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Background: High plasma levels of trimethylamine N-oxide (TMAO) and its precursor

choline have been linked to stroke; however, their association with cerebral small vessel

disease remains unclear. Here we evaluated the association of plasma levels of TMAO

and choline with imaging markers of cerebral small vessel disease, including white matter

hyperintensities, lacunes, and cerebral microbleeds.

Methods: We performed a baseline cross-sectional analysis of a multicenter hospital-

based cohort study from 2015 to 2018. The data were collected from 30 hospitals

in China and included 1,098 patients with ischemic stroke/transient ischemic attack

aged ≥18 years. White matter hyperintensities, lacunes, and cerebral microbleeds were

evaluated with the patients’ demographic, clinical, and laboratory information removed.

White matter hyperintensities were rated using the Fazekas visual grading scale, while the

degree of severity of the lacunes and cerebral microbleeds was defined by the number

of lesions.

Results: Increased TMAO levels were associated with severe white matter

hyperintensities [adjusted odds ratio (aOR) for the highest vs. lowest quartile, 1.5;

95% confidence interval (CI), 1.0–2.1, p = 0.04]. High TMAO levels were more

strongly associated with severe periventricular white matter hyperintensities (aOR for the

highest vs. lowest quartile, 1.6; 95% CI, 1.1–2.3, p = 0.009) than deep white matter

hyperintensities (aOR for the highest vs. lowest quartile, 1.3; 95% CI, 0.9–1.9, p =

0.16). No significant association was observed between TMAO and lacunes or cerebral
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microbleeds. Choline showed trends similar to that of TMAO in the association with

cerebral small vessel disease.

Conclusions: In patients with ischemic stroke or transient ischemic attack, TMAO and

choline appear to be associated with white matter hyperintensities, but not with lacunes

or cerebral microbleeds; TMAO and choline were associated with increased risk of a

greater periventricular, rather than deep, white matter hyperintensities burden.

Keywords: trimethylamine N-oxide, choline, cerebral small vessel disease, white matter hyperintensities, cerebral

microbleeds, lacunes

INTRODUCTION

Cerebral small vessel disease (CSVD) refers to a spectrum
of imaging changes affecting the brain’s small vessel network.
The presence of CSVD increases with age and contributes to
approximately 45% of dementia and 20% of stroke cases, which
affects the late-life quality of the aging population (1–4). To
date, the pathophysiology of CSVD remains debatable. Although
studies have shown that traditional risk factors for stroke are also
associated with the prevalence of CSVD, treatments with anti-
hypertensive agents or statins in CSVD patients have not shown
efficacy (5–8).

Gastrointestinal tract microbiota form a complex ecosystem
and modulate the homeostatic metabolic balance (9).
Trimethylamine N-oxide (TMAO) is a gut microbial-derived
metabolite and has been found in the brain, indicating that it has
the ability to pass through the blood-brain barrier (BBB) (10).
Previous studies have suggested that TMAO increases platelet
hyperactivity, oxidative stress, and endothelial inflammatory
responses; on the other hand, it decreases nitric oxide production
and downregulates inter-endothelial tight junction proteins,
ultimately disrupting BBB integrity (11–13).

We hypothesized that following increased levels of circulating
TMAO and its precursor, choline, these metabolites could
interact with endothelial cells within the BBB, leading to cellular
injury and influencing the intracellular expression of tight
junction proteins. These combined effects may disrupt the
BBB and eventually promote the formation of white matter
hyperintensities (WMHs), lacunes, or cerebral microbleeds
(CMBs). Based on this hypothesis, we have conducted a cross-
sectional study to evaluate the association of plasma TMAO levels
and its precursor, choline, with the imaging markers of CSVD,
including WMHs, lacunes, and CMBs.

METHODS

Study Design and Participants
In China, 30 hospitals were invited to participate in
this study between August 2015 and March 2018. The
geographical distribution of the study sites is illustrated in
Supplementary Figure 1. A total of 1,159 patients, aged ≥

18 years, and within 7 days of onset of ischemic stroke (IS)
or transient ischemic attack (TIA), who provided consent for
CSVD imaging evaluation and blood sample collection, were
consecutively enrolled. Patients with measurable neurologic

deficits were diagnosed with acute IS based on World
Health Organization criteria and confirmed brain imaging
[computerized tomography or magnetic resonance imaging
(MRI)] (14). Sixty-one patients with missing TMAO and choline
data or unqualified MRI scans were excluded, resulting in a
total of 1,098 patients to be included in the final analysis. The
study was approved by the Ethics Committee at Beijing Tiantan
Hospital. All patients provided written informed consent before
enrolment in this study.

