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Abstract: Cancer metastasis is one of the primary reasons for cancer-related fatalities. Despite the
achievements of cancer research with microfluidic platforms, understanding the interplay of multiple
factors when it comes to cancer cells is still a great challenge. Crosstalk and causality of different
factors in pathogenesis are two important areas in need of further research. With the assistance of
machine learning, microfluidic platforms can reach a higher level of detection and classification of
cancer metastasis. This article reviews the development history of microfluidics used for cancer
research and summarizes how the utilization of machine learning benefits cancer studies, particularly
in biomarker detection, wherein causality analysis is useful. To optimize microfluidic platforms,
researchers are encouraged to use causality analysis when detecting biomarkers, analyzing tumor
microenvironments, choosing materials, and designing structures.
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1. Introduction

Cancer includes sustaining proliferative signaling, evading growth suppressors, resist-
ing cell death, enabling replicative immortality, inducing angiogenesis, activating invasion,
reprogramming energy metabolism, evading immune destruction, building tumor microen-
vironment, and metastasis [1]. Cancer metastasis is a key contributor to cancer incidence
and fatality. Circulating tumor cells (CTCs) can serve as a primary indicator of metas-
tasis [2]. The isolation, identification, and characterization of CTCs are meaningful for
metastasis research [3]. Traditional approaches to cancer metastasis are limited in physio-
logical relevance in microenvironments (particularity with invasion assays based on Petri
dishes), lack quantification accuracy with trans-well-based transmigration assays, and have
challenges in spatiotemporal control in animal experiments. To overcome these limita-
tions, microfluidic platforms can be developed to study the process of cancer metastasis in
real-time quantitative analyses of physiological conditions.

Metastasis has been investigated comprehensively—biologically, mechanically, chemi-
cally, and physically. Because of the impediments of various disciplines, the causality of the
substantial data has not been evaluated. With the development of data science, machine
learning (ML) can be used as a powerful tool for cancer research [4–6]. ML draws from
the large amount of data generated from microfluidic platforms themselves to assist in
different assignments such as feature extraction, classification, prediction, and optimization.
The microfluidics of intelligent algorithms have shown its capability to settle tough or
even impossible problems, such as the optimization of microfluidic platform design, which
traditional data analysis cannot achieve [7]. The causality of the different factors of distinct
properties is key in pushing cancer metastasis research to a higher level. The integration
of ML algorithms can reveal the causality of factors in the mechanisms of cancer and
cancer metastasis.
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2. Systematic Description

