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ABSTRACT 
Spatial transcriptomic profiling enables precise quantification of gene expression with 

simultaneous localization of expression profiles onto tissue structures. This new technology 

promises to improve our understanding of the disease mechanisms. Therefore, there is intense 

interest in applying these methods in clinical trials or as laboratory developed tests to aid in 

diagnosis of disease. Before these technologies can be more broadly deployed in clinical 

research and diagnostics, it is necessary to thoroughly understand their performance in real 

world conditions. In this study, we vet technical reproducibility, data normalization methods and 

assay sensitivity focusing predominantly on one widely used spatial transcriptomic 

methodology, digital spatial profiling. Using clinically sourced human tissue specimens, we find 

that digital spatial profiling exhibits high rigor and reproducibility. Our approach lays the 

foundation for incorporation of digital spatial profiling methods into clinical workflows. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.16.618750doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.16.618750
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 
Tissues have complex architecture with multiple cell types and cell states. Traditional 

approaches to analyze bulk gene expression and single cell gene expression destroy the 

complex architecture of tissues and the relationships between cells and extracellular 

components. Spatial biology seeks to quantify changes in biomolecules within tissues and map 

those changes back to regions, structures and even individual cells within the complex 

organization of the tissue. A variety of approaches have been developed for measuring mRNA 

and proteins in tissues and some of these have been developed into commercial platforms. 

Some commercial platforms determine the gene expression of multicellular regions overlaid on 

a grid of capture spots arrayed across the tissue section (10x Genomics Visium). Others, such 

as the Nanostring GeoMx, utilize user-selected regions of interest (ROI) that can specifically 

target a histologic structure or lesion for expression analysis. For mRNA measurements with 

these platforms, whole transcriptome scale interrogation of tissues is possible, which is 

especially suited for discovery applications. Newer platforms such as the 10x Genomics 

Xenium, Nanostring CosMx, Vizgen MerScope and others have pushed the envelope further 

and have achieved single-cell resolution in profiling tissues, though not yet at full transcriptome 

scale. 

 

The rapid pace of deployment of these technologies has sparked interest in applying them to 

answer clinical questions using patient-sourced tissues. Formalin-fixed paraffin embedded 

(FFPE) tissue is the workhorse format of anatomic pathology laboratories and is likely to remain 

so for the foreseeable future. FFPE biospecimens comprise the largest source of patient-

derived materials that can be used to understand the pathophysiology of human diseases, 

develop new diagnostics, and discover new therapeutic interventions. Spatial technologies that 

can take advantage of this resource have not only the ability to harness the potential of the vast 

archives of tissue blocks in pathology departments throughout the world, but also have a clear 

runway for the development of diagnostics tests that can leverage FFPE, the industry standard 

for processing and stabilizing patient tissue samples for clinical testing (1, 2). Reassuringly, all 

the leading commercial spatial transcriptomics platforms are compatible with FFPE tissues. 

 

Simultaneous and spatially registered interrogation of multiple biomolecules can provide 

unprecedented insight into their biological interactions within tissues and cells. While analyzing 

as many biomolecules as possible in a single assay (high -plex) is desirable, sensitivity of 

detection and spatial resolution are also important considerations. However, the trade-off 
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between plex (number of genes) and data quality (sensitivity, specificity and resolution) is not 

well understood for many of the commercial spatial profiling platforms. Increasing plex increases 

the overall cost of the assay, as does increasing the area of the tissue interrogated. This 

increased cost may be incurred in terms of the reagents themselves (probes, sequencing 

required for readout) or experiment execution time. The expense of spatial transcriptomics 

experiments has been an impediment to benchmarking the rigor and reproducibility of the 

results that they generate. Reproducibility of results will be an important consideration for 

clinical translation of these technologies. Successful clinical implementation will also have to 

balance the cost of these expensive technologies against the information they could provide.  

 

There are now numerous commercially available platforms to perform spatial transcriptomic 

profiling, and each system has its own advantages and disadvantages. Here, we describe our 

experience with one multicellular (GeoMx DSP) and one single-cell resolution platform (CosMx 

SMI), describe their rigor and reproducibility, and our practical experience comparing results 

within and across platforms. These results highlight important experimental design 

considerations for using these platforms that affect sensitivity, scope and cost, and which will 

impact their potential translation to a clinical setting in the future. 
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METHODS 
 

Human nephrectomy tissues (ethics statement and patient consent) 
Tissues were collected in deidentified fashion and with informed consent under the University of 

Washington’s IRB Study Protocol 1297 and in accordance with the Declaration of Helsinki. 

