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A B S T R A C T

The current study investigated the effect of temporary inhibition of amygdala in response to

metabolic changes caused by stress in female mice. Unilateral and bilateral amygdala cannula-

tion was carried out, and after a week of recovery, 2% lidocaine hydrochloride was injected into

the mice amygdalae five minutes before the induction of stress. A communication box was

employed to induce stress for four consecutive days and plasma corticosterone, food and water

intake, weight changes, and anorexia were measured as stress-induced metabolic changes.

Results demonstrated that stress, increases stress, increased plasma corticosterone concentra-

tions, weight, food, and water intake. Temporary inhibition of the amygdala slightly decreased

plasma corticosterone concentrations, but did not fully reduce the effect of stress. The bilateral

injection of lidocaine hydrochloride to the amygdala reduced the effect of stress and reduced

water intake and weight. Unilateral injection of lidocaine hydrochloride into the left and right

amygdala reduced food intake. In conclusion, the present study demonstrated that the left side

and right side of amygdala nuclei play a different role in metabolic responses in stress.

� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Stress is an inevitable part of the modern world, and a factor in
the expression of disease. Maintaining stability of the body’s
internal environment (homeostasis) in the presence of stressors

needs several complex responses, such as the endocrine, the
nervous, and the immune system activities known as the stress
response. In other words, several behavioral and physiological

changes were initiated in response to stress in order to increase
survival when stability of homeostasis is threatened. Poor reg-
ulation of the internal environment in response to stress leads

to pathological responses such as high blood pressure, mood
disorders, and depression [1,2]. Although the central nervous
system is involved in maintaining stability of homeostasis

and organization of stress responses, certain cerebral areas also
play a major role in this regulatory mechanism, such that
mood disorders may result to a dysfunctional limbic system
or hypothalamus–pituitary–adrenal (HPA) axis [3–7].

Amygdala, the major part of the limbic system, plays a cen-
tral role in processing emotional states and organizing the
response to stress [8]. Stimulation of the amygdala neurons

produces corticotropin-releasing factor (CRF) and releases
them into the blood. The amygdala is known as the center of
cardiovascular and behavioral response to stress and also

engages in emotional responses, especially in the case of fear
and dread. These responses result in the release of stress hor-
mones and changes in blood pressure and heart rate [9,10].
Amygdala reduces stress-induced changes in swallowing

behavior and has a more prominent role in psychological
stress. Moreover, there are structural differences between the
left and right amygdalae, and the stimulation of the right

amygdala induces negative emotions, especially fear, while
the stimulation of the left amygdala induces good (happiness)
and bad (stress) feelings simultaneously [8].

Gender differences in the incidence and prevalence of psy-
chological disorders related to stress have been offered; for
instance, when women and men experience the same stressors,

women may be more prone than men to develop depression
[11]. Previous studies have demonstrated that amygdala is
one of the best known cerebral areas associated with gender

differences. It is known that the amygdala is larger in adult
males than in females [12,13]. Furthermore, amygdala has a
central role in remembering emotional experiences, and it

has been shown that, on average, women have a stronger mem-
ory for recollecting emotional events when compared to men
[14]. Thus, there is a difference between the male and female

amygdala and left amygdalae and right amygdalae have differ-
ent roles in the responses to stress. Therefore, examining this
bias in the response to stress is important. Hence, the present
study was carried out to investigate the effect of the temporary

inhibition of the left and right amygdala in response to the hor-
monal and metabolic changes caused by stress in female mice.

Material and methods

Animals

Female NMRI mice weighing 25 ± 5 g were kept in groups of
six per cage in 12/12 light/dark conditions at 22–24 �C, with
food and water provided ad libitum. The animals were
randomly divided into control and experimental groups
(n = 6/group). The food and water intake was recorded for

each animal at specific hours every day. Vaginal smears were
taken from all the animals in the control and stress group in
order to determine their phase of sexual maturity before
commencing the tests; the tests started in the proestrus phase.