Cancer metastasis is a disease in which tissue cells grow uncontrollably and escape
from the position of the primary tumor to invade other distant tissues or organs via the
circulatory system of the body (see Figure 1), a process that substantially boosts the mor-
bidity and lethality of cancer in patients. Cancer can easily go unnoticed at early stages
because of a lack of clinical symptoms and because histopathological examination is not
useful in detecting the primary extension of tumor cells in general [8]. Tumor cells become
circulating tumor cells (CTCs) when they intrusively enter the circulation system that
causes cancer metastasis. There are only 0.001% to 0.02% tumor cells associated with cancer
metastasis. However, they contribute to over 90% of cancer-related deaths because they
successfully metastasize [9]. Cancer metastasis triggers systematic pathological changes
that need whole-body treatment, including surgical operation and chemotherapy due to
lesions in multiple secondary organs. Diverse tumors metastasize specifically to partic-
ular secondary organs or tissues due to distinctive signals that stimulate the interaction
between cell types and respond to the mechanical properties of microenvironments or
the chemokines of secondary tumor sites [2,8,9]. In the process of metastasis, the early
diagnosis and prognosis of cancer patients largely depends on the isolation and analysis of
CTCs. The early diagnosis of CTCs can offer a promising proposal of treatment to cancer
patients who need either further systemic treatment or targeted therapy after the initial
tumor removal. Analyzing CTCs, mimicking tumor microenvironments, and investigating
how tumor cells react to specific signals in vitro can lead to knowledge of the mechanisms
in cancer metastasis and provide suggestions to prevent metastasis with both therapeutic
drugs and therapeutic devices.
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Figure 1. Illustrations of arterial and venous circulation and cancer metastasis. (1) Tumor cells of
primary tumors invade endothelium. (2) Tumor cells circulate in blood vessels with blood cells, called
circulating tumor cells (CTCs). (3) CTCs evacuate from blood vessels and invade a distant position
to constitute a secondary tumor. (4) Tumor cells of secondary tumors invade blood vessels again to
build another tumor site.
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Intelligent microfluidics is an emerging field that integrates ML with devices. Mi-
crofluidics is a technology characterized by sub-millimeter structures and fluid control
at the micrometer scale with extreme sensitivity and satisfied throughput. It has been
used in improving diagnostics and biology research. Most of its applications can be sub-
sumed under five broad categories: the analysis of DNA and proteins [10], the sorting of
cells [11], high-throughput screening, chemical reactions [12,13], and transferring small
volumes of materials [11]. The advancement of micro-/nanofabrication techniques and
rapid prototyping enables the design of multifunctional microfluidics to investigate the
isolation of CTCs and metastatic microenvironments. Microfluidic techniques are gradually
becoming a powerful means of cancer metastasis research in fundamental and applied
stages, and they are naturally associated with simple operation, cost efficiency, and the
accurate manipulation of fluid volume. On the one hand, despite substantial progress, it is
still a challenge to fuse biochemical factors secreted by cells of the extracellular matrix in
the tumor microenvironment (TME) [6] to confront physical factors such as matrix stiffness,
shear stress, interstitial flow, topography, engineering design, and clinical requirements,
and to customize these factors methodically into one microfluidic platform to reach its
full potential. On the other hand, ML is a super-efficient data-processing and -analysis
method that can generate information and rules from large datasets and then re-program
based on these analyses [7]. ML has been widely used in biological applications, such as
labeled cell classification with biological immuno-properties, the label-free detection of
cells with physical properties, and the opposite design of microfluidic platforms [7,14].
This innovative combination of two techniques, intelligent microfluidics, not only imple-
ments the dominant conveniences of microfluidics, but also uses the strength of ML to help
microfluidic platforms live up to their enormous potential. Microfluidic platforms applied
in cancer research have two major applications: CTC isolation [3,8,9] and tumor modeling
to mimic metastatic microenvironments.

These microfluidic platforms can be divided into two main categories, “affinity-based
strategies” and “label-free strategies”. The categories correspond to particular tumor mark-
ers and specific biophysical properties, respectively. The CTCs’ isolation of affinity-based
strategies refers to the affinity of exact antigens conveyed on the membrane of the cell
to bind with corresponding antibodies coated on the surface of microfluidic platforms or
magnetic beads [2]. These tactics either separate CTCs by targeting epithelial cell adhe-
sion molecule (EpCAM), epidermal growth factor receptor (EGFR), and human epidermal
growth factor receptor2 (HER2) for positive selection, or by eliminating hemocytes by
targeting distinct antigens such as leukocyte common antigen (CD45) via negative selec-
tion [2,15,16] (see Figure 2a). The principle of these methods is that antigen- and antibody-
related cells adhere to the microfluidic platform surface with a high purity, whereas the
majority of other cells are swept along with the fluid flow (see Figure 2).