Fresh human kidney tissues were sourced from patient’s undergoing nephrectomy for removal 

of kidney tumors. Samples of uninvolved kidney (4 donors), and a portion of the kidney tumor 

(renal cell carcinoma, RCC) from one of the donors were fixed in 10% neutral buffered formalin 

for 24-48 hours and then transferred to 70% ethanol for another 24 hours. Samples from all 4 

donors (5 pieces of tissue in total) were paraffin embedded into a single multi-tissue block prior 

to sectioning. These samples were placed such that all 5 tissues could be covered by a 22 x 22 

mm coverslip.  

 

Clinically sourced human kidney biopsy tissues 
With approval from the University of Washington’s IRB, electronic health record searches were 

performed to identify 14 patients with minimal change disease. Kidney biopsies from 3 patients 

with normal histology that we have reported on previously (3) were retested together with the 

minimal change disease biopsies using a whole transcriptome based probeset. 

 

Digital spatial profiling to reduce reagent utilization and to assess technical 
reproducibility 
Four consecutive 5µm thick sections from the kidney multi-tissue block were applied to charged 

slides and baked at 60°C for 1 hour. After deparaffinization and rehydration, sections were 

subjected to heat induced antigen retrieval with Tris EDTA, pH 9 for 15 minutes followed by 

1µg/ml proteinase K digestion for 15 minutes at 37°C. All 4 slides were hybridized overnight at 

37°C with the Cancer Transcriptome Atlas (CTA) probe mix encompassing 1,825 genes. Per 

Nanostring’s protocol, sections are usually incubated with 250µl of probe mix and coverslipped 

using a 40x22 mm RNase-free HybriSlip coverslip (ThermoFisher). However, in order to extend 

the use of the probes, which are the most expensive component of the digital spatial profiling 

workflow, we utilized 100µl of probe mix per slide and coverslipped sections using a 22x22mm 

HybriSlip. The following day, all 4 slides were subjected to stringency washes and 

counterstained with fluorescently labeled antibodies recognizing pan-cytokeratin (Cy3 channel), 

CD10 (Cy5 channel) as well as DNA (Syto13, FITC channel) (Fig. 1A). One slide was then 

loaded into the instrument while the others were stored in 2x SSC in the dark at 4°C for 
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staggered collections. On 3 subsequent days, one of the remaining labeled slides was restained 

with Syto13 for 10 minutes before loading onto the instrument. After loading onto the instrument 

and scanning, ROI selection was performed, and UV-released barcode probes were collected in 

staggered fashion into a 96-well collection plate (24 ROI/day; Fig. 1B). After 4 consecutive days 

of ROI selection, libraries were generated using a SeqCode construction kit from Nanostring. 

The libraries were sequenced using a NextSeq 2000 P2 flowcell (100 cycle kit). Sequenced 

barcodes were mapped to genes and ROIs using the Nanostring GeoMx NGS Pipeline, version 

2.0.21. 

 

Digital spatial profiling on clinically sourced human kidney biopsies 

This was performed similar to the procedure described above except for the following 

modifications. To maximize the number of human kidney biopsies analyzed and extend the use 

of the Whole Transcriptome Atlas (WTA) probe mix encompassing ~18,000 genes, 5 µm 

sections from 3-4 individuals were placed on to each slide used in the experiment. Slides were 

hybridized with the standard buffer volume of 250µl and covered with 40x22 mm HybriSlips. 

After glomerular and tubular ROI selection and UV-released probe collection, 

sequencinglibraries were generated using a SeqCode construction kit. Sequencing-based 

readout was performed using a NextSeq 2000 P2 flowcell and the data were processed using 

the GeoMx NGS Pipeline. 

