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Abstract
Objectives: Classification of breast cancer patients into different risk classes is
very important in clinical applications. It is estimated that the advent of high-
dimensional gene expression data could improve patient classification. In this
study, a new method for transforming the high-dimensional gene expression data
in a low-dimensional space based on wavelet transform (WT) is presented.
Methods: The proposed method was applied to three publicly available micro-
array data sets. After dimensionality reduction using supervised wavelet, a
predictive support vector machine (SVM) model was built upon the reduced
dimensional space. In addition, the proposed method was compared with the
supervised principal component analysis (PCA).
Results: The performance of supervised wavelet and supervised PCA based on
selected genes were better than the signature genes identified in the other
studies. Furthermore, the supervised wavelet method generally performed better
than the supervised PCA for predicting the 5-year survival status of patients with
breast cancer based on microarray data. In addition, the proposed method had a
relatively acceptable performance compared with the other studies.
Conclusion: The results suggest the possibility of developing a new tool using
wavelets for the dimension reduction of microarray data sets in the classification
framework.
ted under the terms of the Creative Commons Attribution Non-Commercial License (http://
) which permits unrestricted non-commercial use, distribution, and reproduction in any
operly cited.
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1. Introduction

Metastatic breast cancer is a stage of breast cancer

where the disease has spread to distant organs or tissues.

Treatments against metastasis exist, but usually further

treatments after surgery can have serious side effects

and involve high medical costs [1]. An important task to

optimize the adjuvant chemotherapy of metastasis

related to breast cancer is to diagnose the risk of

metastasis accurately [2e4].

Classification of cancer patients into different risk

classes is very important in clinical applications.

Traditional methods for patient classification were

mainly based on a series of clinical and histological

features [3]. It is estimated that the advent of high-

dimensional gene expression data could improve pa-

tient classification [5]. Gene expression profiles of breast

tumor samples could be used to predict relapse and

metastatic patterns in breast cancer patients that could

be potential candidate targets for new treatments [4]. It

is reasonable to assume that any difference between the

two tumors should be represented by some difference in

gene expression. However, in microarray studies, the

number of samples is relatively small compared to the

number of genes per sample. Furthermore, from the

biological aspect, only a small portion of genes have

predicted the power for phenotypes. If all or most of the

genes are considered in the predictive model, they can

induce substantial noise and thereby lead to poor pre-

dictive performance [6]. Thus, in order to obtain good

classification accuracy, a crucial step towards the

application of microarray data is the dimensional

reduction from the gene expression profiles. In recent

years, both feature selection and feature extraction

methods have been widely used for classifying gene

expression data [7]. Bair and Tibshirani [8] and Bair

et al. [9] explored the use of supervised principal

component analysis (PCA), which is similar to con-

ventional PCA except that it uses a subset of the pre-

dictors selected based on their association with the

outcome. Wavelet-based methods have also been used

to solve the dimension reduction problem. The primary

intuition for applying wavelets in the case of gene

expression is that genes are often coexpressed in groups.

Therefore, it would be useful to treat the group as a

single variable, akin to the motivation behind methods

such as PCA [10]. One-dimensional discrete wavelet

transform (DWT) is frequently used for feature extrac-

tion in the analysis of high-dimensional biomedical data

[11]. Studies showed that this method has an acceptable

performance in the field of feature extraction in the

classification framework [11e15].

The current study aimed to introduce a dimension

reduction strategy for transforming the high-dimensional

gene expression data in a low-dimensional space based

on wavelet transform (WT) in order to predict metastasis
of breast cancer. Accordingly, a predictive support vector

machine (SVM) model was built upon the reduced

dimensional space. Then, the proposed novel supervised

wavelet method of feature extraction was compared with

the supervised PCA.
2. Materials and methods

The proposed method was applied to three publicly

available microarray data sets related to breast cancer.

