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Abstract

Background: Sampling the microenvironment at sites of microbial exposure by dendritic cells (DC) and their subsequent
interaction with T cells in the paracortical area of lymph nodes are key events for initiating immune responses. Most of our
knowledge of such events in human is based on in vitro studies performed in the absence of extracellular matrix (ECM)
proteins. ECM in basement membranes and interstitial spaces of different tissues, including lymphoid organs, plays an
important role in controlling specific cellular functions such as migration, intracellular signalling and differentiation. The aim
of this study was, therefore, to investigate the impact of two abundant ECM components, fibronectin and laminin, on the
phenotypical and functional properties of DC and how that might influence DC induced T-cell differentiation.

Methodology/Principal Findings: Human monocyte derived DC were treated with laminin and fibronectin for up to
48 hours and their morphology and phenotype was analyzed using scanning electron microscopy, flow cytometry and real
time PCR. The endocytic ability of DC was determined using flow cytometry. Furthermore, co-culture of DC and T cells were
established and T cell proliferation and cytokine profile was measured using H3-thymidine incorporation and ELISA
respectively. Finally, we assessed formation of DC-T cell conjugates using different cell trackers and flow cytometry. Our data
show that in the presence of ECM, DC maintain a ‘more immature’ phenotype and express higher levels of key endocytic
receptors, and as a result become significantly better endocytic cells, but still fully able to mature in response to stimulation
as evidenced by their superior ability to induce antigen-specific T cell differentiation.

Conclusion: These studies underline the importance of including ECM components in in vitro studies investigating DC
biology and DC-T cell interaction. Within the context of antigen specific DC induced T cell proliferation, inclusion of ECM
proteins could lead to development of more sensitive assays.
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Introduction

Dendritic cells (DC) are specialized antigen presenting cells which

serve as sentinels that capture and carry antigens to local lymph

nodes (LN) [1,2,3]. In the LN they process and present antigens in

association with MHC class II to specific T cells. T helper (Th) cells

that have been activated by DC will develop into functionally

distinct cell subsets such as Th1, Th2, Treg or Th17 [4].

Polarization towards these effector T cell subsets is critical for

defence against invading pathogens, but under pathological

conditions could also be associated with the induction of

autoimmune (Th1, Th17) or allergic (Th2) diseases. The immuno-

logical outcome of antigen presentation by DC to T cells depends on

many factors such as DC lineage, the nature of the antigen they

come into contact with and the state of DC maturation [3,5,6].

Most of our knowledge on the role of human DC in the

processing and presentation of antigens to naı̈ve T cells is based on

in vitro studies, performed in traditional cell culture systems and in

the absence of extracellular matrix (ECM) proteins, in which DC

are pulsed with pathogen extracts or infected with pathogens and

are then co-cultured with naı̈ve T cells [5,6,7,8,9]. Although these

approaches have provided considerable insights into human DC

biology, they tend to suffer from the limitations of using

conventional cultures, notably the absence of ECM. The presence

of ECM and the 3D structure of lymphoid organs are known to

play an important role in DC-T cell interaction [10,11]. For

example, the 3D structure of a lymph node ensures targeted

positioning of interacting cells, facilitates T cell migration towards

DC, supports motility upon cell-cell interaction and provides

traction for amoeboid T cell crawling within the DC compart-

ment. Furthermore, DC-T cell interaction takes place in the

presence of ECM, the natural medium in which cells proliferate,

differentiate and migrate. Cell-ECM interaction is specific and bi-

univocal and controls and guides specific cell functions such as
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migration, proliferation, intracellular signalling and differentiation

[10,11,12,13]. In this context, ECM has been shown to prevent

passive cell aggregation, and under those conditions T cell

crawling is likely to occur at the interface between the DC

membrane and ECM components [14].

In an attempt to better simulate these in vivo events, some

investigators have resorted to studying DC-T cell interaction in a

collagen lattice [15,16], but given that only a very small amount of

collagen is actually available within the paracortical region of LN

[17], where DC-T cell interaction takes place, the physiological

relevance of using collagen in this context is questionable.

Given the abundance of extracellular matrix proteins in vivo,

potential influence of ECM on DC differentiation from progenitor

cells is highly likely. Indeed Staquet and colleagues [18] have

shown that fibronectin could aid the differentiation of dendritic

cells from CD34+ progenitor cells and fragments of the fibronectin

protein have been shown to induce the differentiation of monocyte

derived dendritic cells [19].