TMAO and Choline Measurement
Fasting blood samples were collected within 24 h of enrollment
and centrifuged into serum, plasma, and white blood cells in
a local laboratory. These extracted samples were transported
and stored in a −80◦C freezer in Beijing Tiantan Hospital
until analysis. Plasma TMAO and choline concentrations were
determined using liquid chromatography-mass spectrometry on
QTRAP 5500 (AB Sciex Pte. Ltd, Framingham, MA, USA)
using an internal standard of d9-TMAO and d9-choline in
methanol. The detailed methodology applied is available in
Supplementary Material. Laboratory test results were uploaded
into an electronic capture system (EDC), and all data were
de-identified before data analysis.

Clinical Assessment
For each patient, we recorded information on traditional
risk factors for both stroke and CSVD including age; sex;
body mass index (BMI); systolic and diastolic blood pressure
(SBP and DBP, respectively); medication history of anti-
platelet agents, lipid-lowering agents, and anti-hypertensive
agents; prior diagnosis of hypertension; diabetes mellitus
(DM); stroke or TIA; and smoking. Furthermore, we recorded
each patient’s laboratory data, including estimated glomerular
filtration rate [eGFR, calculated as 186× (serum creatinine)−1.154

× (age)−0.203 (× 0.742 if women)] and levels of high-
density lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), high-sensitivity C-reactive protein (hs-
CRP), and homocysteine (Hcy).

Hypertension was defined as an SBP ≥ 140mm Hg and/or
DBP ≥ 90mm Hg, on at least two separate occasions, or the
current use of anti-hypertensive medications. DM was defined as
a fasting plasma glucose level ≥ 126 mg/dl (7.0 mmol/L) and/or
current use of hypoglycemic agents. The calculation of BMI was
based on the patient’s weight and height (kg/m2). Smoking status
was defined by current smoking.
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Imaging Assessment
CSVD neuroimaging markers of interest in this study were
WMHs, lacunes, and CMBs. The operators who rated the
images were blinded to all patients’ demographic, clinical,
and laboratory data. Radiological assessment of each CSVD
imaging marker was performed by two experienced neurologists,
following the imaging protocol, and independently documented
in the EDC. If an acute infarct lesion influenced the operator’s
decision regarding the CSVD assessment, they would select the
“unable to determine” option on the EDC and an independent
statistician would then exclude these data from our analysis.
After screening all images, inconsistent results were assessed
by a senior neuro-radiologist who was blinded to the initial
results. The imaging data were saved in Digital Imaging and
Communications in Medicine or DICOM format and evaluated
by utilizing a RadiANT DICOM Viewer (Medixant Ltd, Poznan,
Poland). WMHs, lacunes, and CMBs were defined according to
the STandards for ReportIng Vascular changes on nEuroimaging
or STRIVE criteria (3). Brain MRI was performed on either a
1.5 Tesla or 3.0 Tesla MRI scanner, as available. Detailed MRI
acquisition included (1) T1-weighted images, (2) T2-weighted
images, (3) T2 fluid-attenuation inversion recovery (FLAIR)
images, and (4) susceptibility-weighted imaging (SWI), or T2∗-
weighted gradient-recall echo images if SWI was not provided.

WMHs of presumed vascular origin were defined as patchy
areas with hyperintensities on T2-weighted and FLAIR sequences
and hypointensities on T1-weighted images. T2-weighted and
FLAIR sequences were analyzed using Fazekas semiquantitative
visual grading scale. This method assesses periventricular
(contiguous with the ventricle margin) and deep (not contiguous
with the ventricles) white matter changes separately, according
to the following stages: 0 (absence), 1 (pencil-thin lining and
non-confluent), 2 (confluent), and 3 (diffuse). The sum of the
periventricular and deep WMHs scores was used to characterize
patients’ WMH burden level, and were classified as “None”
(total Fazekas score of 0), “Low” (1, 2), “Medium” (3, 4), and
“High” (5, 6).