Animal experiments were conducted in accordance with the
Guidelines of the National Institute of Health (NIH) for the
Care and Use of Laboratory Animals, and were approved by

the local ethical committee (The Baqiyatallah University of
Medical Sciences Committee on the Use and Care of Animals,
87/381).

Animal group

Animals were randomly divided into eight groups (n = 6).

Group 1 (control) received no treatment and group 2 (stress)
received 4 days stress. Three groups of animals were injected
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Fig. 1 Location of the cannula tips in the amygdala.
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with lidocaine hydrochloride (2%) 0.25 lL/mouse, 5 min
before the stress, in the left (L.L), right (L.R) or both sides
(L. Bi) of amygdala. The last three groups were injected saline,

5 min before the stress, in the left (S.L), right (S.R) or both
sides (S. Bi) of amygdala. The plasma corticosterone concen-
trations, food and water intake, weight changes, and delay to

eating (anorexia) were measured as metabolic criteria in all
groups. The mean changes from four days were studied.

Surgical procedures

For the amygdala cannulation, the animals were first anes-
thetized with ketamine (Sigma–Aldrich, CA, USA, 50–75 mg/

kg) and diazepam (Sigma–Aldrich, CA, USA, 5–7 mg/kg),
and the surgical area was shaved. The animals were placed in
a stereotaxic apparatus. Thereafter, a small incision was made
in the scalp to expose the skull. Using bregma and lambda as

landmarks, the skull was leveled in the coronal and sagittal
planes with one or two guide cannulas (gauge No. 23, World
Precision Instruments) implanted into the skull 500l above

the amygdala utilizing the Paxinos atlas [15] (for the amygdala
nucleus, 0.8 mm posterior to the bregma, ±2.5 mm from the
midline and 4.5 mmbelow the skull surface), and fixedwith den-

tal acrylic cement. The animals were given seven days to recover
after the surgery. Dental needles heads No. 30 (Alibaba;
INTR), polyethylene tubes and 10 lL Hamilton syringes were
used for injection. A bilateral intra-amygdala administration

of lidocaine hydrochloride 2% with an injection volume of
25 lL was conducted daily for five minutes prior to the stress
induction. The brain injection was gradual and lasted 30 s,

and the animals were free to move during this time.

Communication box

After intra-amygdala lidocaine hydrochloride injection, the
animals were transferred to a communication box (Borje Sanat
Co., Tehran, Iran), which comprise nine separate parts with

plexiglass walls and tiny holes with a diameter of 2 mm that
enables communication between the mice. The floor of the
box had stainless steel bars connected to a generator, which
was linked to a computer for controlling voltage and duration

of the shock (10 mV voltage, 10 Hz frequency and 60 s long).
The animals in the control group were also placed in a
switched off communication box for 30 min (the animals were

randomly divided into control and stress groups). Stress induc-
tion continued for four consecutive days. On the last day of the
test, blood samples were collected from all the animals in all

groups from their retro-orbital sinus. Thereafter, the blood
was centrifuged at 3000 rpm for 5 min at 4 �C and serum
was collected for corticosterone detection. The serum was col-

lected and frozen at �20 �C and corticosterone concentrations
were determined by ELISA kit (Rat Corticosterone ELISA kit;
EIA-4164; DRG Instruments GmbH, Germany). Briefly,
serum samples were added to 96-well plates containing biotiny-

lated primary antibody and then incubated at 37 �C for
45 min. Thereafter, plates were washed and horseradish
peroxidase-conjugated streptavidin solution was added to the

wells and incubated for an additional 30 min at 37 �C. The 3
,30,5,50-tetramethylbenzidine substrate was added and the
plates were incubated for an additional 15 min at 37 �C and

then, stop solution was added to the wells to terminate the
reaction. The corticosterone concentration was determined
using a standard curve.