 

Initial data processing 
Analysis of DSP data was performed using the Bioconductor GeomxTools package, which was 

developed by NanoString. After reading the data into R, quality control steps were performed to 

identify problematic probes. For the CTA probe mix, each gene is represented by up to 5 unique 

probes that recognize different sections of the gene’s mRNA. Probes with a geometric mean 

<10% of the collapsed gene level estimate (e.g., those probes that don’t contribute much to the 

overall signal of that gene) were filtered out. In addition, probes with >20% of the observations 

flagged as outliers were removed. After filtering the probes, probe sets were collapsed to the 

individual gene level. Multicellular ROIs were deconvolved using the KPMP normal reference 

single cell RNA-seq data set and the SpatialDecon algorithm (4, 5). Since ROIs vary in size, cell 

count and mRNA content, we assessed the performance of normalization methods such as 

cyclic loess regression and 3rd quantile (Q3) normalization (recommended by Nanostring). 
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Sensitivity comparison: CTA vs. WTA 

We compared the performance of the CTA probe mix (~1,825 genes) against the Whole 

Transcriptome Atlas probe mix encompassing ~18,000 genes. We had previously generated 

CTA measurements from n=12 glomeruli of 3 individuals with histologically normal kidney 

biopsies. In this study, we performed WTA measurements on n=20 glomeruli from those same 3 

individuals. After performing QC and Q3 normalization, we identified a subset of 451 genes that 

were measured above the limit of quantification (LOQ) in the glomeruli hybridized with CTA 

probes. We then compared the average counts of these genes (across the 3 donors) against 

the average Q3 normalized counts generated using the WTA probe mix on the same 3 donors’ 

kidney biopsy tissues. 

 

Sensitivity comparison: GeoMx vs. CosMx 

Second, we performed single cell transcriptional profiling on the kidney multi-tissue block that 

we had previously used for reproducibility assessment. We utilized the 1,000 gene universal cell 

characterization panel on the Nanostring CosMx SMI platform. Tissue morphology was 

delineated using antibodies reactive for pan-cytokeratin, CD45 and cell membranes (cocktail of 

anti-b2 microglobulin and anti-CD298 antibodies). We tiled 205 fields of view encompassing all 

the ROIs selected in our GeoMx experiment that assessed reproducibility. After run completion, 

the data were automatically pushed to the Nanostring AtoMx cloud-based storage and analysis 

platform, where cell segmentation, assignment of transcripts to cells and initial calculation of 

spatial neighborhoods was performed. Semi-supervised cell typing was performed using 

AtoMx’s InSituType module (6). We used the KPMP normal kidney reference dataset as input 

and permitted up to 3 unknown cell type assignments in order to account for tumor cell types not 

represented in KPMP (5). Neighborhoods/spatial niches, top marker genes for cell types and 

cell-cell proximity analysis were also computed using AtoMx’s in built analysis modules. UMAPs 

and spatial projections of cell type assignments and neighborhoods were generated from the 

Seurat object in R. In order to select pseudo-ROIs corresponding to the ROIs selected in the 

GeoMx reproducibility experiment, we utilized the Partek Flow analysis platform. Manual 

pseudo-ROI selection was guided by spatial neighborhood predictions and attempted to 

approximate the cell number of the ROIs selected in the GeoMx experiment. If the exact 

structure was not identifiable or not present in the tissue section, a similar structure in close 

proximity was chosen. 450 genes were shared between the GeoMx CTA and the 1,000 gene 

CosMx universal cell characterization panel. Across each pseudo-ROI in the CosMx 
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experiment, transcript counts for these 450 genes were integrated and compared to the 

integrated collapsing per-gene counts for the corresponding ROI in the GeoMx experiment.  
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Figure 1. DSP experiment to assess rigor and reproducibility. A) A fluorescence scan from 

the GeoMx DSP of a section of tissue microarray composed of 4 kidney tissues and 1 kidney 

cancer tissue from 4 donors. B) Experimental design to assess for technical reproducibility. ROI 

from different regions were collected into wells of a 96-well plate and gene expression from 

those ROI was quantified. C) Higher power views of ROIs selected for each of 4 histologically 

distinct kidney structures. D) Spatial cellular deconvolution of individual ROIs reveals the 

expected cellular composition as a function of histology. 
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RESULTS 

 

Staggered collection of spatial transcriptomic data using the GeoMx DSP platform 
A map of the tissue sections used for the spatial transcriptomics experiment is shown in the 