The number of lacunes and CMBs was coded as “None”
(0 lacunes/CMBs), “A few” (1–2 lacunes/CMBs), and “Many”
(3 or more lacunes or CMBs). The presence of lacunes and
CMBs was evaluated in both hemispheres; lacunes were assessed
in the subcortical white matter, basal ganglia, thalamus, and
infratentorial areas (the pons), and CMBs were additionally
assessed in the lobar and cerebellum regions. Lacunes are
asymptomatic and well-defined lesions of 3–15mm. These fluid-
filled cavities commonly have the same signal as cerebrospinal
fluid—they are hyperintense on T2-weighted images and
hypointense on T1-weighted and FLAIR sequences, with an
occasional hyperintense rim. CMBs appear as focal hemosiderin
deposits caused by blood leakage from damaged arteriolar walls.
They are defined as <10 mm-size ovoid or round lesions with a
hypointense signal on T2∗-weighted gradient sequences or SWI.
CMB mimics, such as vessels or calcifications, were excluded
from our analysis.

Statistical Analyses
Continuous variables are expressed as the median (interquartile
range), and categorical variables as numbers (percentages).

Differences in the distribution of categorical variables and non-
normally distributed data were tested using a χ2 test and
Kruskal–Wallis test, respectively. The Student’s t-test was used
to compare normally distributed variables between groups.
Ordinal logistic regression analysis was performed to determine
the association of plasma TMAO and choline levels with the
ordinal CSVD imaging markers (i.e., the four WMHs Fazekas
rating levels or number of lesions). The regression models were
adjusted for conventional vascular risk covariates and those
associated with the severity of CSVD, including age; sex; history
of hypertension; DM; prior stroke or TIA; history of anti-platelet,
lipid-lowering, or anti-hypertensive agent usage; BMI; SBP; LDL-
C; eGFR; and inflammatory markers such as hs-CRP and Hcy.
Patients with missing covariate data were excluded from the
analyses. Statistical analyses were performed with SPSS version
25.0 (IBM, Armonk, NY, USA) and SAS 9.4 software (SAS
Institute, Cary, NC, USA) by independent statisticians. A p-value
< 0.05 was considered significant.

RESULTS

Patient Clinical Characteristics
Our study included 1,098 patients with IS or TIA [mean age 62
(54, 69) years, men 71%]. Among all patients, 64% (n = 704)
had a prior diagnosis of hypertension and 26% (n = 284) had
a previous stroke or TIA. Accordingly, previous use of anti-
hypertensive agents was identified in 45% (n = 498) of patients,
while 18% (n = 195) had used anti-platelet agents and 11%
(n = 125) had used lipid-lowering agents. The median levels
of TMAO and choline were 1.7 (1.2–2.5) µmol/L and 13.5
(11.4–16.2) µmol/L, respectively. Plasma TMAO levels did not
differ between stroke subtypes (Supplementary Table 1). Table 1
displays patients’ baseline characteristics.

Plasma TMAO and Choline Identified as
Risk Factors for WMHs
Based on their Fazekas visual rating scores, patients classified as
having “No” or a “Low,” “Medium,” or “High” WMH burden
comprised 6% (n= 67), 52% (n= 570), 24% (n= 262), and 18%
(n= 199) of all patients, respectively. The totalWMHburden was
significantly higher among patients with older age, hypertension,
prior stroke or TIA, history of anti-platelet or anti-hypertensive
agent usage, lower eGFR levels, and higher SBP, hs-CRP, Hcy,
TMAO, and choline levels (Supplementary Table 2).

Figure 1 shows FLAIR images of “High” totalWMHburden in
patients with elevated TMAO levels. When TMAO and choline
were assessed as quartiles, compared with the lowest quartile,
the adjusted odds of a higher total WMH burden were greater
in patients with levels of both circulating TMAO > 2.5 µmol/L
and choline > 16.2 µmol/L (Table 2). We further characterized
the associations of periventricular and deep WMHs with TMAO
and choline separately. Compared with the subjects in the lowest
quartile, we found that patients with TMAO > 2.5 µmol/L
or choline levels > 16.2 µmol/L displayed an increased risk
of having greater periventricular WMH burden-−1.6-fold [95%
confidence interval (CI), 1.1–2.3] and 1.4-fold (95%CI, 1.0–
2.0), respectively. However, no significant association was found
between patients with either TMAO > 2.5 µmol/L [odds ratio
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TABLE 1 | Characteristics of the study population.

