.d. d-dimensional random variables with cumulative distribution function FY0(t)
and marginals FY01(t),… ,FY0d(t). The cumulative hazard function is denoted by ΛY0(t) and
the marginals by ΛY01(t),… ,ΛY0d(t). We observe the d-dimensional vectors Ti = min(Xi,CX

i ),
𝛿i = 1{Xi ≤ CX

i }, Si = min(Yi,CY
i ) and 𝜏 i = 1{Yi ≤ CY

i } where CX
i and CY

i are i.i.d. censoring
times, independent of Xi and Yi, and the minimum and the indicator function are considered
component-wise. The cumulative distribution function of the CX

i is given by FCX (t) and for CY
i

it is FCY (t). The distribution functions FX0(t) and FCX (t) do not have common discontinuities,
respectively, the same holds for the distribution functions FY0(t) and FCY (t).

Let gj1(t),… , gjk(t), hj1(t),… , hjk(t), j = 1,… , d, be nonnegative left continuous functions such
that none can be expressed by a linear combination of the rest of the functions. Further it shall
hold for all functions

0 < ∫
|gjr(t)|w(1 − ΔΛX0j(t))

(1 − FX0j(t))
∏

j
(1 − FCXj(t))

dΛX0j(t) < ∞,

and
0 < ∫

|hjr(t)|w(1 − ΔΛY0j(t))
(1 − FY0j(t))

∏
j
(1 − FCYj(t))

dΛY0j(t) < ∞,

with w = 1, 2, j = 1,… , d, r = 1,… , k. Note that the functions gjr(t) and hjr(t) may be random, yet
they need to be predictable w.r.t. a filtration. For d = 2 the filtration is given by

ℱt = 𝜎{T1l1{T1l ≤ t}; 𝛿1l1{T1l ≤ t};T2l1{T2l ≤ t}; 𝛿2l1{T2l ≤ t};
S1l1{S1l ≤ t}; 𝜏1l1{S1l ≤ t}; S2l1{S2l ≤ t}; 𝜏2l1{S2l ≤ t}; l = 1,… ,n}. (B1)

Through this we are capable of applying the martingale central limit theorem, as Λ̂(X)
NA,j(t) −

ΛX0j(t) is then a martingale, where Λ̂(X)
NA,j denotes the Nelson–Aalen estimator of component j for

samples of X , respectively, for Λ̂(Y)
NA,j(t) − ΛY0j(t).

Furthermore, for all random functions gjr(t) and hjr(t) there must exist a nonrandom left
continuous function gjr0(t) and hjr0(t), respectively, such that

sup
t≤maxTji

|gjr(t)∕gjr0(t)| = op(1) and sup
t≤maxSji

|hjr(t)∕hjr0(t)| = op(1)

for j = 1,… , d and r = 1,… , k as n → ∞.

B2. Mathematical derivations and proof of Theorem 5
The constraints are defined as in Equation (12). Define Gj(ti) = (gj1(ti),… , gjk(ti))T and H j(si) =
(hj1(si),… , hjk(si))T , j = 1, 2, the vectors of constraint-function values. By application of the
Lagrange multiplier method we know that the maximum-likelihood estimators are given by the
NPMLE as defined in Equation (13).
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The function f(𝝀), similar to Equation (A1), is given by∑
l

log(1 − al(𝝀1))u1l + log(al(𝝀1))u2l + log(1 − bl(𝝀2))u3l + log(bl(𝝀2))u4l

+ log(1 − cl(𝝀1))u5l + log(cl(𝝀1))u6l + log(1 − dl(𝝀2))u7l + log(dl(𝝀2))u8l

+
∑

l
log(1 − 𝛼l(𝝀1))𝜈1l + log(𝛼l(𝝀1))𝜈2l + log(1 − 𝛽 l(𝝀2))𝜈3l + log(𝛽 l(𝝀2))𝜈4l

+ log(1 − 𝛾 l(𝝀1))𝜈5l + log(𝛾 l(𝝀1))𝜈6l + log(1 − 𝜀l(𝝀2))𝜈7l + log(𝜀l(𝝀2))𝜈8l.

Taking the derivatives of this function we obtain that f ′(0) = 0 and f ′′(0) = D. The elements of D
are zero where one first takes the derivative w.r.t λ1r and then w.r.t. λ2s or vice versa, r, s = 1,… , k,
that is, D is again a block diagonal matrix. The element D1r×1s, obtained by taking the derivatives
of f(𝝀) w.r.t. λ1r and λ1s, r, s = 1,… , k, is given by

−

[∑
l

(
u2l

u1l

z2
1ln

2g1rg1s

u1l + u2l
+ u6l

u5l

z2
3ln

2g1rg1s

u5l + u6l

)
+
∑

l

(
𝜈2l

𝜈1l

𝜁2
1ln

2h1rh1s

𝜈1l + 𝜈2l
+ 𝜈6l

𝜈5l

𝜁2
3ln

2h1rh1s

𝜈5l + 𝜈6l

)]
.