2.1. Data
2.1.1. Breast cancer data from van’t Veer

(NKI_97)
The first data set is reported by van’t Veer et al [2] and

referred to as NKI_97. The original van’t Veer data

consists of gene expression profiles and clinical infor-

mation for 97 samples of primary breast cancer tumors,

and each case is described by the expression levels of

24,481 genes. Fifty-one patients remained free from

metastasis for at least 5 years and were metastasis-

negative, and 46 cancer patients developed metastasis

within 5 years and were metastasis-positive. All patients

were<55 years old and were lymph node-negative. They

had no tumor cells in local lymph nodes [2]. The data used

in this study is a filtered version of the van’t Veer data

including gene expression values of 4948 genes in 97

tumor samples [2]. The data are publicly available at the

“cancer data” R package (http://www.bioconductor.org/

packages/release/data/experiment/html/cancerdata.html).

2.1.2. Breast cancer data from van de Vijver

(NKI_295)
The second data set is reported by van de Vijver et al

[4] and referred to as NKI_295. The data set provides

the gene information for 295 primary breast cancer pa-

tients, of which 234 patients were new and the

remaining 61 patients were involved in the first data set.

Of the total 295 patients, 194 patients were metastasis-

negative and 101 patients were metastasis-positive. Of

the 234 new patients, 164 patients were metastasis-

negative and 70 patients were metastasis-positive. Of

the 61 patients involved in the first data set, 30 were

metastasis-negative and 31 patients were metastasis-

positive. The data is a filtered version of the van de

Vijver data including gene expression values of 4948

genes in 295 tumor samples [4]. The data are publicly

available at the “cancer data” R package.

2.1.3. Breast cancer data from the Wang study

(VDX_286)
The last data set, reported by Wang et al [16] and

referred to as VDX_286, contains 286 lymph node-

negative breast cancer patients who had not received

any adjuvant systemic treatment [16]. Among them, 106

http://www.bioconductor.org/packages/release/data/experiment/html/cancerdata.html
http://www.bioconductor.org/packages/release/data/experiment/html/cancerdata.html
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patients had distant metastasis within 5 years of follow

up and were considered as metastatic patients, while the

rest were considered as nonmetastatic patients. A set of

22,283 genes is available for this data set. The data are

publicly available at the “breast cancer VDX” R

package.
2.2. Wavelet Transform
A wavelet is a “small wave”, which has its energy

concentrated in time. In signal processing, a trans-

formation technique is used to transfer data in another

domain where hidden information can be extracted.

Wavelets have a nice feature of local description and

separation of signal characteristics, and provide a tool

for the analysis of transient or time-varying signals [11].

A wavelet is a set of orthonormal basis functions

generated from dilation and translation of a single

scaling function or father wavelet (4) and a mother

wavelet (j).

WTs are classified into two different categories: the

continuous WT and the DWT. The DWT is a linear

operation that operates on a data vector, transforming it

into a wavelet coefficient. The idea underlying DWT is

to express any function f ðtÞ˛L2ðRÞ in terms of ö (t) and

ø (t) as follows:
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where 4ðtÞ, jðtÞ, c0; and dj represent the scaling func-

tion, mother wavelet function, scaling coefficients

(approximation coefficients) at scale zero, and detail

coefficients at scale j, respectively. The variable k is the

translation coefficient for the localization of gene

expression data. The scales denote the different (low to

high) scale bands. The variable symbol j0 is the scale

(level) number selected [10].

One-dimensional DWT decomposes a signal as a sum

of wavelets at different time shifts and scales (fre-

quencies) using DWT. For this purpose, the signal is

passed through a series of high-pass and low-pass filters

in order to analyze low as well as high frequencies in the

signal as follows:
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where hðm� 2kÞ and h1ðm� 2kÞ are the low-pass filters
and high-pass filters, respectively.
At each level, the high-pass filter produces detail

coefficients (wavelet coefficients) d1, while the low-pass

filter associated with the scaling function produces

approximation coefficients (scaling coefficients) c1.

Subsequently, the approximation coefficients c1 are split

into two parts by using the same algorithm and are

replaced by c2 and d2, and so on. This decomposition

process is repeated until the required level is reached.

The coefficient vectors are produced by down sampling

and are only half the length of the signal or the coeffi-

cient vector at the previous level [12].