GeoMx immunofluorescence overview scan (Figure 1A). Replicate sections were successfully 

hybridized with the reduced amount of CTA probe and the smaller HybriSlip (see Methods for 

detailed explanation). ROIs encompassing histologically distinct structures (glomeruli, cortex, 

medulla, tumor) were collected in replicate, from each tissue patch (Figures 1B, C). After 

sample collection, library construction, sequencing readout and mapping, all ROIs produced 

transcriptomic data that passed quality control thresholds. After applying GeoMx’s 

recommended Q3 normalization, the cellular composition of the ROIs was computed using the 

SpatialDecon algorithm. This cellular deconvolution from multicellular GeoMx ROIs revealed the 

expected composition of cell types within the histologically distinct ROIs. For example, 

constituent cells of glomeruli, namely podocytes (POD), mesangial cells (MC) and glomerular 

endothelial cells (EC.GC) were identified only in glomerular ROIs. Tumor cells were not present 

in the KPMP normal kidney reference dataset. However, cellular deconvolution of the RCC 

ROIs uncovered diverse immune cell types that were largely restricted to the tumor. The pattern 

of cellular composition in replicate ROIs was consistent with a given histology and reproducible 

across the 4 days of staggered sample collection. These results showed that a) reduction of 

CTA probe volume and hybridization area does not adversely affect data collection; b) cellular 

deconvolution of histologically distinct ROIs produces the expected cell type composition for a 

given histology, and that c) staggered collection of replicate samples over 4 days produces 

qualitatively similar data. 

 

Quantification of sources of variability 
To examine the different sources of variability in the data, we first performed a principal 

component analysis (PCA), in order to partition variability between samples. In a PCA, similar 

samples should cluster closely and will be separated from dissimilar samples. For example, in 

Fig. 2A, left panel, all ROIs of the same histology cluster together, clearly separated from ROIs 

with different histology. This indicates that the sample histology underlies the largest differences 

in gene expression among samples with lesser contributions from donor and acquisition day 

(Fig. 2A middle and right panels). When we restricted PCA plots to a single histology such as 

Glomeruli or Cortex (Supplemental figure 1), samples clustered first by patient, and then by 

ROI, indicating that differences between samples were primarily due to histology, followed by 
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subject, and then ROI. Since consecutive sections were used for data generation, it is 

conceivable that some of the observed variation in expression is also due to variability in ROI 

selection. Uniform, circular ROIs were used for cortex, medulla and RCC. By contrast, even 

though we selected ROIs on the same glomeruli over the 4-day experiment, some glomerular 

profiles remained relatively invariant (Figure 2B, rows 1 and 2), while others changed noticeably 

(Figure 2B, rows 3 and 4). Tissues are complex structures that have changing cellular 

compositions at different levels in serial sections of structures. Thus, understanding the 

contribution of compositional, intra-histology variability to the measured gene expression 

variation is an important consideration for experimental design and ROI selection. In order to 

quantify this further, we plotted the distribution of standard deviations for the log2 transformed, 

normalized expression of each gene grouped according to histology, donor, ROI and acquisition 

day (Figure 2C). At the top end of the interquartile range, histology accounted for 84.5% of the 

gene expression variation, with donor-to-donor variation accounting for 7.3% and ROI selection 

variability accounting for 6.1%. Day-to-day variability, a non-biological/technical source of 

expression differences in this experiment, accounted for only 2.0% of variation. These analyses 

showed that the GeoMx platform exhibited good technical reproducibility in our hands and that 

the majority of gene expression differences could be attributed to anticipated biological sources 

of variation such as histology, donor and ROI selection parameters. 

 

 
Supplemental Figure 1. Overview of CosMx 1000-gene experiment performed on kidney 
multi-tissue block. A) Plot of glomerular ROIs only according to the two greatest principal 
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components (PC1, PC2). A) Plot of cortex ROIs only according to the two principal components 

(PC1, PC2) contributing the largest variation. 

 

 
Figure 2. Analysis of sources of variation in DSP workflow. A) Plots of ROIs according to 

the two greatest principal components (PC1, PC2). Each principal component analysis (PCA) 

panel is color coded by histology, donor or acquisition day. B) For non-uniform ROIs, the ROI 

outline introduces another source of variation. When selecting the same glomerulus across 4 

consecutive sections, some glomeruli showed relatively invariant profiles (rows 1, 2), while 

others changed their profiles (rows 3, 4). C) Distribution of standard deviations for measured 

genes as grouped by histology, acquisition day, donor and ROI. 