Parameters All patients (n = 1,098)

Demographics

Age, years 62 (54, 69)

Male sex 774 (70.5)

Vascular risk factors

BMI, kg/m2 24.7 (22.9, 26.7)

Systolic BP, mmHg 148 (133, 164)

Diastolic BP, mmHg 88 (79, 95)

Current smoker 378 (34.4)

Hypertension 704 (64.1)

Diabetes mellitus 254 (23.1)

Prior Stroke/TIA 284 (25.9)

Medical use history

Anti-platelet agent 195 (17.8)

Lipid-lowering agent 125 (11.4)

Anti-hypertensive agent 498 (45.4)

Laboratory tests

eGFR, mL/min/1.73 m2 94.6 (83.7, 102.6)

LDL-C, mmol/L 2.2 (1.6, 3.0)

HDL-C, mmol/L 0.9 (0.8, 1.1)

hs-CRP, mg/L 1.5 (0.7, 3.8)

Hcy, µmol/L 16.8 (13.3, 23.1)

TMAO, µmol/L 1.7 (1.2, 2.5)

Choline, µmol/L 13.5 (11.4, 16.2)

Data are presented as median (interquartile range) or number (percentages).

(OR) = 1.3; 95% CI, 0.9–1.9] or choline levels > 16.2 µmol/L
(OR= 1.4; 95% CI, 1.0–2.0) and the risk of having a greater deep
WMH burden (Table 2).

Ordinal logistic regression analysis found that elevated levels
of the inflammation marker Hcy, but not of hs-CRP or other
potential biomarkers, were associated with a greater total WMH
burden (Figure 2). We evaluated whether a combination of Hcy
and either TMAO or choline levels could be used as a predictor
for WMHs. Patients were categorized into four groups according
to median TMAO and Hcy values. This analysis showed that
subjects with both elevated TMAO and Hcy levels displayed
a significant 2.0-fold (95% CI, 1.4–3.0) increase in the risk
of presence of a greater total WMH burden, compared with
patients with low levels of both TMAO and Hcy (reference
group) (Table 3). Moreover, high TMAO levels were associated
with significantly increased risk of higher Fazekas scores for
total WMHs (1.7-fold risk for total WMHs when TMAO levels
were high; 95% CI, 1.2–2.4) among patients with low Hcy levels.
Similarly, high Hcy levels were associated with significantly
increased risk of higher Fazekas scores for total WMHs (1.7-fold
risk for total WMHs when Hcy levels were high, 95% CI, 1.2–
2.4) among patients with low TMAO levels. Likewise, subjects
with both high choline and Hcy levels displayed a significant
1.8-fold (95% CI, 1.3–2.6) increased risk of presence of greater
total WMH burden, compared with patients with low levels of
both choline and Hcy (reference group). Among patients with
low Hcy levels, the association between high choline levels and

FIGURE 1 | FLAIR images of high total WMH burden in patients with elevated

TMAO levels. (A) and (B) Axial FLAIR slices show the position of periventricular

(left) and deep WMH (right). Fazekas scores in periventricular region and deep

region were both rated as grade 3 (*) in a patient with 5.3 µmol/L TMAO (A)

and 5.4 µmol/L TMAO (B).

higher Fazekas scores for totalWMHsweremarginally significant
(1.4-fold risk for total WMHs when choline levels were high; 95%
CI, 1.0–2.0). Among patients with low choline levels, high Hcy
levels were associated with a significantly increased risk of higher
Fazekas scores for total WMHs (1.5-fold risk for total WMH
when Hcy levels were high; 95% CI, 1.0–2.1) (Table 3).