Label-free-based strategies stand for CTC separation by biophysical properties other
than the distinctive biomarkers on the cancer cells’ surface and the nucleic acid inside the
cytoplasm [3,17–19]. CTCs are isolated from blood cells by their biophysical properties,
such as cell morphology, buoyant density, electric charge, and deformability (see Figure 2b),
to facilitate subsequent downstream analysis in cancer metastasis [18–21]. Label-free-based
strategies of CTC isolation based on physical characteristics include four main types: den-
sity gradient centrifugation methods [22], filtration-based methods [23,24], hydrodynamic-
based methods [15,25], and dielectrophoresis-based methods [26,27]. Density gradient
centrifugation methods utilize differences in cell migration distances based on differences
in cell buoyant density to isolate CTCs from background cells such as erythrocytes and
leukocytes. The filtration-based method, a means that features uniform microstructures in
filters, separates CTCs independently and simply according to the diversity of cell sizes
and the deformability of different phenotypes with high throughput. A commercialized
platform called “isolation by size of epithelial tumor cells (ISET)” has been demonstrated
by Sun et al. to isolate CTCs in an inexpensive and efficient way [24]. The principle of
hydrodynamic-based methods is the application of inertial force generated by fluid shear
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within micro-channels [25]. The flowing particles are migrated into different equilibrium
positions by lateral force and hydrodynamic inertial effects based on their diversity in
density and size. Electrophysical properties are applied for the dielectrophoresis-based
method to isolate targeted CTCs under electric fields without regularity. Differences in
inherent size and dielectric constants between healthy hemocytes and cancer cells produce
different dielectrophoretic forces. The dielectrophoretic force is one of the bioparticle’s
active manipulation forces, which manipulates and controls the motion of cells in microflu-
idic platforms with an irregular electric field due to the phenomenon of polarization [27,28].
It is an effective method applied for CTCs’ classification [27].
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Figure 2. Isolation of tumor cells in microfluidic devices based on biomarkers, label-free methods,
and mixed methods. (a) Affinity-based cell isolation, (a1) positive selection, (a2) Negative selection.
(b) Label-free isolation strategies based on different biophysical properties. (c) Mixed-method cell
isolation strategies based on immunomagnetic isolation and SERS.

Above all, the microfluidics of CTC isolation, whether affinity or label-free, can achieve
good efficiency and throughput. However, every method has its own drawbacks that in-
fluence isolation performance, such as the purity and recovery rate of CTCs. For the
affinity-based strategies mentioned above, microfluidic fabrication and surface microstruc-
ture are crucial for the performance of microfluidic platforms. Microfluidic fabrication
varies in materials including metal, silica, biopolymer, quantum dots, iron oxide, carbon-
based, rare-earth-based, and other nanomaterials. Some particular biomedical applications
have requirements for material composition, surface modification, and specific morphology.
Polydimethylsiloxane (PDMS) is one of the most popular materials used for microfluidics
because of its biological compatibility, low cost, express prototyping, gas permeability,



Cells 2022, 11, 905 5 of 11

optical properties, and mechanical properties such as elasticity and flexibility [29]. To
increase the quantity of target cell capturing, superficial expansion is the solution, and a
herringbone pattern is suggested to such microfluidic platforms [2,30]. It is imperative
that a consolidation of the respective advantages of multiple methods is integrated into a
microfluidic platform of acceptable capture capability. Label-free strategies can be used as
the first step to eliminate leukocytes, followed by affinity-based methods to isolate CTCs
with high purity and efficiency. The integration of choosing materials, the surface mi-
crostructures of microfluidics, and biochemical/biophysical response is typically based on
the limited experience and knowledge of infinite data and causality. Materials, structures,
and biochemical/biophysical responses are three essential elements of microfluidic chips.
To reach maximal efficacy, the cross-talk or the causality of these three factors should be
investigated. With the advancement of ML in both microfluidics and manufacturing, it is
reasonable to expect that the combination of diverse classification methods could achieve
CTCs’ separation automatically with higher efficiency, purity, and throughput.

In contrast to traditional statistic-based data analysis, ML features the dynamic ad-
vancement of predication aided by computers that can deal with large amounts of data,
decreasing human intervention and workload. As mentioned above, over 50% of the
applications of intelligent microfluidics in biotechnology include cell classification, cell
screening, cell sorting, the identification of cellular pathology, and the measurement of
cellular chemistry [3,18,21]. ML can also be used in the analysis, design, and manipula-
tion of continuous or separate fluids in micro-constructs in order to optimize microfluidic
platforms [14,17,31–33].

