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SUMMARY

The human gut microbiome is a complex ecosystem that both affects and is
affected by its host status. Previous metagenomic analyses of gut microflora re-
vealed associations between specific microbes and host age. Nonetheless there
was no reliable way to tell a host’s age based on the gut community composition.
Here we developed a method of predicting hosts’ age based on microflora taxo-
nomic profiles using a cross-study dataset and deep learning. Our best model has
an architecture of a deep neural network that achieves themean absolute error of
5.91 years when tested on external data. We further advance a procedure for
inferring the role of particular microbes during human aging and defining them
as potential aging biomarkers. The described intestinal clock represents a unique
quantitativemodel of gutmicroflora aging and provides a starting point for build-
ing host aging and gut community succession into a single narrative.

INTRODUCTION

The human gut is colonized by a dense microbial community, calculated to consist of 1014 cells, which is an

order of magnitude higher than the number of cells in the host (Suau et al., 1999). This gut microbiota is a

complex ecosystem that carries multiple important functions in the organism such as digestion, immunity,

and vitamin and other important metabolite production and even affects higher neural functions (Adak and

Khan, 2019). The interaction, however, is not one-sided: microbiota is not simply determining certain host

characteristics, as it also responds to signals from the host via multiple feedback loops (Lozupone et al.,

2012).

The totality of processes gut microflora participates in cannot be dismissed as irrelevant. Detecting and

interpreting the host-microbe interactions is essential to gain more control over host health status.

Although host-microbe dialogue can be relatively easily detected with modern biological technology,

its interpretation poses a much more challenging task. High-throughput methods allow to observe

changes in microflora composition between host cohorts, but it is not always evident which of them

are pathological and which represent transition between alternative healthy states. In this article we

aspire to provide a tool that would let researchers account for normal changes associated with healthy

aging.

Just as its host, human microflora matures and ages with years. This starts in infancy with gut colonization.

Factors such as mode of delivery and diet (formula or breast milk) greatly affect the track along which

pioneer microbiota progresses (Zhuang et al., 2019). But their effects are well documented and there

are multiple studies that show consistent succession in the infant gut community (Koenig et al., 2011).

Microflora evolution does not stop in childhood but extends into adulthood and old age. However, adult

hosts exhibit significantly more variable phenotypes and conditions that drive community dynamics. This

variability obscures the view of microflora succession and leads to confusion and contradictory results—

stark contrast with the case of infant microflora. For example, some studies report a general decrease in

biodiversity as an indicator of old age, whereas other studies show that the healthy elderly may have micro-

flora as diverse as that of the younger population (Bian et al., 2017; Nagpal et al., 2018).

Regardless of these complications, establishing regularities of intestinal succession in adults is of utmost

importance, since deciphering them means grasping control over certain aspects of organismal aging.
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This potential application of microflora studies has long entertained the minds of biogerontologists, but

only recently the technology has allowed to see its outlines. Historically, the first theory of intestinal aging

was developed by a Nobel Prize-winning Russian scientist Ilya Metchnikoff in the beginning of the 20th cen-

tury (Bested et al., 2013). He proposed that malicious microbes processing undigested food, especially

peptolytic bacteria, e.g., Escherichia andClostridium, promote autointoxication. Treating autointoxication

with pro- and pre-biotics, such as Lactobacillus preparations, was suggested as a way of alleviating the age-

associated decline in organismal function. Recent studies have demonstrated promising results in line with

this century-old hypothesis (Kaur et al., 2017).

Yet such findings are disorganized and need to be unified into a theory of gut community dynamics. One of

the stepping stones to this theory would be a reliable way tomeasure the passage of time in gut community

and the ability to tell two temporally different states apart—the very foundation of any dynamics theory. In

this context, DNAm aging clocks provide an image of the solution. In essence, DNAm clocks illustrate that

machine learning techniques can be used to define a new time dimension, which unlike chronological time,

very conveniently can flow in both directions. This substitute time can bemanipulated and used to tell apart

biological systems that have been unequally affected by aging, even if they have the same chronological

age. The success of this concept has inspired many other research groups to seek and interpret molecular

footprints of aging in molecular-level features.