 

Comparison of data normalization approaches 
The goal when normalizing data is to remove as much technical variability as possible while 

retaining biological variability. To do so, we assume that there are one or more genes that have 

relatively consistent expression across a set of samples, in which case any apparent differences 

in expression for those genes is primarily technical, and we can therefore use those genes to 
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remove the technical variability via normalization. We used MA-plots to visualize differences 

between normalization methods. In an MA-plot, the horizontal axis (A) measures the log2 

average expression level of a gene (so points to the left are lower expressing genes, and those 

to the right are more highly expressed), and the vertical axis (M) measures the log fold change 

between the same gene in the two different samples/tissues. Each MA-plot in Figure 3 

compares the day 1 sample for a glomerular ROI to a different day. Since these are just 

different slices from the same tissue, we expect the data to be symmetrically distributed along a 

horizontal line at zero. This is not the case when no normalization is applied to the data (Figure 

3A Unnormalized). The normalization methods that NanoString recommends are simple shift 

normalizations where either a single observation (Q3 normalization), or the geometric mean of a 

set of housekeeping genes (negative control normalization) is used to normalize the data. The 

default normalization recommended by NanoString uses the third quartile (Q3), i.e. 50th to 75th 

percentile, from each sample to normalize the data. This shift normalization does remove some 

of the variability but does not account for the fact that the differences between samples varies 

as a function of gene expression (Figure 3A, Q3 normalized), identified by the red line. Since it 

is not possible to adjust for these differences using a simple normalization, we next tested 

methods that account for distributional differences between samples. One such method is called 

a cyclic loess normalization, which was originally developed for normalization of microarray data 

(7). The red lines in Figure 3 are locally-weighted regression lines (loess lines) that identify the 

vertical center of the data at each point on the horizontal axis. As noted above, we assume that 

there is a set of genes that do not change expression between different samples. We also 

assume that up and down-regulation is relatively consistent between any two samples. If both 

assumptions hold, then the loess line identifies the set of unchanging genes, and if we simply 

adjust the data to linearize the loess line and center it on the horizontal line at zero, we will have 

removed the technical variability identified by the loess line. We iterate through this process 

three times (the cyclic part of cyclic loess) to normalize the data. This cyclic loess noticeably 

improves the log fold change (M) component of the MA plot (Figure 3A, Cyclic loess). We also 

explored quantile normalization which was reported to be a better method for normalizing 

GeoMx data between samples with different histology (8). In quantile normalization, 

observations in each sample are rank-ordered according to magnitude, the average for each 

rank is computed, and then the average for each rank replaces the observed values. All 

samples then have identical distributions. Of all the methods tested, quantile normalization 

produced the most symmetrical distribution along a horizontal line at zero (Figure 3A, Quantile). 
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The different normalization methods make different assumptions of the underlying data structure 

with expectations for the numbers of differentially expressed genes. These can be visualized 

using a volcano plot, such as is shown for differential expression between glomerulus and 

cortex ROIs using the 3 normalization methods (Figure 3B). Examining the overlap of 

significantly changing genes (FDR<0.05, regardless of magnitude of fold change), the greatest 

number of differentially expressed genes are identified using Q3 normalization, while cyclic 

loess and quantile normalization appear to be the more stringent (Figure 3C). Therefore, the 

choice of normalization methods will affect the downstream analysis and the choice of one 

method may be dependent on the experimental system and goals. The default Q3 normalization 

method recommended by Nanostring, appears to be the most permissive and may be more 

suitable for initial discovery and hypothesis generation. 
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Figure 3. Assessment of normalization approaches for DSP data. A) MA plots for a 

representative glomerulus showing the impact of various normalization approaches to the 

distribution of the data. B) Volcano plots showing the impact of normalization approaches on 

differentially expressed genes detected between cortex and glomerular ROIs (FDR<0.05, fold 

change >1.5x). C) Venn diagrams of overlap of significantly changing genes (FDR<0.05) in 

comparison of glomeruli vs. cortex, cortex vs. medulla and cortex vs. RCC. 
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Sensitivity comparison: CTA vs. WTA 
The reproducibility analysis described above used the CTA probeset, which encompasses 