The main advantage of the WT is that each basis

function is localized jointly in both the time and fre-

quency domains. From a viewpoint of time-frequency,

the approximation coefficients correspond to the larger-

scale low-frequency components, and the detail co-

efficients correspond to the small-scale high-frequency

components. Generally, the former can be used to

approximate the original signal, and the latter represents

some local details of the original signal [14,15].

There are different families of wavelets: symlets,

coiflets, Daubechies, and biorthogonal wavelets. They

vary in the various basic properties of wavelets, such as

compactness. Haar wavelets, belonging to Daubechies

wavelet family, are the most commonly used wavelets in

database literature because they are easy to comprehend

and fast to be computed.

2.3. Q-value
It is usual to simultaneously test many hundreds or

thousands of genes in microarray studies to determine

which are differentially expressed. Each of these tests

will produce a p value. One main challenge in those

studies is to find suitable multiple testing procedures that

provide an accurate control of the error rates. Whereas

the p value is a measure of significance in terms of the

false positive rate, the q value is an approach used to

measure statistical significance based on the concept of

the false discovery rate. Similar to the p value, the q

value gives each feature its own individual measure of

significance [17].

2.4. Supervised WT
Firstly, any patients who remain free from metastasis

for at least 5 years are placed into Class 1, otherwise into

Class 2. The proposed DWT-based feature selection

method consists of the following steps: (1) A t test is

taken as the measure to identify differently expressed

genes and a list of q values is derived. All the genes are

ranked according to their corresponding q value and the

required numbers of genes are selected from the list; and

(2) in each step the top number of genes based on the q

value are picked out. Then, this reduced set of genes is

modeled by the one-dimensional DWT using Haar

mother wavelet and finally, the wavelet approximation

coefficients in the first and second levels of decompo-

sition are used in the SVM model, respectively.
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2.5. Supervised PCA
Bair and Tibshirani [8] and Bair et al [9] proposed

supervised principal components regression. This pro-

cedure first picks out a subset of the gene expressions

that correlates with response by using univariate selec-

tion, and then applies PCA to this subset. In our anal-

ysis, we pick out the top number of genes based on q

values. We then apply PCA to this subset of genes, and

in each step include the top numbers of principal com-

ponents into a SVM model. The top numbers of prin-

cipal components that will be comprised of at least 75%

of the total variance are included in the SVM model.
2.6. SVM
The SVM model proposed by Vapnik [18] is a su-

pervised learning method that is widely used in micro-

array data classification. Unlike many modeling

techniques which aim to minimize the objective func-

tion (such as mean square error) for all instances, SVM

attempts to find the hyperplanes that produce the largest

separation between the decision function values for the

instances located on the borderline between the two

classes. The optimally identified hyperplane in the

feature space corresponds to a nonlinear decision

boundary in the input space. The SVM takes a set of

input data with corresponding class labels and predicts a

new input which belongs to the classes.

In the binary classification mode, given a training set

of instance-label pairs (xi; yi) iZ1; 2;.;N ; where

xi˛Rp and y˛f�1;þ1g SVM can be regarded as the

solution of the following quadratic optimization

problem:

min

W;b;g
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where the training data are mapped to a higher dimen-

sional space by the function 4 and C is a user-defined

penalty parameter on the training error that controls

the trade-off between classification errors and the

complexity of the model. By solving the optimization

problem (1) by finding the parameters w and b for a

given training set, a decision hyperplane over an n-

dimensional input space that produces the maximal

margin in the space is designed. Thus, the decision

function can be formulated as follows:

f ðxÞZsign
�
WT4ðxÞ þ b

� ð5Þ

SVM can derive the optimal hyperplane for non-

linearly separated data by mapping the impute data into

the n-dimensional space using kernel function

[Kðxi; xjÞZ4ðxiÞT4ðxjÞ]. There are four basic kernels:

linear, polynomial, radial basic function, and sigmoid

[18,19].
In this study, the goal of SVM modeling was to

classify patients who had a high risk of breast cancer

recurrence. The predictive performance of the SVM-

classifier was reported based on sensitivity, specificity,

accuracy, and the area under the receiver operating

characteristic curve (AUC). These criteria are defined as

follows: (TP Z true positive; TN Z true negative;

FN Z false negative; and FP Z false positive):

Accuracy: ACC Z TPþTN
TPþFPþTNþFN

Sensitivity: SN Z TP
TPþFN

Specificity: SP Z FP
FPþTN

The method is implemented using MATLAB r2012a

software (MATLAB Release 2012a, the MathWorks,

Inc., Natick, Massachusetts, United States) and R sta-

tistical package (e1071, q value).