However, this quest has produced only limited results in the gut metagenomics field, despite there

being a mass of reports on specific microbes’ involvement with aging. The complexity of microbiome

and its susceptibility to multiple variables apart from age complicate the basic task of aggregating the

available information into an intestinal aging clock. Some researchers avoid cross-study designs, which

on the one hand remove the batch effect problem, but on the other greatly reduce the power of re-

sulting models. For example, a support vector machine model trained on human metagenomic data of

52 samples to classify samples as either young or old was shown to be only 10%–15% more accurate

than the random assignment, as indicated by the area under the curve score (Lan et al., 2013). Another

study, which attempted to use a co-abundance clustering approach, demonstrated general trendlines

of microbiota composition for 367 individuals aged 0–100 years (Odamaki et al., 2016). According to

the study, specific clades of the gut community differ significantly in abundance between different

age groups. But despite the greater sample size the authors still render it impossible to put together

a quantitative theory of intestinal aging, at least without controlling other important variables, such as

diet.

In this study, we aim to deliver an accurate aging clock based on gut metagenomics. For this, we aggre-

gated more than 4,000 metagenomic profiles from people aged 18–90 years. Moreover, we have used

Deep Neural Network (DNN) as our model of choice. Its flexibility and ability to solve non-linear cases

have made DNNs extremely useful in image, text, and voice recognition as well as in a number of biomed-

ical applications (Aliper et al., 2016). Most recently, DNNs have permeated biogerontology, allowing the

construction of aging clocks of superior quality using various data types: standard clinical blood tests (Ma-

moshina et al., 2018a), facial images (Bobrov et al., 2018), physical activity (Pyrkov et al., 2018), and tran-

scriptomic data (Mamoshina et al., 2018b). As such, DNNs emerge as an optimal method to decipher

the links between aging and microflora composition.

Combining an extensive cross-study data approach with DNN training, we managed to construct a clock

that shows 5.91 years mean absolute error (MAE) when tested on an independent set of �400 taxonomic

profiles from healthy individuals. This accuracy is comparable with the existing DNAm solutions, which typi-

cally reach MAE <5 years. We further describe how the most abundant microbes (in terms of relative abun-

dance) affect age prediction, which has let us identify understudied, yet important, species as potential bio-

markers of intestinal aging.

RESULTS

Age Prediction Using Machine Learning

To examine the relationship between human gut taxonomic profiles and chronological age, we prepared a

collection of full metagenome sequences for 1,165 healthy individuals (3,663 samples total) from 10 publicly

available datasets. All individuals in our dataset were between 20 and 90 years old, with median age of 46

years (Figure S1). We applied four machine learning (ML) algorithms: Elastic Net (EN), Random Forest (RF),
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Gradient Boosting (XGB), and DNN, to this dataset. All samples obtained from the same donor were

collapsed into one averaged profile (1,165 profiles from 3,663 samples).

Both in cross-validation (CV) and independent verification DNNs produced the most accurate models

(Table 1): 10.60 years MAE with baseline being 13.75 years (Tables S1). EN failed to predict better than me-

dian age assignment in both sample-based and host-based settings. Interestingly, DNNs also produce the

most consistent models among folds, as indicated by the least standard deviations in MAE.

We then divided the samples into three age groups (20–39, 40–59, and 60–90 years) and found that the pre-

dicted age distribution generated by our DNN was significantly skewed toward the dataset median age

(50 years) (Figure 1).

Independent Dataset Validation

To validate our aging models we have prepared a set of 436 metagenomic runs (18–70 years old) from

three additional independent studies (PRJEB2054, PRJNA375935, PRJNA289586), one of which had 34

runs obtained from donors with type 1 diabetes (T1D) (PRJNA289586). Only the best models from

each ML algorithm, as established in CV, were validated in this setting. As in CV, EN failed to produce

better than baseline predictions. All other ML techniques produced results with MAE in the 7- to 8-year

range with the exception of DNN, which predicted healthy donors with 5.91 years of MAE, compared

with 9.27 years of MAE for median age assignment (Figure 2). Although most models outperformed

baselines in healthy donors, they failed to achieve that with samples from diabetic people. Since

some profiles in the verification set belong to the same donor (435 profiles for 271 donor), we also report

that using MAE for averaged per donor predictions is 6.85 years for healthy people and 18.03 for diabetic

people.

Unlike in CV, predictions obtained from individual folds are muchmore consistent for all models, which can

indicate reduced data heterogeneity due to using only three studies instead of ten.