Thus, the aim of this study was to investigate the impact of

fibronectin [FN] and laminin [LMN], two major ECM compo-

nents that are abundant in the LN paracortex [20] as well as

interstitial spaces, on the phenotypical and functional properties of

DC and how that might influence DC induced T-cell differentia-

tion. Here we show that in the presence of ECM, DC maintain a

‘more immature’ phenotype and express higher levels of key

endocytic receptors, and as a result become significantly better

endocytic cells, but still fully able to mature in response to

stimulation as evidenced by their superior ability to induce

antigen-specific T cell differentiation.

Materials and Methods

Ethics Statement
For generating monocyte derived dendritic cells we used

peripheral blood of healthy volunteers which was obtained with

prior written consent and The University of Nottingham Medical

School Research Ethics Committee approval.

Generation of DC
DC were generated from peripheral blood monocytes as

described before [21]. Briefly, PBMCs were separated from

heparinized peripheral blood of healthy volunteers by standard

density gradient centrifugation on Histopaque (Sigma, Irvine,

UK). Monocytes were isolated from PBMCs using CD14

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) and

cultured in RPMI medium (Sigma) supplemented with L-

glutamine, antibiotics and 10% fetal calf serum (FCS) containing

50 ng/ml of GM-CSF and 250 U/ml of IL-4 (R&D Systems,

Oxford, UK) in 24-well plates for 6 days.

Culture of immature DC with ECM proteins
To prepare ECM-coated plates, 10 mg/ml of fibronectin (from

human plasma) or laminin (derived from human placenta,

reported as isoform 511 in Gorfu et al [22]) (Sigma, Irvine, UK)

were added into each well and the plates were incubated for 1.5 h

at 37uC. Following incubation, the protein solution was removed

by aspiration and the wells were washed twice with cold PBS.

Immature DC were washed once, re-suspended in serum-free

AIM V medium (Invitrogen, UK) and transferred to the coated

wells. Control wells were normally coated with 1% BSA

(Invitrogen) and contained immature DC cultured in the absence

of laminin and fibronectin. These cultures were incubated for 48 h

at 37uC. Cells were then used for the assays described below or

analysed for expression of surface markers.

Staining for cell surface markers
ECM-treated and control DC were harvested, washed twice

with PBS, 0.5% BSA and sodium azide (PBA) and then stained for

CD40 (clone LOB7/6, IgG2a, AbD Serotec), HLA-DR (clone

Immu357, IgG1), CD80 (clone MAB104, IgG1), CD83 (clone

HB15a, IgG2b), CD86 (clone HA5.2B7, IgG2b k), Mannose

Receptor [MR] (clone 3.29B1.10, IgG1, Beckman Coulter, High

Wycombe, UK), DC-specific intercellular adhesion molecule-

grabbing non-integrin [DC-SIGN] (clone DCN46, IgG2b k, BD,

Oxford, UK) and DEC205 (clone MG38, IgG2b, AbD Serotec)

for 30 min at 4uC. Relevant isotype matched control antibodies

were used, respectively. The cells were then washed with PBA and

fixed in 0.5% formaldehyde in isotonic azide-free solution. Cells

were usually analysed within 24 h.

Flow cytometric analysis
Flow cytometry was performed using a Coulter EPICS XL-

MCL (Beckman Coulter) and 50000 events were collected for each

sample. Dead cells were excluded by forward and side scatter

characteristics.

Scanning electron microscopy (SEM) imaging
For SEM preparations, glass coverslips were coated with ECM

proteins as described above. Immature DC were then added to the

coverslips and incubated for 48 h at 37uC in a 12-well culture

plate. Coverslips coated with 1% BSA were used as controls.

Following incubation, the coverslips were removed from culture,

washed once with PBS and stained for SEM as described

elsewhere [23]. Images were obtained using a Jeol (Tokyo, Japan)

JSM-6060LV SEM machine.

Cell viability assay
Cell viability was measured using the CellTiter AQ One

Solution Cell ProliferationTM (MTS) assay kit (Promega, South-

ampton, UK) according to the Manufacturer’s instructions.