2.7. Cross data set comparison
To avoid over fitting and to provide a realistic eval-

uation, the cross data method was used. In this method,

features obtained from one data set were used to

construct classifiers for the other data set. In this regard,

common patients in the NKI_295 and NKI_97 data were

removed and the remaining data (NKI_234) were used

as a test data set. This method was implemented using

genes selected from NKI_234 breast cancer data as input

in the supervised wavelet method in the NKI_61 data.
3. Results

The t test statistics were used to identify discrimi-

native genes in each data set. After selecting the top

ranked genes based on q values, one-dimensional WT in

the first and second levels was applied to these pre-

selected genes. SVMs with three types of kernelsd-

linear, sigmoid, and radial, were used based on wavelet

approximation coefficients in the first and the second

levels of decomposition. For further assessment of the

reported subsets of 70 genes selected by van’t Veer et al

[2] (for NKI_97 and NKI_295) and 76 signature genes

selected by Wang et al [16] (for VDX_286), the su-

pervised wavelet method and supervised PCA were

applied. The predictive performance of SVM models

was tested by cross-validation, consisting of 10 times

10-folding experiments. The results of supervised

wavelet and supervised PCA for the three data sets are

shown in Tables 1e3, respectively.

In the NKI_97 data set, the results showed that the

SVM with radial kernels based on wavelet approxima-

tion coefficients in the first level extracted from 58

preselected genes had the best performance in terms of

the evaluation criteria with regard to accuracy (83.11) as

well as AUC (83.45). In addition, the SVM with radial

kernel based on the first supervised PCA computed

based on 84 preselected genes had the best performance
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in terms of accuracy (79.22) as well as specificity

(83.25), sensitivity (75.22), and AUC (79.24). In both

methods (supervised wavelet and supervised PCA), the

classifier performance based on the 70 genes selected by

q values was better than the 70 gene signature from the

van’t Veer study (Table 1).

In the NKI_295 data set (Table 2), the results showed

that the SVM with radial kernels based on wavelet

approximation coefficients in the first level extracted

from 91 preselected genes had the best performance in

terms of the evaluation criteria, with the highest accu-

racy (75.37) as well as AUC (70.03). In addition, the

SVM with linear kernel based on the first supervised

PCA computed based on 91 preselected genes had the

best performance in terms of accuracy (73.03) as well as

AUC (66.63). In both methods (supervised wavelet and

supervised PCA), the classifier performance based on
Table 1. Results for supervised wavelet and supervised principa

validation.

Method No. of preselected genes. Method

SVM (linear) 70 genes (van’t Veer) Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (radial) 70 genes (van’t Veer) Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (sigmoid) 70 genes (van’t Veer) Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (linear) 70 genes Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (radial) 70 genes Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (sigmoid) 70 genes Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (linear) q < 0.02 (84 genes) Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (radial) q < 0.02 (84 genes) Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (sigmoid) q < 0.02 (84 genes) Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (linear) q < 0.01 (58 genes) Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (radial) q < 0.01 (58 genes) Wavelet (Db1

Wavelet (Db1

Supervised PC

SVM (sigmoid) q < 0.01 (58 genes) Wavelet (Db1

Wavelet (Db1

Supervised PC

AUC Z area under the receiver operating characteristic curve; SVM Z supp
the 70 genes selected by q values was better than the 70

gene signature from the van’t Veer study.

In the VDX_286 data set (Table 3), the results showed

that the SVM with linear kernels based on wavelet

approximation coefficients in the second level extracted

from 67 preselected genes had the best performance with

the highest accuracy (79.21) as well as AUC (76.04). In

addition, the SVM with linear kernel based on the first

supervised PCA computed based on 67 preselected genes

had the best performance in terms of accuracy (76.00) as

well as AUC (74.71). In both methods (supervised

wavelet and supervised PCA), the classifier performance

based on the selected 76 genes using t statistics was better

than the 76 gene signature identified in the Wang study.