The Association of Plasma TMAO and
Choline Levels With Lacunes
Lacunes were present in 54% (n = 592) of patients: 28%
(n= 304) had one or two lacunes, and 26% (n = 288) had
three or more. Patients who had a greater number of lacunes
were more advanced in age; had higher frequencies of current
smoking status; hypertension; prior stroke or TIA; medical use
history of anti-platelet agents, lipid-lowering agents, or anti-
hypertensive agents; lower eGFR levels; and higher levels of BMI,
Hcy, TMAO, and choline (Supplementary Table 3). Compared
with patients with TMAO levels <1.2 µmol/L, patients with
TMAO levels >2.5 µmol/L had a 1.7-fold increased risk of a
greater number of lacunes (95% CI, 1.2–2.3). However, adjusting
for traditional risk factors greatly attenuated the association.
Consistently, compared with subjects with choline levels <11.4
µmol/L, patients with levels >16.2 µmol/L showed a 1.6-fold
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TABLE 2 | Relationships between plasma TMAO and choline concentrations and the risks of higher total, periventricular, and deep WMH burden.

Total WMH Burden Periventricular WMH Burden Deep WMH Burden

Unadjusteda

OR (95% CI)

Adjustedb

OR (95% CI)

Unadjusteda

OR (95% CI)

Adjustedb

OR (95% CI)

Unadjusteda

OR (95% CI)

Adjustedb

OR (95% CI)

TMAO (range, µmol/L)

1st quartile (<1.2) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

2nd quartile (1.2, 1.7) 1.3 (0.9, 1.8) 0.9 (0.6, 1.3) 1.4 (1.0, 1.9) 1.0 (0.7, 1.4) 1.2 (0.9, 1.7) 0.9 (0.6, 1.3)

3rd quartile (1.7, 2.5) 1.6 (1.2, 2.2) 1.3 (0.9, 1.8) 1.7 (1.2, 2.3) 1.3 (0.9, 1.8) 1.4 (1.0, 2.0) 1.2 (0.8, 1.7)

4th quartile (>2.5) 2.4 (1.8, 3.4) 1.5 (1.0, 2.1) 2.7 (1.9, 3.7) 1.6 (1.1, 2.3) 2.1 (1.5, 2.9) 1.3 (0.9, 1.9)

Choline (range, µmol/L)

1st quartile (<11.4) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

2nd quartile (11.4, 13.5) 1.2 (0.9, 1.7) 1.0 (0.7, 1.4) 1.2 (0.9, 1.7) 1.0 (0.7, 1.4) 1.3 (0.9, 1.8) 1.0 (0.7, 1.5)

3rd quartile (13.5, 16.2) 1.4 (1.0, 1.9) 1.2 (0.8, 1.7) 1.4 (1.0, 2.0) 1.2 (0.8, 1.7) 1.3 (1.0, 1.9) 1.1 (0.8, 1.6)

4th quartile (>16.2) 2.0 (1.5, 2.8) 1.5 (1.0, 2.1) 2.0 (1.5, 2.7) 1.4 (1.0, 2.0) 1.9 (1.3, 2.6) 1.4 (1.0, 2.0)

aOrdinal logistic regression. bModel adjusted for age, sex, hypertension, diabetes mellitus, prior stroke or transient ischemic attack, history of anti-platelet, lipid-lowering, or anti-

hypertensive agents, BMI (body mass index), systolic blood pressure, low-density lipoprotein cholesterol, estimated glomerular filtration rate, homocysteine, and high sensitive-C-reactive

protein. TMAO, trimethylamine N-oxide; OR, odds ratio; CI, confidence interval.

FIGURE 2 | Forest plot of the ORs for potential biomarkers with severe total WMH risk. The odds ratio was calculated according to the median value of potential

biomarkers’ levels using ordinal logistic regression models. The bar represents 95% confidence interval (CI). Model 1 included age, sex, hypertension, diabetes

mellitus, prior stroke or transient ischemic attack, history of anti-platelet, lipid-lowering, or anti-hypertensive agents, BMI (body mass index), systolic blood pressure,

low-density lipoprotein cholesterol, estimated glomerular filtration rate, homocysteine, and high sensitive-C-reactive protein and TMAO as covariates. Model 2 included

age, sex, hypertension, diabetes mellitus, prior stroke or transient ischemic attack, history of anti-platelet, lipid-lowering, or anti-hypertensive agents, BMI, systolic

blood pressure, low-density lipoprotein cholesterol, estimated glomerular filtration rate, homocysteine, and high sensitive-C-reactive protein and choline as covariates.

increase in the odds of greater numbers of lacunes (95% CI, 1.1–
2.1). However, further addition of traditional risk factors to the
model neutralized the association (Supplementary Table 4).