Briefly, assays were performed in with reduced lighting, simply

by the addition of 20 ml of CellTiter AQ reagent into the relevant

samples in 100 ml of culture medium. These samples were then

incubated in a humidified-atmosphere incubator at 37uC and with

5% CO2 for 90 min before the absorbance was read at 492 nm

using a Optima FLUOstarH plate reader.

Cell perimeter measurement
DC were cultured in FN or LMN-coated 24-well plates for

48 h. After incubation, light microscopy images were obtained

using a 20X objective with a Leica microscope (Newcastle, UK).

Images were then analysed using Leica QWin software measuring

at least 50 cells in each condition.

Re-stimulation of ECM-treated DC
After 48 h incubation in the presence or absence of ECM

proteins, DC were harvested, washed once with AIM-V and re-

plated in 96-well plates (2.56105 cells/well). LPS (200 ng/

ml)(Sigma) or soluble CD40L (1 mg/ml) (Axxora, Bingham, UK)

were added and the cells were further incubated for 48 h. DC

were then harvested and their phenotype was analysed as

described above.

Endocytosis and blocking experiments
DC were washed once with PBS, re-suspended in RPMI and

transferred into 1.6 ml eppendorfs (56105 cells/ml in 500 ml).

Dextran-FITC (Sigma) was added to a final concentration of

1 mg/ml and the tubes were incubated for 1.5 h at 37uC or 4uC.

Impact of ECM on DC Function
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Cells were harvested, washed twice with ice-cold PBS, re-

suspended in isotonic azide-free solution and immediately

analysed by flow cytometry. For blocking experiments, ECM-

treated DC were pre-incubated with 1 mg/ml mannan (Sigma) for

20 min at 37uC before addition of dextran-FITC and subsequent

analysis by flow cytometry. For assessing the uptake of MR and

DC-SIGN specific ligands, ECM-treated DC were incubated for

1 hr at 37uC with either 20 mg/ml SO4-3-galactose-FITC or

Lewis-X-FITC (Lectinity Corp, Moscow) respectively. Cells were

then analysed by flow cytometry.

Fluorescein-labeled CMV uptake
For CMV uptake, CMV pp65 protein (Miltenyi Biotec) was

labeled with the Fluoro-TrapTM Fluorescein labeling kit (Innova

Biosciences) according to the manufacturer’s instructions. DC

were incubated for 30 min at 37uC or 4uC with 10 mg/ml of

fluorescein-labeled CMV protein before analysis by flow

cytometry.

Real Time PCR
DC were washed in ice-cold PBS and mRNA extraction and

cDNA synthesis were performed using the mMACSTM one-step

cDNA kit (Miltenyi Biotec) according to manufacturer’s instruc-

tions. Real-Time PCR was performed in a Stratagene MxPro

3005P qPCR System with the Brilliant SYBR Green QPCR

master Mix (Stratagene, La Jolla, USA). Primer sequences were as

follow: GAPDH (forward) 59-GAGTCAACGGATTTGGTCGT-

39, (reverse) 59-GACAAGCTTCCCGTTCTCAG-39; Mannose

Receptor (forward) 59-CGTTTACCAAATGGCTTCGT-39, (re-

verse) 59-CCTTGGCTTCGTGATTTCAT-39; DC-SIGN (for-

ward) 59-CCAAAGGAGGAGACAAGCAG-39, (reverse) 59-

GGACGACAGCTTCAGTGTGA-39. Cycling was initiated at

95uC for 10 min, followed by 40 cycles of 95uC for 30 s, 55uC for

30 s and 72uC for 1 min. Samples were run in triplicate and

relative expressions of MR and DC-SIGN were calculated using

the comparative threshold cycle method normalized to GAPDH

(22DDCT mathematical model [24]).

Antigen dependent T-cell proliferation
ECM-treated and ECM-untreated DC were loaded with CMV

protein for 3 h before co-culturing with autologous memory T-cells,

separated by negative selection from the whole T-cell fraction of

PBMCs using a Pan T-cell Kit and CD45RO beads (Miltenyi

Biotec). These co-cultures were incubated for different time points

and T-cell proliferation was detected by H3-thymidine incorpora-

tion as described before [25]. Briefly, H3-thymidine (specific activity

24.0 Ci/mmol; Amersham Life Science, Buckingham, UK) was

added to each well at a final concentration of 4 mCi/ml and cultures

were continued for another 18 h. Cells were harvested and

thymidine incorporation was measured in a scintillation counter.