Interpreting DNN Clock Features

We applied the accumulated local effect (ALE) method (see Methods, Figure S2) to the validation set to

compare how the DNN model treats its 100 most prevalent features (Figures 3 and S2). The overall

CV Host Independent HC Independent T1D

Neural networks R2 0.21 G 0.13 0.29 G 0.09 �0.98 G 0.17

MAE, years

r 0.52 G 0.11 0.53 G 0.05 0.14 G 0.08

Baseline MAE, years 13.03 9.27 13.65

Median age, years 50 49 33.5

N, profiles 1,165 402 34

Machine learning Elastic Net MAE, years

Random Forest MAE, years 11.32 G 4.18 7.06 G 0.49

XGBoost MAE, years 11.06 G 3.91 7.11 G 0.54

Table 1. Performance of the DNN Model on Independent Testing Sets with Healthy Individuals (HC) or Subjects with Type 1 Diabetes (T1D) and on

Cross-Validation (CV) Test

Green highlights the smallest MAE in each column, and red, MAEs that are greater than baseline median age assignment (MAE).

MAE, mean absolute error; N, number. Standard deviations for the sample-based clocks are calculated over 5-fold, standard deviations for the host-based clocks

are calculated over 10-fold. See Tables S1 and S2 for further details on predictions and Table S7 for metrics from more models.
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contribution of any single microbe is less than 2 years in bothmodels with most microbes being able to shift

the prediction age by less than 0.5 years (Table S5).

Closer inspection shows that the microbes with greater influence (Figure 4) largely consist of well-studied

participants of the gut community that may carry both beneficial (e.g., Bifidobacterium spp., Akkermansia

muciniphila, Bacteroides spp.) and negative (e.g., Escherichia coli, Campylobacter jejuni) traits. Some bac-

teria in the list, however, are rarely described in the context of human gut community (e.g., Streptococcus

equinus, Chryseobacterium gallinarum, Ornithobacterium rhinotracheale).

Interestingly, within the tested dataset most microbes weakly affect the predictor until their relative abun-

dance reaches a certain population-specific threshold. Exploring ALEs in a similar fashion for the training

set of the host-based clock, we find that the steepest shifts in prediction also occur at the right end of mi-

crobe’s abundance distribution (Tables S4 and S5).

DISCUSSION

This study describes a proof of concept aging clock based on microbiomic data. Among other ML algo-

rithms, such as EN, RF, and XGB, DNN was shown to produce the best performing age predictors. A

DNN trained onWGSmicrobiome data achieved anMAE of 10.60 years in CV and 5.91 during independent

verification, which is significantly better than the baseline (median age assignment) (Table 1). Meanwhile,

EN was shown to be unfit for the task of intestinal age prediction, since this ML method failed to produce

better than baseline models in any setting we tested.

Figure 1. Predicted and Actual Age Density Distributions for Profiles Used during CV

Despite predictions being skewed toward median age (50 years), the predictor performs better than median age

assignment (MAE = 13.75 years). ‘‘N’’ stands for the total number of samples per class. Dashed lines within violins stand for

quartile borders. See Figure S1, S8 and Table S6 for original data structure.
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Interestingly, all models assigned a higher predicted age to younger donors with T1D, which may indicate

microbiome perturbations associated with this disease. Although these perturbations may be attributed to

a specific diet andmedications, we hypothesize that diabetes might also accelerate the aging process via a

gut microbiome-associated mechanism.

Although the aging clocks’ primary purpose is to measure the passage of time in biological systems, they

can also be used to broaden our knowledge of the fundamental aging process. Using ALE, which explores

the model’s responses to minute changes in feature values, we identified gut prevalent microbes that are

associated with aging. It should be noted that, although ALE is a method of feature importance analysis

that can be applied to all ML algorithms, its results are not universal and depend both on the dataset struc-

ture and the specific model implementation.

Although keystone members of the gut community such as Bacteroides, Eubacterium, Bifidobacterium are

shown to have the greatest effect on age prediction, some unexpected opportunistic and environmental

bacteria also have an effect. For example, pathogenic Campylobacter jejuni abundance is associated

with increased predicted age in the DNN model.