To evaluate the reproducibility of the proposed

method, a cross data-set comparison was also per-

formed. As shown in Table 4, the results confirmed that
l component analysis (PCA): NKI_97, 10 times 10-fold cross-

Accuracy Sensitivity Specificity AUC

.1) 77.11 78.30 76.15 77.22

.2) 69.11 64.47 73.00 68.74

A 73.77 75.72 71.84 73.78

.1) 77.55 82.28 73.24 77.76

.2) 75.66 82.20 69.76 75.98

A 71.77 71.25 72.21 71.73

.1) 78.88 78.57 79.18 78.87

.2) 71.88 74.82 69.26 72.04

A 68.77 67.58 69.73 68.66

.1) 72.33 67.55 76.38 71.97

.2) 76.44 75.53 77.24 76.38

A 74.00 72.51 75.31 73.91

.1) 82.77 90.14 74.46 82.30

.2) 82.00 88.47 76.21 82.34

A 75.88 75.22 76.52 75.87

.1) 77.44 86.74 68.93 77.84

.2) 77.00 82.86 71.72 77.29

A 78.22 76.83 79.45 78.14

.1) 71.00 68.40 73.09 70.75

.2) 72.88 72.09 73.67 72.88

A 78.00 78.01 77.98 78.00

.1) 82.55 87.55 78.21 82.88

.2) 81.66 84.47 79.00 81.73

A 79.22 83.25 75.22 79.24

.1) 79.88 88.17 72.53 80.35

.2) 78.88 86.62 70.94 78.78

A 75.55 80.00 71.48 75.74

.1) 73.77 76.62 71.34 73.98

.2) 70.88 67.78 73.95 70.86

A 76.66 79.36 74.07 76.71

.1) 83.11 88.27 78.63 83.45

.2) 82.33 85.11 79.55 82.33

A 77.33 82.43 72.72 77.58

.1) 80.66 89.69 72.51 81.10

.2) 80.77 85.77 76.07 80.92

A 76.00 80.87 71.86 76.37

ort vector machine.



Table 2. Results for supervised wavelet and supervised principal component analysis (PCA): NKI_295, 10 times 10-fold

cross-validation.