The Association of Plasma TMAO and
Choline Levels With CMBs
CMBs were found in 32% (n = 349) of the patients: 16%
(n = 181) had one or two CMBs and 15% (n = 168) had
three or more CMBs. Patients with higher numbers of CMBs
were more advanced in age and were more likely to have a
history of hypertension; DM; prior stroke or TIA; medical use
of either anti-platelet agents, lipid-lowering agents, or anti-
hypertensive agents; and displayed higher levels of SBP, DBP, and
Hcy (Supplementary Table 3). In our study, neither TMAO nor

choline levels increased the odds of a higher number of CMBs
(Supplementary Table 5).

DISCUSSION

Our study reports an association between circulatory TMAO
and choline levels and CSVD, encompassing WMHs, lacunes,
and CMBs. We demonstrated that: (1) elevated plasma levels
of TMAO and choline are each associated with a higher risk
of WMHs, independent of traditional risk factors, and are each
more closely associated with periventricular WMHs than deep
WMHs; and (2) plasma TMAO and choline levels in our study
appeared to have no significant association with the presence of
lacunes or CMBs after adjusting for confounding variables.
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TABLE 3 | Relationships between plasma TMAO or choline concentrations,

plasma Hcy levels, and the risk of a higher total WMH burden in the context of

plasma Hcy levels.

Total WMH Burden

Unadjusteda OR (95% CI) Adjustedb OR (95% CI)

TMAO Hcy

Low Low 1.0 (ref) 1.0 (ref)

Low High 1.9 (1.4, 2.6) 1.7 (1.2, 2.4)

High Low 2.0 (1.4, 2.8) 1.7 (1.2, 2.4)

High High 2.8 (2.0, 3.8) 2.0 (1.4, 3.0)

Choline Hcy

Low Low 1.0 (ref) 1.0 (ref)

Low High 1.7 (1.2, 2.4) 1.5 (1.0, 2.1)

High Low 1.6 (1.1, 2.2) 1.4 (1.0, 2.0)

High High 2.3 (1.7, 3.1) 1.8 (1.3, 2.6)

Patients were categorized into four groups according to median TMAO and Hcy values.
aOrdinal logistic regression. bModel adjusted for age, sex, hypertension, diabetes mellitus,

prior stroke or transient ischemic attack, history of anti-platelet, lipid-lowering, or anti-

hypertensive agents, BMI (body mass index), systolic blood pressure, low-density

lipoprotein cholesterol, and estimated glomerular filtration rate. TMAO, trimethylamine

N-oxide; OR, odds ratio; CI, confidence interval.

Evidence for an association between microbiota metabolites
and CSVD is limited and conflicting. The Framingham offspring
cohort showed that estimated dietary choline intake from a food-
frequency questionnaire was inversely associated with WMH
volume (15). However, a community-based study conducted
in Boston observed a non-significant association between
plasma choline levels and WMH volume (16). Our results
suggest that the levels of plasma TMAO and its precursor,
choline, in IS/TIA patients remain significantly associated
with WMHs, particularly in the periventricular white matter,
after adjusting for both vascular risk factors, eGFR and
inflammatory factors. We speculate that TMAO or choline
participates in endothelial dysfunction, inducing or reinforcing
the inflammatory cascade and disrupting the BBB integrity. On
one hand, after adjustment for traditional vascular risk factors,
elevated levels of circulating TMAO have been recognized as
an indicator of endothelial dysfunction. TMAO supplementation
increases oxidative stress and activates the p53/p21/Rb pathway
which mediates cellular senescence, thereby resulting in reduced
nitric oxide bioavailability (17–19). On the other hand,
TMAO triggers nucleotide-binding oligomerization domain–
like receptor family pyrin domain–containing 3 (NLRP3)
inflammasome formation, further exacerbating endothelial
injuries with subsequent inflammatory cytokines production
(20, 21). Meanwhile, TMAO induces the activation of NLRP3
inflammasomes, which is mediated by the release of high-
mobility group box 1, which in turn activates toll-like receptor
4 (TLR4), and subsequently downregulates inter-endothelia tight
junction proteins such as ZO-2, occludin and VE-cadherin
in vitro (13). BBB disruption in normal appearing WM predicts
future white matter lesion (22). The permeability of the BBB is
closely associated with each of its constituent elements, especially
the most critical player, endothelial cells. Notably, paracellular
tight junction complexes in line with endothelial cells are also