The proliferation index (PI) was calculated according to the

following equation: PI = mean cpm of proliferating T cells

cultured in the presence of ECM treated or un-treated DC–mean

cpm of T cells cultured in the absence of DC.

IFN-gamma quantification
IFN-gamma was quantified using an ELISA kit (R&D Systems,

Oxford, UK) according to the manufacturer’s instructions.

DC-T cell conjugate analysis
DC-T cell conjugates were analysed by flow cytometry as

described before [26,27]. Briefly, DC (with and without treatment

with FN or LMN) and T cells were labelled with PKH26 (Sigma)

and Carboxyfluorescein Succinimidyl Ester (CFSE) (Invitrogen),

respectively. DC and autologous T cells (in 1:2 DC:T cell ratio)

were mixed, centrifuged for 5 min at 1000 rpm, to favour

conjugate formation, and incubated for 45 min at 37uC. Pellets

were then gently resuspended in 400 ml of PBS and immediately

analysed by flow cytometry. The DC population was gated

according to FSC/SSC parameters and conjugates were defined

as CFSE+ cells in the DC population. To rule out phagocytosis or

dye diffusion as a cause of double positive cells, conjugate

formation was investigated on cells treated with 5 mM EDTA and

vortexed for 2 min after incubation.

Statistical analysis
The samples were defined by their mean values and standard

deviation. Differences between the means were compared using

the Student t-test and p,0.05 was considered significant.

Results

FN and LMN affect DC morphology
To investigate the possible effect of ECM components on DC

morphology, DC were cultured on FN and LMN-coated surfaces.

The data show a notable difference in DC morphology after

culturing cells on ECM coated surfaces (Fig. 1A). For instance,

FN-treated DC developed long and broad dendrites, whereas

LMN-treated DC developed long but thin dendrites. This

difference was further confirmed by measuring total cell perimeter

of DC, and this demonstrated a significant increase (P,0.01) in

the surface area occupied by FN-treated cells compared to LMN-

treated or untreated DC (Fig. 1B).

FN and LMN affect dendritic cell phenotype
Immature DC were cultured in the presence of FN or LMN for

48 h and the DC phenotype was determined using flow cytometry.

Fig. 2 shows that ECM components induced a decrease in the

expression of some DC maturation markers (HLA-DR, CD83 and

CD86), giving these cells a ‘more immature’ profile. Furthermore,

using an MTS assay we compared the viability of DC cultured on

BSA or ECM coated plates. These experiments showed no

difference in cell viability between different culture conditions

(data not shown). Considering the possibility that the effect of such

ECM treatment could render DC un-responsive to further

stimulation, we studied the maturation state of these cells after

stimulation with LPS and CD40L. Fig. 3 shows that ECM-treated

DC can recover from their ‘more-immature’ state and acquire a

fully mature phenotype as evidenced by their increased expression

of CD40, CD83 and HLA-DR.

FN and LMN-treated DC show increased endocytic ability
One of the characteristic features of immature DC is their high

endocytic ability. After maturation, this capacity decreases, allowing

DC to present the antigens they have captured in the periphery to T

cells. We analyzed dextran-FITC uptake by DC after treatment

with ECM components. Treatment with FN or LMN caused a

significant increase (P,0.001) in the endocytic ability of DC (Fig. 4).

These results are clearly in agreement with the phenotype data

obtained earlier, which suggested a ‘more immature’ profile

exhibited by ECM-treated DC. Interestingly, we did not observe

any synergy between FN and LMN when a mixture of both proteins

was used in these experiments (data not shown).

In order to ascertain that the increase in the endocytic capacity of

ECM-treated DC was due to a change in the expression pattern of

relevant endocytic receptors, we analysed membrane expression of

MR, DC-SIGN and DEC205. We found that FN and LMN

Impact of ECM on DC Function
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treatment induced up-regulation of MR and DC-SIGN (Fig. 5A), but

not DEC205 (data not shown), expression on the surface of DC.

Whilst this observation suggests that the increased endocytic capacity

of LMN and FN treated DC is due to a higher expression of MR and

DC-SIGN, dextran uptake could also be mediated through

macropinocytosis. We therefore sought to further investigate this

observation by performing blocking and uptake experiments using

mannan, a common ligand for MR and DC-SIGN [28], as well as

SO4-3-galactose (a sulphated sugar) [29] and Lewis-X [30], two

specific ligands for MR and DC-SIGN, respectively. These

experiments showed that the enhanced Dextran-FITC uptake

demonstrated by FN and LMN treated DC was blocked in the

presence of mannan (Fig. 5B), and FN and LMN treatment of DC led

to an increase in the uptake of SO4-3-galactose and Lewis-X, which

are MR and DC-SIGN specific ligands, respectively (Fig. 5C).