Method No. of preselected genes Method Accuracy Sensitivity Specificity AUC

SVM (linear) 70 genes (van’t Veer) Wavelet (Db1.1) 65.10 38.32 77.82 58.07

Wavelet (Db1.2) 66.13 29.71 84.33 57.02

Supervised PCA 67.00 28.55 87.38 57.97

SVM (radial) 70 genes (van’t Veer) Wavelet (Db1.1) 70.96 32.82 90.37 61.59

Wavelet (Db1.2) 67.96 26.37 88.64 57.50

Supervised PCA 65.72 18.36 91.14 54.75

SVM (sigmoid) 70 genes (van’t Veer) Wavelet (Db1.1) 63.17 24.70 81.82 53.26

Wavelet (Db1.2) 64.55 19.25 88.10 53.67

Supervised PCA 66.27 23.73 89.04 56.39

SVM (linear) 70 genes Wavelet (Db1.1) 70.20 48.68 81.29 64.98

Wavelet (Db1.2) 72.65 53.08 82.52 67.80

Supervised PCA 69.37 45.83 81.71 63.77

SVM (radial) 70 genes Wavelet (Db1.1) 71.13 36.98 88.76 62.87

Wavelet (Db1.2) 70.06 39.92 86.22 63.07

Supervised PCA 70.10 34.41 89.37 61.89

SVM (sigmoid) 70 genes Wavelet (Db1.1) 65.79 43.03 77.08 60.06

Wavelet (Db1.2) 63.44 44.50 73.72 59.11

Supervised PCA 68.86 33.92 87.55 60.74

SVM (linear) q < 0.001 (56 genes) Wavelet (Db1.1) 69.68 48.65 80.87 64.76

Wavelet (Db1.2) 67.20 41.12 80.87 60.99

Supervised PCA 71.68 46.81 84.56 65.68

SVM (radial) q < 0.001 (56 genes) Wavelet (Db1.1) 70.37 33.90 89.40 61.65

Wavelet (Db1.2) 65.72 28.30 86.48 57.39

Supervised PCA 70.82 40.54 86.62 63.58

SVM (sigmoid) q < 0.001 (56 genes) Wavelet (Db1.1) 65.79 44.68 76.53 60.60

Wavelet (Db1.2) 66.37 41.38 79.49 60.43

Supervised PCA 71.10 45.46 84.21 64.83

SVM (linear) q < 0.002 (91 genes) Wavelet (Db1.1) 72.37 46.50 86.00 66.25

Wavelet (Db1.2) 70.43 80.97 57.00 67.24

Supervised PCA 73.03 46.51 86.76 66.63

SVM (radial) q < 0.002 (91 genes) Wavelet (Db1.1) 75.37 52.85 87.21 70.03

Wavelet (Db1.2) 74.58 49.18 86.48 67.83

Supervised PCA 71.06 39.56 88.05 63.81

SVM (sigmoid) q < 0.002 (91 genes) Wavelet (Db1.1) 72.44 42.36 88.01 65.19

Wavelet (Db1.2) 74.34 47.21 88.38 67.80

Supervised PCA 69.10 49.47 78.63 64.05

AUC Z area under the receiver operating characteristic curve; SVM Z support vector machine.
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the supervised wavelet method also had an acceptable

performance, although the improvements were not as

high as in the inner data set comparison. The results of

other studies based on the same data sets are shown in

Table 5. It can be seen that the proposed method had a

higher capability for the prediction of metastasis than

the other studies [20e29].
4. Discussion

This study proposed a new method based on WT to

develop a novel predictive model for the prediction of

breast cancer metastasis. Furthermore, the performance

of this method was compared with supervised PCA.

The main purpose of the feature extraction method

using WT is that the approximation coefficients usually
comprise the majority of the important information [11].

In addition, the powerful capability of the DWT to

compress the signal energy makes it a good candidate

for feature extraction applications. The DWT com-

presses most of the energy from the input signal and

concentrates it in a few high-magnitude coefficients in

the transformed matrix.

The wavelet feature extraction method does not

depend on the training data set to obtain the basis of

feature space compared to the PCA method. Therefore,

the wavelet feature extraction method dramatically re-

duces the computation load compared to PCA [11,12].

Considering the fact that most genes are irrelevant to

patients’ metastasis, we analyzed the reduced data set

given by selecting genes that were significantly related

to metastasis based on the t test statistics. If the WT is

performed directly by using all of the genes in a data set,



Table 3. Results for supervised wavelet and supervised principal component analysis (PCA): VDX_286, 10 times 10-fold

cross-validation.