vital to the integrity and function of the BBB (10, 23, 24). A study
using an animal model of CSVD has reported that the destruction
of tight junction proteins is closely associated with the severity of
WMHs (25). Taken together, the abovementioned mechanisms
might possible explain our clinical observations. Additionally,
our study found that IS/TIA patients with both high TMAO
(choline) and highHcy levels had the highest proportion of severe
WMHs. Red meat, fish, nuts, yolk, and eggs are rich in dietary
choline. Certain gut bacteria metabolize trimethylammonium-
containing nutrients into trimethylamine, which is ultimately
oxidized to TMAO (26–29). Different dietary patterns have
different impacts on the plasma levels of TMAO, choline, and
Hcy (30–32). Previous studies have suggested that plasma Hcy
concentration was strongly associated with WMHs, and Hcy-
lowering therapy significantly slowed WMHs progression (33–
35). Therefore, dietary interventions targeting plasma TMAO,
choline, and Hcy levels, and their impact on CSVD should be
investigated in the future.

Our data observed no significant associations of TMAO or
choline levels with the numbers of lacunes or CMBs. High
circulating TMAO levels induce platelet hyperresponsiveness
and increase the risk of thrombotic events. Higher coagulability
may explain the attenuated association between elevated TMAO
and choline levels and the number of CMBs (11, 36). In this
study, patients were allocated according to the number of CMBs
instead of by CMBs regions. CMBs on lobar or deep locations
are associated with differed pathogenesis, mainly cerebral
amyloid angiopathy and hypertensive arteriopathy, respectively
(37). Since vascular inflammation primarily participates in the
hypertensive arteriopathy in brain regions such as the basal
ganglia, future studies should further analyze the association of
TMAO and choline with the region-specific of CMBs distribution
(38). Higher plasma choline levels have been shown to be
associated with a lower incidence of small vessel subcortical
infarcts (16). According to the Trial of Org 10172 in Acute Stroke
Treatment or TOAST criteria, plasma TMAO levels did not differ
significantly between stroke subtypes, and no definite association
has been reported between TMAO and small vessel occlusion
(39–42). Accordingly, the lack of obvious associations between
TMAO levels and lacunar infarcts may partially explain the
non-significant association between plasma TMAO or choline
levels with the number of lacunes that we found in our study.
Endothelia injuries play a central role in BBB function. It would
induce adherent activation of coagulatory state which is also
consistent with finding of restricted thrombus formation and
constant plasma enter the vessel wall, and ultimately angiopathy
with small vessel occlusion in brain (43). However, only one fifth
of acute lacunar infarcts progressed to lacunes after stroke onset
on amedian follow-up imaging of<1 year. Although over 90% of
lacunes are found adjacent to WMHs (44–46), lacunes formation
are complex and not complete understood. Meanwhile, it has
been suggested that lacunes represent as an extreme end of
small vessel changes (47, 48). Given the inconsistent finding
of TMAO with WMHs and lacunes, pathological processes
underlies WMHs and lacunes may not be similar.

Our study has some limitations. First, due to its cross-
sectional nature, we could not examine the development or
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possible causal association between TMAO and choline levels
and CSVD. We expect that future longitudinal studies and
Mendelian randomized studies will validate our hypothesis.
Second, we did not collect fecal samples to determine microbiota
composition. Nonetheless, the association between microbiota
and TMAOhas been investigated extensively (49). Third, we were
unable to directly evaluate the impact of diet on TMAO, choline,
and Hcy as information on dietary habits was not collected
in this study. Finally, our samples were obtained from stroke
patients, thereby limiting the generalizability of our results to the
general population. However, as the data were obtained from 30
hospitals, we feel that they are a valid general representation of
patients with stroke.

CONCLUSIONS

Our results suggests that in IS/TIA patients, TMAO and its
precursor choline appear to be associated with WMHs, but
not with lacunes and CMBs. Elevated TMAO and choline
levels particularly seem to increase the risk of having greater
periventricular WMH burden more than deep WMH burden.
Thus, gut microbial-derived metabolites appear to have an
effect on WMHs. Confirmation of these findings through
further longitudinal research or dietary interventions on
patients with CSVD might have important implications for
clinical practice.
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