This ECM-induced expression of MR and DC-SIGN could

have been due to impaired shedding of these receptors or higher

expression at gene level. Therefore, to establish if this was also

accompanied by a change at transcriptional level, we performed

RT-PCR experiments. These assays showed an increase in the

relative expression of MR and DC-SIGN mRNA in FN and

LMN-treated DC (Fig. 6).

Figure 1. FN and LMN induce changes in DC morphology. A, SEM images of ECM-treated DC taken after 48 h of culture over FN or LMN-
coated coverslips. Different magnifications were used to better visualize the whole cell morphology. B, Cell perimeter measurements based on light
microscopy images. Results represent average values of at least 50 cells in each condition plus standard deviations.
doi:10.1371/journal.pone.0010123.g001
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ECM-treated DC exhibit stronger T-cell interaction
abilities and induce higher IFN-gamma production and T
cell proliferation in an antigen-dependent manner

To study the possibility that ECM-treated DC behave

differently in an antigen-specific system, we co-cultured FN or

LMN-treated DC (loaded with a CMV envelope protein) with

autologous memory T-cells and measured IFN-gamma production

and T-cell proliferation. T-cells that were co-cultured with CMV-

loaded ECM-treated DC produced significantly higher (P,0.001)

amounts of IFN-gamma compared to CMV-loaded control DC

(Fig. 7A). We also found that these T-cells have a higher

proliferation index (P,0.05) compared to control cells (Fig. 7B).

We then sought to determine the underlying mechanisms for this

higher T-cell proliferation and IFN-gamma production. The

analysis of DC phenotype revealed no significant changes in the

expression of the co-stimulatory molecules CD80, CD86 and

Figure 2. ECM-treatment causes a decreased expression of some DC maturation markers. DC membrane phenotype was analyzed after
48 h of culture in the presence of FN or LMN (both at 10 mg/ml) compared with immature DC. Filled histograms represent isotype controls, control
(1% BSA treated) DC are depicted with the solid black line, FN treated DC are depicted with the dashed black line and LMN treated DC are depicted
with the solid gray line. Results depict one representative out of four independent experiments. * P,0.05.
doi:10.1371/journal.pone.0010123.g002
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CD40 after CMV treatment (not shown). However, we found an

up-regulation of CMV uptake in the presence of FN and LMN

(Fig. 7C and 7D). Furthermore, the ability of DC to interact with

T cells, which was assessed by DC/T conjugate formation, was

found to be higher with the ECM treated DC compared to control

cells (Fig. 7E).

Discussion

ECM is the main component of the core structure of the LN,

and ECM proteins are highly abundant in the LN paracortex,

where DC encounter and activate T cells [20,31,32]. Further-

more, ECM components make up a high percentage of the protein

content in the interstitial spaces of peripheral tissues, such as skin

and respiratory epithelium, where immature DC reside. Yet, the

interaction of DC with ECM components has been overlooked in

many in vitro studies investigating human DC biology.

In this study, we have investigated the impact of two ECM

components, FN and LMN, on the morphology, phenotype and

functional properties of human monocyte-derived DC. The

laminin family of glycoproteins consists of many isoforms. In this

study, we have used a commercial preparation of laminin from the

human placenta. A recent study by Gorfu et al, has reported this

isoform to be laminin-511 (a5b1c1) [22]. They also found

laminin-511 to be the predominant isoform for the adhesion and

migration of human blood lymphocytes followed by laminin 332

and 411 in the human lymph node. Interestingly, it has been

shown that the basement membrane of high endothelial venules

and reticular fibers of human lymph nodes express laminin

isoforms 211, 311, 411 and 511 [22].