ML algorithms such as convolutional neural networks (CNNs), logistic regression
(LR), support vector machines (SVMs), linear regression, variational autoencoders (VAEs),
etc., are applied to cell classification based on microfluidic flow control, cell morphology,
DNA quality, target antibodies, and cell density, either simultaneously or respectively.

In the cytopathologic analysis of cell classification, ML algorithm linear discriminant
analysis (LDA) is used for the identification of pancreatic carcinoma cells within track-
traced magnetic nano-pore microfluidics [34]. Quadratic discriminant analysis is used in the
classification and differentiation of dissimilar types of label-free tumor cells [35]. LR-based
linear classifiers use microfluidic imaging and analysis to capture and isolate cancer-related
fibroblasts and two different cell types of lung cancer [36]. A decision tree can help classify
label-free cancer cells in blood with continuous flow in microfluidic channels.

In cellular chemical analysis, SVM can be used for drug-sensitive and -insensitive
tumor cell identification without labeled biomarkers [37]. CNN is applied in label-free
cancer cells survival tests for drug bright-field discrimination on a large scale [38]. Manak
et al. reported that random forest (RF) is used to analyze cell cultures of both solid prostatic
carcinoma tissue and breast cancer tissue with a high-content biomarker assay on the
surface of microfluidics owing to single-cell resolution [39]. Intelligent microfluidics can
utilize a self-organizing map to identify blood samples based on the movement predication
of erythrocytes. It can also use auto-encoding to evaluate the drug sensitivity of leukocytes.

There are five main applications that use microfluidic ML in biotechnology, including
cell classification, signal processing, DNA sequencing, flow sculpting, and cell segmenta-
tion. ML algorithms are applied to microfluidic platforms with different formats. They
can be classified into three major types: droplet microfluidics (see Figure 2b), trajectory
prediction [40,41], and blood cell counting. Implementing ML in the format of droplet
microfluidics is the most popular of these.

The cooperation of droplet microfluidics with a high-throughput nature and ML
with good analysis efficiency can help improve the power of droplet-based microfluidic
technology. Droplet microfluidic ML platforms have been restricted to the analysis of
real-time or post-experiment data because of the limitation of standardized and enormous
data sets [31]. The performance of droplet generators can be predicted by manipulating
the design parameters. This ability omits expensive iterations of design and enables the
optimization of application-specific design. Lashkaripouret et al. capitalized on using ML
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algorithms in a standardized large data set to develop DAFD (Design Automation of Fluid
Dynamics), a kit on the Internet that can monitor and predict the work efficiency of droplet
generators. Performance prediction provides information on additional characteristics
such as estimating the influence of fabrication and testing tolerances with the observed
performance. It can provide a criterion to regulate fluid with different flow rates to meet
possible tolerances and be extensively used to encourage additional fluid combinations
either by using a neural optimizer or through the transfer of learning [33]. In addition,
Sarkar et al. demonstrated a semi-automated, droplet-based microfluidic platform that used
ML to quantitatively compare the NK-92 cell interaction with different target cells used
in cytotoxicity assay in immunotherapeutic conditions in antibody-based cancer [5]. The
ML algorithm CNN and its algorithm implementation have been introduced to evaluate
the dynamics of individual, effector-target cell pair conjugation and to target death in
droplets. The study, based on the mass proteomic analysis of SKOV3 and SKBR3, revealed
distinct changes in the stimulation of upstream regulators and cytotoxicity mediators and
transcription, which was used to adjust the particular functionalities of NK-92 cells [5].

ML is applied to microfluidics based on the different properties (see Figure 3) of cells,
such as bio-mechanical properties, optical properties, and electrical properties.