Histology

After completing the test, all animals were anesthetized and
transcardially perfused with 0.9% normal saline followed by

10% buffered formalin. The brains were removed, blocked,
and cut coronally into 40-lM-thick sections via the cannula
placements. The tissues were stained with cresyl violet and

examined by light microscopy by an unknown observer. Only
the animals with correct cannula placements were included in
the analysis (Fig. 1).

Data analysis

Data were expressed as Mean ± standard error (Mean
± SEM). Two-way analysis of variance (Tow-Way-ANOVA)

was applied using lidocaine hydrochloride and stress as factors
followed by Tukey post HOC. The differences of P < 0.05
were considered as statistical significance.

Results

Changes in corticosterone concentrations caused by the

administration of lidocaine hydrochloride to the amygdala and
electric shock

The mice received lidocaine hydrochloride 2%, 5 min before
induction of stress for four consecutive days and the mean

changes were studied. Results demonstrated that stress led to
increase of concentration in serum corticosterone levels. Both
unilateral and bilateral administrations of lidocaine
hydrochloride to some extent reduced corticosterone concen-

trations, but could not fully inhibit the effect of stress
(Fig. 2). It seems that inhibition of left amygdala reduced more
serum corticosterone in stressed mice than the inhibition of the

right amygdala.

The effect of the induction of stress and the intra-amygdala
administration of lidocaine hydrochloride on water intake

Results indicated that stress increased water intake while the
inhibition of the left amygdala slightly decreased it;



Fig. 2 Stress and long-term administration of lidocaine

hydrochloride induced changes in serum corticosterone concen-

trations. To measure the serum corticosterone concentration,

blood samples were taken from all mice in the control and stress

groups from the corner of their eyes after the experiment. Five

minutes before the stress, lidocaine hydrochloride (2%)

0.25 lL/mouse was injected in the left (L.L), right (L.R) or both

sides (L. Bi) of amygdala. Five minutes before the stress, saline

was injected in the left (S.L), right (S.R) or both sides (S. Bi) of

amygdala. The Mean ± SEM was presented for 6 mice.
***P < 0.001 shows a significant difference compared to the

control group.

Fig. 3 The effect of the intra-amygdala administration of

lidocaine hydrochloride and induced stress on water intake. Every

day, after the induction of stress, the mice were returned to their

cages, and their water intake was then measured over the next 24 h

for 4 consecutive days at a specific time. The results obtained on

the first day were taken as 100 and as a point of reference for

measurements made in subsequent days (percentage). Injection of

the lidocaine hydrochloride in the left (L.L), right (L.R) or both

sides (L. Bi) of amygdala. Injection of saline in the left (S.L), right

(S.R) or both sides (S. Bi) of amygdala. ***P < 0.001, **P < 0.01

and *P < 0.05 show a significant difference compared to the

control group.

Fig. 4 The effect of stress and the inhibition of the amygdala on

food intake. The amount of food intake was measured at a specific

time every day. The results obtained on the first day were taken as

100 and as a point of reference for measurements made in the

upcoming days (percentage). Injection of the lidocaine hydrochlo-

ride in the left (L.L), right (L.R) or both sides (L. Bi) of amygdala.

Injection of saline in the left (S.L), right (S.R) or both sides (S. Bi)

of amygdala. ***P < 0.001, **P < 0.01 and *P < 0.05 show a

significant difference compared to the control group.
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nevertheless, it did not fully inhibit the effect of stress. The
temporary inhibition of the left and bilateral amygdala
decreased the effect of stress. However, administration of
lidocaine hydrochloride to the right amygdala did not reduce
water intake (Fig. 3).

The effect of the intra-amygdala administration of lidocaine
hydrochloride on food intake in stress

The food intake of the stress group increased when compared

to the control group. The administration of lidocaine
hydrochloride and the inhibition of the amygdala led to the
reduction in food intake. Nevertheless, the unilateral adminis-

tration of lidocaine hydrochloride to the left or right amygdala
was more effective in reducing food intake than bilateral inhi-
bition (Fig. 4).