Our data clearly show that DC that have been in contact with

either FN or LMN developed a different morphology compared

to control DC. This was particularly noticeable in the number

and length of their dendrites. FN-treated cells showed much

longer dendrites and occupied a larger surface area, a finding

which is in line with previous work showing that engaging b1-

integrin (CD29) on the DC surface by FN leads to the formation

of long dendrites in a protein specific manner and that no such

effect is seen with collagens type I or II [33]. LMN-treated DC,

however, developed much thinner but still long dendrites. It has

been reported that LMN also promotes dendrite formation in

other cell types, like melanocytes and neurons [34], but its effect

on DC morphology had not been reported before. Dendrite

formation is an important stage in DC development, since it

Figure 3. ECM-treated DC are able to fully mature after stimulation with maturation stimuli. Membrane phenotype of control, FN and
LMN treated DC was analyzed after 48 h of incubation with 200 ng/ml LPS (n = 3) and 1 mg/ml CD40L (n = 4). Error bars represent standard deviations.
MFI values for isotype controls for each antibody was deducted from the values shown. * P,0.05.
doi:10.1371/journal.pone.0010123.g003

Figure 4. FN and LMN induce an increase in the endocytic
ability of DC. Dextran-FITC uptake at 37uC was evaluated by flow
cytometry. DC were incubated for 48 h in ECM-coated plates before
performing the assays. n = 4 independent experiments. Error bars
represent standard deviations. * P,0.001.
doi:10.1371/journal.pone.0010123.g004
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Figure 5. MR and DC-SIGN expression by DC is increased after ECM treatment. A, Following 48 h of culture in FN or LMN-coated plates
(both 10 mg/ml), DC were stained for MR and DC-SIGN expression and analyzed by flow cytometry. Filled histograms (gray) represent isotype controls.
B, The endocytic receptors MR and DC-SIGN were blocked using mannan before addition of dextran-FITC and analysis by flow cytometry. Filled
histograms (gray) represent cells without dextran-FITC and results depict one representative out of three. C, The uptake of specific MR and DC-SIGN
ligands by ECM-treated DC was also evaluated by flow cytometry. The sulphated sugar SO4-3-galactose-FITC is specifically bound by MR and Lewis-X-
FITC by DC-SIGN. Filled histograms (gray) represent cells incubated without ligand. Results show one representative out of three independent
experiments.
doi:10.1371/journal.pone.0010123.g005
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allows DC to sample the microenvironment for microbes [35]

and other potential danger signals. Thus, the longer DC

dendrites, covering a larger surface area, seen here in the

presence of FN or LMN could potentially lead to more efficient

sampling of the microenvironment.

Immature DC are characterized by their high endocytic ability

and low expression of certain membrane markers like CD40,

HLA-DR and CD83. Upon antigenic stimulation, immature DC

undergo a maturation process which leads to a number of

phenotypical and functional changes. These include a marked

decrease in their endocytic ability accompanied by up-regulation

of co-stimulatory molecules like CD40, CD80, CD83 and CD86

[5]. Our data show that the presence of FN or LMN confers a

‘more immature’ phenotype on DC, as evidenced by their lower

expression of maturation markers (CD83, HLA-DR) and co-

stimulatory molecules (CD86). This is in agreement with earlier

findings reporting that FN produces a slight decrease in the

expression of some DC surface markers such as CD80, CD83 and

CD86 [36]. More importantly, our data show a significant

increase in the endocytic ability of FN or LMN treated cells, a

characteristic feature of immature DC. Given that endocytosis of

dextran and other similar structures is primarily mediated

through the mannose receptor [MR] [37], we studied membrane

expression of MR and other endocytic receptors such as DC-

SIGN and DEC205, following treatment of DC with FN or

LMN. This showed a significant up-regulation of MR and DC-

SIGN after ECM treatment, with no such effect on DEC-205

expression.

These observations indicated that the enhanced endocytic

ability of FN and LMN treated DC could be due to increased

surface expression of MR and DC-SIGN. Indeed, we were able to

confirm this association by using mannan, a common blocking

reagent for MR and DC-SIGN. As expected, mannan led to

suppression of Dextran uptake by FN and LMN treated DC.

Furthermore, we used two specific ligands for MR and DC-SIGN,

namely SO4-3-galactose [28,29] and Lewis-X [28,30], respec-

tively. In those experiments, ECM-treated cells showed enhanced

uptake of SO4-3-galactose and Lewis-X, further confirming the

association between ECM-induced up-regulation of MR and DC-

SIGN and the resulting enhanced endocytic ability of DC. Also,

RT-PCR experiments showed that up-regulation of MR and DC-

SIGN was associated with an increase in their mRNA levels,

thereby indicating the contribution of de novo synthesis to their

higher expression subsequent to FN and LMN treatment.