When detecting the mechanical properties of a cell, the integration of microfluidics
technologies and ML can investigate cell behavior on a large scale through quantitative
analysis to provide intelligent decisions and support clinical diagnostics. In order to remove
red blood cells in advance in rare hereditary hemolytic anemia, a microfluidic ML platform
has been designed to generate the physiological filtering function of a spleen to monitor
blood disease based on the analysis of blood cell shapes in vitro [42]. It evaluates the
deformability of red blood cells by squeezing them in planar orientation, while visually
observing and calculating the capacity of red blood cells to reinstate their pristine shape
after penetrating through constrictions such as microchannels or nano-pores. In this
way, ML algorithms can distinguish abnormal red blood cells from normal ones. This
microfluidic ML platform demonstrates the capability of recognizing and distinguishing
between healthy controls and generic anemia patients, or rare hereditary hemolytic anemia
subtypes with an average validity of 91% and 82%, respectively [42].

Integrating optical imaging techniques with microfluidics and ML allows the observa-
tion and extraction of information from biological or chemical samples. A deep-learning-
based feature-fusion algorithm has been proposed by Hervé and his team to extract cell
information from low-resolution lens-free cell images [43]. It improved not only the average
ratio of information entropy by 7.69%, but also increased the standard deviation of images
by 22.2%, leading to the efficient integration of cellular features. High-throughput single-
cell analysis is a current challenge and a trend in cell classification research. Microfluidic
Raman spectroscopy allows the isolation of a single cell, culturing in microenvironments,
and simultaneous monitoring of cells in situ [44]. It has been proved to be successful in
cell sorting, intra/extracellular variability, metabolic response to the environment, and the
exploration of antibiotic susceptibility. The performance of this technique can be further
improved by a combination of surface-enhanced Raman scattering (SERS) and microflu-
idics. SERS-based microfluidics generates advantages of better reproducibility, based on
automation from microfluidics and the ultra-detection of SERS, and it is widely used in
label-free detection, from carboxy-fluorescent-labelled DNA and miRNA to proteins such
as IgG and bovine serum albumin, in the biological field [44–46]. The multiplex analysis
of complex Raman spectra requires chemometric-based ML to perform a deconvolution
analysis of output spectra in an efficient manner, or to apply SERS tags on the antigens
of the cell’s surface, to complete an affinity-based cell detection. Wilson et al. utilized
magnetic multicolor SERS nanotags to detect four breast cancer-related antigens on CTCs
and original cancer cells with an immunomagnetic microfluidic platform to prove the relia-
bility of multiple surface-marker detection on CTCs with their new method [16]. In these
optical- and image-based detections, without adopting the information of high-resolution
images, ML has the most appropriate strength for providing assistance to the logical and
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intelligent selection of rare cells, which are seldom known or have no unique biomarkers.
An image-guided flow cytometer cell sorter based on ML offers a neoteric paradigm to
support researchers and clinicians to separate cells with various user-defined features that
comprise morphological/spatial peculiarity and fluorescent signals [17]. Gu et al. provided
a microfluidic platform and a spatial–temporal transformation method to obtain real-time
cell images using an extremely generic hardware. Supervised ML was utilized to create a
methodology of user interface to produce sorting standards [47].
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The biophysical properties of cell phenotype include cell size, shape, deformability, and
subcellular structure, such as organelles in cytoplasm, mitochondrial network, membrane
composition and morphology, ion pumps in endoplasmic reticulum, nucleus size, and so
on. Fluorescence cytometry is not suitable to detect biophysical phenotypes, but it is highly
sensitive to biochemical phenotypes. Nevertheless, impedance cytometry can assess the
biophysical phenotypes of single cells with appropriate dielectric models, thereby making
the quantification and stratification of complex samples in a label-free, multi-parametric
manner possible [48]. The impedance cytometry data of cellular and subcellular features
can influence the related subjects of microfluidic design, the applications of phenotype,
and the analysis of data, including signal processing, dielectric modelling, and population
clustering. For example, a recurrent neural network (RNN) has been used to enhance the
details of cell characteristics by collecting the electric current signal through an electrical
impedance flow cytometer of microfluidics [49]. It can theoretically process 2500 cells per
second. Integrating impedance properties with microfluidic separation, sensor technique,
and ML can create an efficient platform for the label-free quantification and isolation of
subpopulations to arrange heterogeneous biosystems into strata.
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In summary, intelligent microfluidics has supported plenty of applications in biotech-
nology, including cell classification, with the distinct properties of biochemistry, biophysics,
and biology. In certain intelligent systems, the training data of the network has been gener-
ated entirely by the microfluidic platform itself. Despite the limitations of self-collected
data, they can reach a promising outcome with advanced training through a network of
previous training processes based on a transfer-learning discipline [33]. When it comes to
images, CNN is the most popular algorithm of cell classification, owing to its extraordinary
performance in deep learning. There are still many algorithms, such as SVM, LR, VAE,
decision tree, LDA, PCA, and quadratic discriminant analysis, that are used in designing
intelligent microfluidic systems of cell classification.