1,825 genes. Each gene within the probeset is detected by up to 5 distinct probes, and the 

geometric mean of their signals is used to generate the observed expression value. By contrast, 

in the Whole Transcriptome Atlas (WTA) probeset, each of the >18,000 target genes is detected 

by only one oligonucleotide reporter. Only 76 of the target genes in the CTA share a probe with 

the WTA (Kaitlyn LaCourse, Nanostring, personal communication), therefore, the majority of the 

WTA probes are unique to that probe set. This raised two questions: 1) does the CTA have 

better performance than WTA due to the increased number of probes per target? 2) are 

expression values generated using WTA comparable to CTA in terms of linearity of response? 

To assess this, we profiled n=20 glomeruli from n=3 patient biopsy samples using the WTA 

probe set (Figure 4A). We compared the results to n=12 glomeruli, sampled from those same 

patients, that were profiled using the CTA in our previous study (3). We identified 451 genes 

that were above the limit of quantification in our CTA experiment that overlapped with the same 

targets in the WTA experiment. When we plotted the Q3 normalized counts of these genes 

using the two probe sets, we observed that there was reasonable linearity of response (r=0.83) 

(Figure 4B). This indicated that even though different probe sequences were utilized in the CTA 

and WTA, they still produced comparable results. This analysis also showed that the measured 

counts using WTA were ~46% of the CTA, across the target genes in this analysis. This 

experiment showed that reducing the number of probes/target gene in the hybridization 

reaction, also reduces the target’s measured expression value. 

 

Sensitivity comparison: GeoMx vs. CosMx 
The GeoMx using a ROI-based strategy to generate spatially localized gene expression profiles. 

These ROIs are multicellular regions (usually targeting a minimum of 100 cells) and therefore, 

the resulting expression profiles represent an aggregate of the expression levels of all cells 

within the ROI. Newer spatial transcriptomics platforms with single-cell resolution (CosMx SMI, 

Xenium, MERScope) have been released to circumvent this deficiency. In one implementation, 

the CosMx Spatial Molecular Imager hybridizes gene-specific probes to tissue localized targets 

followed by rounds of in situ detection using fluorescent branched DNA reporters and high-

resolution imaging (9). While whole transcriptome detection has been demonstrated, 

approximately 1,000- or 6,000 genes can be simultaneously profiled using current commercially 

available probe sets. Importantly, these single-cell platforms use imaging rather than 

sequencing as their readout modality. They are also more expensive on a per-sample basis 
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than ROI-based profiling approaches. It is therefore necessary to understand the technical 

tradeoffs of single-cell approaches to understand if their increased cost and resolution is 

justified in order to answer a research question. To do so, we first performed a 1000-plex 

CosMx single-cell expression profiling experiment on a section of the multi-tissue block we had 

previously used for the reproducibility analysis. We tiled 205 fields of view (FOV) to capture 

gene expression at single-cell resolution across the 5 tissue patches (Supplemental Figure 2A). 

A total of 284,728 cells were resolved with an average of 132 transcripts detected per cell (10%-

90% range = 22 – 274 transcripts/cell). Cloud-based analysis was performed on the AtoMx 

platform. Semi-supervised cell-type assignment and clustering was performed using AtoMx’s 

InSituType module (6) (Supplemental Figure 2B). We used the KPMP normal kidney reference 

dataset as input and permitted up to 3 unknown cell type assignments in order to account for 

tumor cell types not represented in KPMP (5). Two of the unknown cell types (b, c) were almost 

exclusively localized to distinct neighborhood comprising the tumor specimen (Supplemental 

Figure 2C, D), while the third unknown cell type (a) represented a form of tubule cell/state that 

was not present in the KPMP normal cell atlas.  
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Supplemental Figure 2. Overview of CosMx 1000-gene experiment performed on kidney 
multi-tissue block. A) Fluorescence preview scan of tissue section with boxes indicating fields 

of view (FOVs) from which 1000-gene expression information was captured at single-cell 

resolution. B) UMAP of imputed cell types from the experiment, including known cell types from 

the KPMP reference dataset as well as 3 unknown cell types. C) Spatial mapping of imputed 

cell types back to tissue locations. D) Neighborhood/niche analysis of cell type organization 

reveals distinct structures in normal kidney tissues and a relatively homogenous neighborhood 

in this portion of RCC. 
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A heatmap of expression of the top marker genes for each cell type identified the expected 

pattern of expression for known kidney cell types. Unknown cell type b likely corresponded to 