Method No. of preselected genes Method Accuracy Sensitivity Specificity AUC

SVM (linear) 76 genes (Wang) Wavelet (Db1.1) 64.42 44.42 76.25 60.33

Wavelet (Db1.2) 66.39 44.86 79.13 61.99

Supervised PCA 68.17 39.13 85.82 62.47

SVM (radial) 76 genes (Wang) Wavelet (Db1.1) 63.89 35.74 79.77 57.75

Wavelet (Db1.2) 65.10 28.97 87.45 58.21

Supervised PCA 67.82 33.97 87.88 60.92

SVM (sigmoid) 76 genes (Wang) Wavelet (Db1.1) 66.92 45.49 79.66 62.58

Wavelet (Db1.2) 65.64 43.42 79.11 61.27

Supervised PCA 67.39 43.54 81.28 62.41

SVM (linear) 76 genes Wavelet (Db1.1) 75.17 61.97 83.02 72.50

Wavelet (Db1.2) 76.35 59.94 85.99 72.96

Supervised PCA 67.96 42.04 83.65 62.85

SVM (radial) 76 genes Wavelet (Db1.1) 76.07 60.80 84.86 72.83

Wavelet (Db1.2) 77.25 56.48 89.23 72.86

Supervised PCA 67.32 37.17 85.37 61.27

SVM (sigmoid) 76 genes Wavelet (Db1.1) 77.21 62.41 86.10 74.26

Wavelet (Db1.2) 71.57 61.79 77.34 69.56

Supervised PCA 68.10 42.85 82.77 62.81

SVM (linear) q < 0.04 (67 genes) Wavelet (Db1.1) 78.21 67.05 84.60 75.83

Wavelet (Db1.2) 79.21 64.46 87.61 76.04

Supervised PCA 76.00 68.76 80.66 74.71

SVM (radial) q < 0.04 (67 genes) Wavelet (Db1.1) 77.00 58.65 87.56 73.10

Wavelet (Db1.2) 75.17 54.41 88.33 71.37

Supervised PCA 75.00 60.97 83.68 72.33

SVM (sigmoid) q < 0.04 (67 genes) Wavelet (Db1.1) 77.03 65.75 83.54 74.65

Wavelet (Db1.2) 78.50 66.79 85.59 76.19

Supervised PCA 75.21 64.96 81.63 73.30

SVM (linear) q < 0.05 (86 genes) Wavelet (Db1.1) 77.00 67.04 83.02 75.03

Wavelet (Db1.2) 78.17 65.57 85.62 75.60

Supervised PCA 75.96 66.14 82.11 74.12

SVM (radial) q < 0.05 (86 genes) Wavelet (Db1.1) 75.96 55.15 88.20 71.68

Wavelet (Db1.2) 76.17 53.57 89.45 71.51

Supervised PCA 75.57 63.50 82.98 73.24

SVM (sigmoid) q < 0.05 (86 genes) Wavelet (Db1.1) 77.32 66.18 83.91 75.04

Wavelet (Db1.2) 74.67 59.40 83.36 71.38

Supervised PCA 74.28 65.61 79.19 72.40

AUC Z area under the receiver operating characteristic curve; SVM Z support vector machine.
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there is no guarantee that the resulting wavelet co-

efficients will be related to metastasis. Thus, this study

introduced a supervised form of WT that can be

considered as a supervised wavelet. After extracting

supervised wavelet approximation coefficients using

discrete Haar WT, these coefficients had higher pre-

dictive performances than the first three principal com-

ponents. Therefore, our results suggested that the

wavelet coefficients are the efficient way to characterize

the features of high-dimensional microarray data.

Because the performance of the proposed supervised

wavelet method is likely to be improvable compared to

some other studies, we conclude that this method is

worth further investigation as a tool for cancer patient

classification based on gene expression data. For

example, to achieve optimal classification performance,
a suitable combination of the classifier and the gene

selection method needs to be specifically selected for a

given data set.

Some studies reported misclassification rates that

were obtained by the application of their classifier to a

one splitting of the test and training set. For example,

van’t Veer et al [2] developed a 70-gene classifier pre-

dicting a distant metastasis of breast cancer. In the

training set, the classifier predicted the class of 65/78

cases correctly (i.e., with an accuracy of 83.3%, corre-

sponding to a weighted accuracy of 83.6%), whereas in

the test set it predicted the class of 17/19 cases correctly

(i.e., with an accuracy of 89.5%, corresponding to a

weighted accuracy of 88.7%). However, in the present

study, in order to avoid the over fitting problem, we

followed the 10 times 10-fold cross-validation for



Table 5. Previously published analyses for the breast cancer data.

No. of samples Feature selection Classifier Measure Validation method

Current study 97 Supervised wavelet SVM radial kernel Accuracy: 83.11 CV

Supervised PCA SVM radial kernel Accuracy: 79.22

295 Supervised wavelet SVM radial kernel Accuracy: 75.37

Supervised PCA SVM linear kernel Accuracy: 73.03

286 Supervised wavelet SVM linear kernel Accuracy: 79.21

Supervised PCA SVM linear kernel Accuracy: 76.00

Michiels et al

(2005) [20]

97 Correlation Nearest-centroid Accuracy: 68.00 CV

Peng (2005) [23] 97 Signal to noise ratio SVM Accuracy: 75.00 Leave-one-out CV

Signal to noise ratio Bagg & Boost SVM Accuracy: 77.00

Subsampling Ensemble SVM Accuracy: 81.00

Pochet et al

(2004) [24]