However, the exact mechanism behind the higher MR and DC-

SIGN expression is yet to be established, and it is possible that

impaired shedding of DC-SIGN and MR at the cell surface could

also contribute to this phenomenon.

Recognition and binding to ECM elements is mainly mediated

by integrin receptors, many of which are expressed by DC [38]. It

has been shown that signalling through these receptors after cell-

cell contact or cell-ECM interaction leads to activation of different

signalling pathways [39,40]. Thus, the demonstration here that the

control of genes encoding the synthesis of MR and DC-SIGN, as

two key endocytic receptors [41], is affected by ECM components

is a novel observation and one that highlights the importance of

incorporating ECM in studies of DC cultures and DC-T cell

co-cultures.

Although ECM-treated DC did not show any significant

difference in their ability to induce T cell proliferation in mixed

lymphocyte reaction experiments compared to control DC,

interestingly T-cells that were co-cultured with CMV envelope

protein-loaded and ECM-treated DC produced higher amounts of

IFN-gamma and showed a higher proliferation rate. Whilst we did

not find any significant differences in the expression of the co-

stimulatory molecules CD80, CD86, and CD40, we observed an

increase in CMV uptake by DC treated with FN or LMN. This

extra loading, combined with stronger ability of ECM-treated DC

to form conjugate with T cells, could account for the observed

higher proliferation and IFN-gamma secretion by T-cells.

Whilst our data indicate that laminin and fibronectin could affect

different aspects of DC phenotype and function, the ECM impact

on DC endocytic capacity and their ability to cross-talk with T cells

seem to be the dominant effects. This is clearly shown in our

endocytosis assays and DC-T cell co-culture experiments where

ECM treated DCs establish more efficient link with T cells and

support the production of significantly higher levels of IFN-gamma.

In vivo, DC migration, maturation and interaction with T cells

happen in the presence of different ECM components. FN and

LMN are two abundant ECM proteins present in tissue basement

membranes and interstitial spaces, as well as in the T cell area of

LN paracortex [20,31,32]. The majority of studies on DC biology

are carried out in the absence of ECM, and this is not ideal as this

study will have shown. The data described here clearly show the

significant impact of ECM on key DC functions. It is, therefore,

reasonable to suggest that the inclusion of ECM components

should be considered in future in vitro studies investigating DC

biology. Of course, this would only be a first step towards better

simulation of in vivo events, and other equally important factors,

such as the 3D structure of different tissues and the interdepen-

dency between effector and structural cells, should also be

considered.

Figure 6. ECM induces MR and DC-SIGN up-regulation. After
mRNA extraction and conversion to cDNA, MR and DC-SIGN expression
was analyzed using Q-PCR. Relative expression levels of both genes
were compared to that of a house-keeping gene (GAPDH). Results
depict one representative out of three independent experiments.
doi:10.1371/journal.pone.0010123.g006
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Figure 7. FN and LMN treatment influences the outcome of DC-T cell interactions. A, IFN-gamma production by memory T-cells after 24
and 48 h of co-culture with ECM-treated DC pre-loaded with CMV protein. B, T-cell proliferation assays using memory T-cells as responder cells. The
proliferation index (PI) was calculated as described in the materials and methods. C, A representative histogram showing the uptake of fluorescein-
labeled CMV protein by DC before and after treatment with ECM. Cells without CMV (filled histogram), cells at 4uC with CMV (solid gray line), control
DC with CMV (solid black line), FN treated DC with CMV (dashed black line) and LMN treated DC with CMV (dashed gray line). D, CMV uptake by DC
under different culture conditions. Data from figure 7C is represented as a histogram with n = 3. E, Analysis of conjugate formation between DC and T
cells. PKH26-labeled DC were incubated with CFSE-labeled T cells for 45 min (ratio 1DC/2T cell). Conjugate formation was analyzed by flow cytometry
by determining the CFSE+ cells amongst the DC population. To rule out phagocytosis or dye diffusion as a cause of double positive cells, conjugate
formation was investigated on cells treated with 5 mM EDTA and vortexed for 2 min after incubation. Results depict data from one of three
independent experiments. *P,0.05, ** P,0.001.
doi:10.1371/journal.pone.0010123.g007
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