RCC tumor epithelial cells since they expressed CLU, LDHA and CD24 (10-12) (Supplemental 

Figure 3A). Unknown cell type c likely represented tumor endothelial cells, since they expressed 

IGFBP3 and VW, which we have recently characterized as RCC tumor endothelial cell selective 

marker genes in an orthogonal single cell RNA-seq study using different patient tissue samples 

(13).  

 
Supplemental Figure 3. Prediction of marker genes and cell-cell proximity analysis. A) 

Heatmap of top 10 marker genes for each cell type. B) Proximity analysis of cell types from 

CosMx single-cell data set performed on human kidney tissues. 
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These initial analyses gave us confidence that the CosMx platform was capable of recapitulating 

key geographic and transcriptional features of kidney tissue. To determine if the sensitivity of 

detection was different for the CosMx platform compared to GeoMx, we defined pseudo-ROIs in 

that dataset to match the ROIs selected in the GeoMx experiment (Figure 4C). The number of 

cells in the GeoMx ROIs was comparable to those in the CosMx pseudo-ROIs (Figure 4D). We 

integrated counts for the 450 genes present in both datasets (GeoMx Cancer Transcriptome 

Atlas, CosMx 1K Discovery Panel) and found that there was good correlation (r=0.88) of 

expression levels across both datasets (Figure 4E). Similar to the CTA, the CosMx 1K 

Discovery Panel uses 5 probes to detect each gene (Kaitlyn LaCourse, Nanostring, personal 

communication). Even so, the integrated counts for the CosMx pseudo-ROIs were 58% of the 

GeoMx ROIs. Therefore, even though the GeoMx platform uses a sequencing-based readout 

and the CosMx platform uses an imaging-based readout, both produce comparable patterns of 

gene expression, though there is reduced signal when single-cell resolution is desired.  
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Figure 4. Comparison of CTA vs. WTA and GeoMx vs. CosMx. A) Overview of comparison 

of glomerular gene expression from n=3 normal kidney biopsies (middle biopsy had two 

fragments). Blue dots indicate the location of the glomeruli profiled in each experiment. B) Dot 

plot of Q3 normalized counts of genes measured in glomeruli from kidney biopsies using CTA 

vs. WTA. C) Left, Immunofluorescence overview of a portion of kidney tissue profiles using the 

CosMx platform and a 1000-gene panel. Middle, the expression data was processed to infer cell 

type and cellular neighborhoods. Right, individual cells within histologic structures were grouped 

together as pseudo-ROI in order to correspond to the ROI chosen in the reproducibility 

experiment (compare to Figure 1C). D) Plot of cell counts in CosMx pseudo-ROIs vs. cell counts 

based on nuclear staining in corresponding GeoMx ROIs. E) Correlation of integrated gene 

counts in CosMx pseudo-ROIs vs. their corresponding GeoMx ROIs. 
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DISCUSSION 
There is increasing emphasis on improving the replicability of scientific studies, in grant 

applications, publications and clinical trials (14-16). Understanding how experimental 

procedures and technologies influence the ability to produce rigorous and reliable data forms 

the bedrock of replicability. Determining the technical requirements for generating rigorous and 

reproducible spatial transcriptomics data is critical to align these expensive technologies with 

experimental questions. It will also form the basis for making economic decisions when planning 

research studies and for determining which spatial transcriptomics technologies may be 

amenable to clinical translation. In this study we demonstrate that altering the hybridization 

procedure for the GeoMx platform allows the researcher to extend the probe set to more slides, 

increasing flexibility in experimental design, and decreasing the per slide cost. Our results also 

demonstrate that the greatest source of variability is histology, which is the desired experimental 

variable. Inter donor variation is the next greatest source of variation, followed by variation of 

feature (ROI) selection across multiple sections. Our results also demonstrate that it is better to 

prioritize collection of biological replicates over technical replicates. Reassuringly, day-to-day 

variation was the smallest contributor to the observed differences. These findings demonstrate 

that the GeoMx platform allows for flexible spatial interrogation of transcriptomes with relatively 

little technical noise, allowing for the identification of biological differences in gene expression 

such as those between histologically distinct structures and among donors.  