As we assumed that n∕m → c ∈ (0,∞) as min(m,n) → ∞ we obtain that the elements of
−D∕n converge in probability to the elements of D**. Again we need to show the asymp-
totic normality of n1/2𝝀xy, with 𝝀xy the solution of the constrained problem (12). Define 𝝓(s) =
(𝜙11(s1),… , 𝜙1k(s1), 𝜙21(s2),… , 𝜙2k(s2)) with

𝜙jr(sj) =
∑

l
gjr(tjl)log(1 − vjl(sj)) −

∑
l

hjr(sjl)log(1 − wjl(sj)) − 𝜇jr

for j = 1, 2, r = 1,… , k and s = (s1, s2)T ∈ R2 where the two sums are taken over all time points
tjl, respectively, sjl, excluding the last.

Set 𝝀j = pj�̃�j with ||�̃�j|| = 1, j = 1, 2. Now

0 = �̃�
T
𝝓(𝝀) =

∑
l
�̃�

T
1 G1(t1l)log(1 − v1l(𝝀1)) −

∑
l
�̃�

T
1 H1(s1l)log(1 − w1l(𝝀1)) − �̃�

T
1𝝁1

+
∑

l
�̃�

T
2 G2(t2l)log(1 − v2l(𝝀2)) −

∑
l
�̃�

T
2 H2(s2l)log(1 − w2l(𝝀1)) − �̃�

T
2𝝁2,

with 𝝁1 = (𝜇11,… , 𝜇1k)T and 𝝁2 = (𝜇21,… , 𝜇2k)T . Splitting this into the four terms A1, A2, B1, and
B2, which are given by

A1 =
∑

l
�̃�

T
1 G1(t1l)log(1 − v1l(0)) −

∑
l
�̃�

T
1 H1(s1l)log(1 − w1l(0)) − �̃�

T
1𝝁1 = Op(n−1∕2),

A2 =
∑

l
�̃�

T
2 G2(t2l)log(1 − v2l(0)) −

∑
l
�̃�

T
2 H2(s2l)log(1 − w2l(0)) − �̃�

T
2𝝁2 = Op(n−1∕2),

where the last equation in A1 and A2 holds under the null hypothesis,

B1 =
∑

l
�̃�

T
1 G1(t1l)[log(1 − v1l(𝝀1)) − log(1 − v1l(0))]

−
∑

l
�̃�

T
1 H1(s1l)[log(1 − w1l(𝝀1)) − log(1 − w1l(0))]
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and

B2 =
∑

l
�̃�

T
2 G2(t2l)[log(1 − v2l(𝝀2)) − log(1 − v2l(0))]

−
∑

l
�̃�

T
2 H2(s2l)[log(1 − w2l(𝝀1)) − log(1 − w2l(0))].

For B1 we obtain, with similar calculations as in the one-sample case,

|B1| ≥ |p1|
1 + |p1|min(m,n)max

{
max

l

z1l�̃�
T
1 G1(t1l)

u1l+u2l
;max

l

𝜁1l�̃�
T
1 H1(s1l)

𝜈1l+𝜈2l

}
×

(∑
l

(z1l�̃�
T
1 G1(t1l))2min(m,n)(u2l + u6l)

(u1l + u2l)2 +
∑

l

(𝜁1l�̃�
T
1 H1(s1l))2min(m,n)(𝜈2l + 𝜈6l)

(𝜈1l + 𝜈2l)2

)
.

Again the sum in the last expression is of order Op(1), and |p1| is of order Op(n−1/2). Thus

0 = 𝜙(𝝀) = 𝜙(0) + 𝝓′(0)𝝀 + op(n−1∕2)

and by the counting process martingale central limit theorem we obtain that n1/2𝝀 converges in
distribution to N(0,Σ) with Σ = lim{𝝓′(0)}−1. Note that 𝝓′(0) = −D∕n.

By Taylor expansion of W* = −2(f(𝝀xy) − f(0)), as 𝝀xy is close to zero, it holds

W∗ = −2(f′(0)𝝀xy +
1
2
𝝀T

xyD𝝀xy) + op(1) = 𝝀T
xy(−D)1∕2(−D)1∕2𝝀xy + op(1).

Now as 𝝀T
xy(−D)1∕2 converges in distribution to N(0, 1) we obtain the result of Theorem 5.

B3. Notes on Proof of Theorem 4 and Theorem 6
Due to notation we will not explicitly give the proof of those two theorems. For a fixed dimension
the proof follows analogue to the two-dimensional case. First defines the function f and calculates
the derivatives. Second defines the function 𝜙 and calculates, by skillfully splitting it up in several
sums, the rates of convergence. Last, one applies a Taylor expansion to obtain the results.