The effect of the intra-amygdala administration of lidocaine

hydrochloride on weight changes in stress

As illustrated in Fig. 5, stress led to weight gain in the female

mice. The inhibition of the right and both sides of amygdala
via the administration of lidocaine hydrochloride, reduced
the effect of stress and resulted in slight and statistically signif-

icant weight loss in the control group animals than in stress
group. However, inhibition of the left side of amygdala
couldn’t reduce weight gain when compared to stress group.

The effect of stress and the inhibition of the amygdala on delay

to eating (anorexia) in female mice

Stress couldn’t statistically increase delay to eating (anorexia)
in the female mice when compared to control group. The inhi-
bition of the unilateral and bilateral amygdala exacerbated the
effect of stress and led to a significant increase in anorexia. The

inhibition of the left amygdala further reinforced the effect of



Fig. 5 The effect of the intra-amygdala administration of

lidocaine hydrochloride and induced stress on weight changes.

The mice were weighed at a specific time every day for 4

consecutive days. The results obtained on the first day were taken

as 100 and as a point of reference for measurements made in

subsequent days (percentage). Injection of the lidocaine

hydrochloride in the left (L.L), right (L.R) or both sides (L. Bi)

of amygdala. Injection of saline in the left (S.L), right (S.R) or

both sides (S. Bi) of amygdala. *P< 0.05 shows a significant

difference compared to the control group.

Fig. 6 The effect of induced stress and the intra-amygdala

administration of lidocaine hydrochloride on delay to eating. The

animals were returned to their cages every day after the induction

of stress and their eating latency was measured for 4 consecutive

days. The results obtained on the first day were taken as 100 and

as a point of reference for measurements made in subsequent days

(percentage). Injection of the lidocaine hydrochloride in the left

(L.L), right (L.R) or both sides (L. Bi) of amygdala. Injection of

saline in the left (S.L), right (S.R) or both sides (S. Bi) of

amygdala. ***P < 0.001, **P < 0.01 and *P < 0.05 show a

significant difference compared to the control group.

Stress and amygdala inhibition 647
stress in anorexia when compared to the inhibition of the right
and both sides of amygdala (Fig. 6).

Discussion

Stress is known as one or a collection of highly challenging and

uncontrollable emotional and physiological events that disrupt
the body’s balance [16]. Stress is followed with a greater activ-
ity of the HPA axis and secretion of ACTH and CRF and cor-
ticosteroids (corticosterone and cortisol) in the body for

homeostasis despite, the metabolic changes. Glucocorticoids
are important in several ways for physiological regulation
and cognitive evaluation. They are involved in stress and fear

responses, and energy metabolism, and regulate behavioral
adaptation to the environment and internal conditions (via
the regulation of several neurotransmitters and neural

circuits). Glucocorticoids have different effects on several neu-
rotransmitters and neuropeptide systems and thus, affect the
brain functions [17,18].

In the present study, stress led to an increase in plasma cor-

ticosterone concentrations, which was confirmed by previous
findings [19,20]. Increased glucocorticoids may have a major
role in different areas of the brain, particularly in the reduction

in hippocampal activity, increase in amygdala activity, the
deformation of dendrites in hippocampal, amygdala, and ven-
tral prefrontal cortex [17].

Lidocaine hydrochloride was utilized in this study for the
temporary inhibition of the amygdala. Lidocaine hydrochlo-
ride is a local anesthetic that decreases depolarization by

inhibiting inward sodium into the cell membrane [21–23]. In
this study, the temporary unilateral and bilateral inhibition
of the amygdala led to a slight decrease in corticosterone con-
centrations, but did not fully inhibit the effect of stress.
According to the results, amygdala does not appear to have
a major role in the inhibition of stress by increasing plasma

corticosterone concentrations in female mice.
Results also demonstrated that stress, increases water