Moreover, with CNN, ML can perform cytotoxicity analysis, which is involved in
the identification of cell-killing events caused by specific cells or distinct chemicals [5].
Cell trajectory predictions based on a self-organizing map model are decisive factors in
the movement of blood cells in microchannels of microfluidics [40]. The monitoring of
immuno-conditions based on cellular immunoassays with the support of CNN is time-
efficient, highly parallel, and precise [50]. Multilayer perceptron (MLP) can construct
bi-directional interfaces between artificial microfluidic platforms and biological tissues [32].

Intelligent microfluidic platforms can also be applied in areas of cancer screening
based on biomarker detection. For example, various protein biomarkers and mRNA and
miRNA markers [51] can all be utilized for the diagnosis of pancreatic cancers to achieve
better particularity and sensitivity by minimizing the deviations of measurement from
only one biomarker analysis. SERS-based ML can be applied in complex protein biomarker
detection [4,16]. Meanwhile, key biomarker detection based on the integration of a classifi-
cation tree and a K-nearest neighbor algorithm [52] can predict and differentiate distinct
cancers with homogeneous biomarkers, as well as distinguish healthy individuals from
cancer patients. Based on the accomplishments of key biomarker detections, a decision tree
algorithm can predict different cancer types [52]. Similarly, there is something promising
about single-cell resolution that Manak et al. revealed in the capability of random forest
(RF) in risk stratification predictions for cancer patients based on phenotypic-biomarker
assays of a live primary cell [39].

ML offers the opportunity to uncover the causality of different properties that are not
easily detected by human experience. By taking advantage of different ML algorithms and
distinct properties, there can be a better understanding of cancer biology and the multiplex
mechanisms of drug tests. It is of great benefit to develop microfluidics to analyze tumor
cell behavior, cancer metastasis, and drug screenings of different types of cancer.

3. Conclusions

Cancer metastasis is a complicated process. Microfluidic systems have been used
for the diagnosis and testing of cancer metastasis. ML has been utilized in various ways,
from the design of microfluidics, to data analysis based on different properties, to the
phenotyping of cell populations [49]. One of the primary challenges in applying ML to
cancer research is deciding on the most appropriate data types for training. Many factors
contribute to validating the detection and testing of biochemical properties (specific protein
expressions on the cell surface), biophysical properties (cell size, cell density, and cell
morphology, and electromagnetism), and engineering characteristics (material, structure,
surface property) [53]. However, not every factor is crucial in generating input training
data. It is essential to find the causality among distinct factors for improving the diagnosis
and testing of cancer metastasis.

In short, the combination of microfluidic platforms and ML may lead to innovative
ways to isolate target cancer cells or to perform drug tests in tumor microenvironments. The
causality analysis of ML may offer new working principles for the microfluidics industry.
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