78þ19* None LS-SVM linear kernel Accuracy: 69.00 Leave-one-out CV

None SVM RBF kernel Accuracy: 69.00

None SVM linear kernel Accuracy: 52.00

Alexe et al

(2006) [22]

78þ19 Support set identified by

logical analysis of data

SVM linear kernel Accuracy: 77.00 CV

Artificial NN Accuracy: 79.00

Logistic regression Accuracy: 78.00

Nearest neighbors Accuracy: 76.00

Decision trees (C4.5) Accuracy: 67.00

Jahid et al

(2012) [26]

295 Steiner tree based method SVM Accuracy: 62.00 CV

286 Accuracy: 61.00

Chuang et al

(2007) [25]

295 Subnetwork marker SVM Accuracy: 72.00 CV

286 Accuracy: 62.00

van Vliet et al

(2012) [21]

295 Filtering approach (t test) Nearest mean

classifier

AUC: 73.80 CV

Dehnavi et al

(2013) [27]

286 Rough-set theory Neuro-fuzzy System Accuracy: 78.00 10-fold CV

Lee et al

(2011) [28]

286 Modules with condition

responsive correlations

Naı̈ve Bayesian

classifier

AUC: 0.62 Leave-one-out CV

Jahid et al

(2014) [29]

295 Patientepatient

co-expression networks

PC-classifier AUC: 0.78 Leave-one-out CV

Dagging AUC: 0.72

AdaBoost AUC: 0.66

286 PC-classifier AUC: 0.68

Dagging AUC: 0.61

AdaBoost AUC: 0.55

AUC Z area under the receiver operating characteristic curve; CV Z cross validation; PCA Z principal component analysis; RBF Z radial basic

function; SVM Z support vector machine.

Table 4. External validation for supervised wavelet: NKI_234_61, 10 times 10-fold cross-validation.

Method No. of preselected genes Wavelet Accuracy Sensitivity Specificity AUC

SVM (linear) 70 genes Db1. Level 1 67.83 75.63 59.15 67.39

Db1. Level 2 64.33 69.45 58.82 64.13

SVM (radial) 70 genes Db1. Level 1 64.50 72.47 54.94 63.71

Db1. Level 2 67.66 67.94 67.36 67.65

SVM (sigmoid) 70 genes Db1. Level 1 65.66 72.93 58.24 65.59

Db1. Level 2 62.16 56.06 68.47 62.27

SVM (linear) q < 0.00 (13 genes) Db1. Level 1 64.00 68.81 59.34 64.07

Db1. Level 2 61.50 53.96 69.82 61.89

SVM (radial) q < 0.003 (13 genes) Db1. Level 1 71.83 78.33 65.33 71.83

Db1. Level 2 69.00 70.16 67.86 69.01

SVM (sigmoid) q < 0.003 (13 genes) Db1. Level 1 70.66 65.06 76.73 70.90

Db1. Level 2 68.83 67.89 69.76 68.83

AUC Z area under the receiver operating characteristic curve; SVM Z support vector machine.
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evaluating the SVM classifier. The evaluation of the

classifier based on one test set is very impressed with the

data splitting process.

Future investigations can focus on different ways of

preselecting genes in the first stage of the proposed

method. For example, rather than ranking genes based

on their t test scores, one would use a different metric to

measure the association between a given gene and

metastasis occurrence. By contrast, another mother

wavelet and a different level of decomposition can be

studied. In this study, gene expression data were

employed as predictors. However, prediction perfor-

mance may be improved by adding other covariates such

as age, lymph node status, tumor size, and histological

grade. It is likely that the classification performances

could be improved with the use of some other classifiers.

This study confirmed that the SVM model based on

the supervised wavelet feature extraction method was

superior with regards to predictive performance than the

supervised PCA and some other studies. Gene expres-

sion profiling can help to distinguish between patients at

high risk and those at low risk for developing distant

metastases, therefore, this technology and other high-

throughput techniques are helping to alter our view of

breast cancer and provide us with new tools for mo-

lecular diagnoses. These results exhibit the possibility of

developing a new tool using wavelets for the dimension

reduction of microarray data sets in the classification

framework and therefore, the use of this method in

similar classification problems is recommended.
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