intake in female mice. Similar results have also been reported

in rodents. Stress increases water intake by means of concur-
rent stimulation of CRF and vasopressin secretions from
hypothalamic paraventricular nuclei [24,25]. In addition, the

inhibition of the amygdala, particularly the bilateral inhibition
of the left amygdala, decreased water intake; nevertheless, the
inhibition of the right amygdala did not decrease water intake,
which showed that in stress the right amygdala has no inhibi-

tory effects on water intake in female mice.
High levels of uncontrollable stress disrupt the expression

of glucocorticoid genes in the HPA axis, which, in turn, affect

the energy balance and nutritional behavior [26]. Stress
increases food intake as well. The physiological response to
stress might affect nutritional behavior, which might also

affect the body weight and health [27]. Direct involvement of
the CRF system in energy regulation and increasing CRF
secretion in the hypothalamus leads to the stimulation or inhi-
bition of the feeding paths in the stress [28,29]. It should be

noted however, that gender differences play a major role in
decreasing or increasing food intake in male and female, and
according to previous studies, food intake in stress is often

higher in female when compared to male [30].
Food intake increased in stress group. Temporary inhibi-

tion of the left or right amygdala reduced food intake. Several

studies have demonstrated that the paraventricular nucleus,
along with the lateral hypothalamus and the nucleus accum-
bens shell (part of the extended amygdala), plays an important

role in controlling food intake, and the temporary inhibition of
any of these parts could reduce the effect of stress [31,32].
Lidocaine hydrochloride can also, cause these responses by
temporary inhibition of the amygdala. Long-term chronic
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stress increases the risk of obesity, and stress is significantly
involved in regulation of appetite and energy [33]. It has been
shown that high levels of stress, result in excessive secretion of

CRF and consequently glucocorticoids, change eating patterns
and increase the appetite for food, especially sweet food, and
therefore lead to weight gain [33,34]. In the present study,

stress led to weight gain in female mice, which might be due
to increased food intake. It should be noted that the effects
of induced stress are different on small or large rats and in

humans; that is, stress tends to cause weight loss in rats and
weight gain in humans [35]. Furlan et al. revealed that high
level secretion of cortisol in response to stress reduces bone
minerals and abdominal obesity in humans [36]. In stress con-

dition, women tend to choose fatty or sweet foods [30]. The
increased secretion of ghrelin (an intestinal peptide) during
stress might have a role in the pathophysiology of obesity

and eating disorders. Some ghrelin axons innervate CRF cells
in the hypothalamus paraventricular nucleus [37].

In the present study, only the temporary inhibition of the

right amygdala reduced the effect of stress and thus slightly
decreased the animal’s weight; nevertheless, the reduction
was not statistically significant. Considering that lidocaine

hydrochloride had different effects on the right and left amyg-
dalae, a bias seems to exist in the amygdala response to weight
change, and the left amygdala seems to have an effective role in
reducing the effect of stress.

Results demonstrated that stress causes prolonged delay in
eating (anorexia) in female mice; however; the increase was not
statistically significant. In line with this result, it has been

demonstrated that stress induced anorexia in animal [38–40].
By activating the sympathetic nervous system, CRF prolongs
delay to eating. It is believed that CRF inhibits the nuclei

responsible for eating and induces anorexia by affecting its
type 1 receptors in the hypothalamus [32]. It has been demon-
strated that the release of norepinephrine in stress stimulates

the release of neuropeptide Y, which induces anorexia in the
hypothalamus [41]. The effect of stress severely exacerbated
prolonged anorexia with the administration of lidocaine
hydrochloride to the amygdala. On the other hand, anorexia

was reinforced when the amygdala was inhibited in stress.
The effect of stress was further reinforced with the inhibition
of the left amygdala.
Conclusions

It seems that temporary inhibition of the amygdala can

increase the effect of metabolic stress in female mice. At the
same time, there was lateralization in function of right and left
amygdala and inhibition of the left amygdala was more

effective.
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