 

When analyzing transcriptomic data from the GeoMx, the recommended normalization 

procedure is Q3 normalization. We found that Q3 normalization of WTA data was relatively 

permissive compared to alternative methods such as cyclic loess and quantile normalization. 

The Venn diagrams in Figure 3C indicate that Q3 normalization is likely to identify more 

candidate differentially expressed genes (DEGs) than cyclic loess or quantile normalization, but 

they also show that that DEGs identified with the different normalization methods may be 

distinct. It is important to realize that different normalization methods will influence results and 

identification of DEGs, and selection of the normalization method may be influenced by 

experimental goals. The platform’s recommended Q3 normalization may be sufficient when 

trying to identify the greatest number of DEGs in pilot and feasibility studies, and more rigorous 

normalization approaches may be more suited for identification of candidate genes for 

development of a multiparameter disease classifier.  
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Within the GeoMx platform, there are 2 off-the-shelf probe sets for use with human tissues, the 

CTA and the WTA. Since GeoMx probes are designed with a UV-cleavable linker and reporter 

oligonucleotide, expanding the target space from CTA (1,825 genes) to WTA (>18,000 genes) 

incurs a significant probe synthesis cost. This is somewhat mitigated by reducing the number of 

the probes/target gene from 5 probes/gene in CTA to 1 probe/gene in the WTA probe set. 

However, when we compared DEG for the CTA and WTA probe sets on the same set of kidney 

biopsies, we found that while there was good correlation in expression trends, the WTA was half 

as sensitive as the CTA. Thus, probe set choice can also influence experimental results, and 

increasing plex will come at the cost of decreasing sensitivity and the ability to detect low 

expressing genes. This also suggests that implementing a GeoMx workflow in the clinic would 

benefit from a smaller number of target genes being analyzed, but with more probes/target to 

maximize sensitivity. Initial exploratory analyses using the WTA could be used to define the 

gene subset that is maximally informative for the clinical question at hand before synthesizing 

the targeted panel of probes. 

 

The CosMx platform permits subcellular resolution of spatial transcriptomic data. Although 

computational cellular deconvolution strategies can estimate cell type abundance within regions 

of interest, the higher resolution of CosMx allows for more precise identification of cell types, as 

well as the identification of novel cell types and cell states. The relationships between cells, 

cellular neighborhoods, can also be defined with CosMx data. Our analysis confirmed that 

CosMx could properly identify many of the known kidney cell types that have been identified in 

the KPMP, as well as to predict novel cell types that are only found in tumor tissue. Gene 

expression between the GeoMx CTA and the CosMx 1000-plex gene panel showed good 

correlation (R=0.88) for the 450 genes that were detected on both platforms in spite of their 

different methods of readout (sequencing vs. imaging). Therefore, the somewhat reduced 

sensitivity and increased cost/sample of single-cell resolution platforms such as CosMx must be 

balanced against its increased resolution to provide biological insight into tissue physiology and 

disease processes. These factors will also dictate which clinical scenarios will benefit from 

CosMx’s single-cell resolution vs. the multi-cellular resolution afforded by GeoMx. 

 

In summary, we demonstrate that the GeoMx and CosMx spatial transcriptomics platforms are 

robust tools for spatially registered gene expression analysis. The GeoMx platform lends itself to 

greater flexibility and potential cost savings by varying the hybridization area and probe set 

design and volume. Choices for data normalization for GeoMx will affect results and the 
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detection of DEGs. The potential sources of noise (donor-to-donor variation, day-to-day 

variation in ROI selection, and intrasample ROI selection of biologically similar structures) are 

small compared to the biological variation that can be measured when selecting histologically 

distinct structures (e.g. glomeruli, cortex, medulla and RCC). Probe set composition (number of 

probes/target gene) as well as platform methodology (sequencing readout vs. imaging) can also 

impact sensitivity of detection. Understanding how these technical and platform considerations 

influence experimental results will help guide researchers through the planning and execution 

stage of spatial transcriptomic experiments and facilitate their adoption to answer clinical 

questions.  
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