We also managed to show that many bacteria display a regular, monotonic effect on age prediction (Fig-

ure S4). More specifically, we show that most microbes either increase (seno-positive) or decrease (seno-

negative) the estimated age. Meanwhile, microbes that are not consistently associated with changes in

the predicted age occur only occasionally (Figure 4). However, a microbe’s seno-status does not corre-

spond to its beneficial or harmful function in the gut. Moreover, dataset structure can alter both the

Figure 2. Microbiome Clock Predictions in CV (Top) and Independent Validation (Bottom)

Solid lines indicate linear fits for predictions derived from healthy individuals’ (HC) samples: R2CV, Host = 0.64. Dash-

dotted lines indicate linear fits for predictions derived from samples of people with type 1 diabetes (T1D). More metrics

are available in Table 1. ‘‘N’’ stands for the number of metagenomic profiles used in either CV or verification stages. Note:

independent verification panels have one outlier sample omitted (SRR6474267, actual age: 37 years, age predicted by the

microbiome aging clock: 93 years). See Table S1 for individual predictions and Figure S9 for prediction plots of an

alternative model.
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amplitude and the direction of the effect, which means that ALEs should not be viewed as a tool for precise

quantification. Nonetheless, ALEs can be used to provide a first glimpse into the prediction process of a

model and derive hypotheses regarding of the nature underlying the observed regularities.

Among the 41 most important features for the DNNmodel (Figure 4) there were nine species belonging to

the Bacteroides/Parabacteroides group. This reflects the high importance of the group for the gut commu-

nity: their vast and frequently unique polysaccharide degrading abilities provide other members of the

biota with otherwise unattainable sources of energy. However, only four of these species are seno-nega-

tive, which illustrates Bacteroides ambiguity regarding host-microbe interactions. For example, it contains

highly virulent B. fragilis, which has the capacity to produce enterotoxins and cause life-threatening bacte-

rial infections (Wexler, 2007). B. thetaiotaomicron and B. ovatus have also been associated with inflamma-

tory gut conditions, whereas B. dorei might be related to occurrence of T1D in children (Davis-Richardson

et al., 2014; Saitoh et al., 2002; Sitkin and Pokrotnieks, 2018). Meanwhile, various Bacteroides species

contribute to the development of intestinal immune system, suppress pathogen growth, and form support-

ing trophic relations with beneficial bacteria (Sitkin and Pokrotnieks, 2018; Wexler, 2007). These circum-

stances make interpreting Bacteroides involvement in the aging process practically impossible. However,

the over-representation of Bacteroides among the most important features indicates the need to more

closely study these microbes within the aging context.

Figure 3. Accumulated Local Effect (ALE) Plots for Four Selected Microbial Taxa Derived from Perturbing

Taxonomic Profiles in CV Dataset

ALE plots display how changes in a specific microbe’s relative abundance (over a span of population-specific values) shift

the model predictions toward acceleration or regression of age (in years); e.g., people with the abundance of Veillonella

parvula higher than 95% of the population are predicted to be 0.25–0.3 years younger than those who have very little of

this bacterium. See Figure S2 for ALE explanation, Figure S3 for an aggregated plot of more species, and Figure S10 for

comparison with an alternative DNN model. Specific ALE values can be found in Tables S4 and S5.
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Unlike the ambiguous Bacteroides, Akkermansia muciniphila—with the second largest effect amplitude—

is commonly considered an indicator of a healthy gut community that is involved in regulating obesity, fat,

and glucose metabolism, as well as regulating inflammation and mucin production (Naito et al., 2018).

Some propose A. muciniphila as a new type of probiotic (Zhang et al., 2019). Interestingly, centenarian

gut communities have a significantly higher abundance of A. muciniphila than other age groups, which

makes it a likely candidate for a healthy aging biomarker (Biagi et al., 2016). Its high effect amplitude

and seno-negative status, revealed by this study, indicate that it has an important role in intestinal aging.

However, our collection of taxonomic profiles is scarce in old individuals and contains only one sample with

the maximum age of 90 years. Further investigation into the role of A.muciniphila in aging should include a

larger proportion of elderly people and centenarians.

Bifidobacterium genus is represented within the top features by three seno-negative species and one seno-

positive. Generally, the seno-negative status of this genus is in line with previous findings, according to

which Bifidobacterium tend to decrease with aging. Interestingly, the only seno-positive Bifidobacterium

bifidum is mostly abundant in the elderly and centenarians. Thus, our findings further support that Bifido-

bacterium is directly involved into the aging process. Bifidobacterium probiotics convey multiple benefits

to the host such as the ability to reduce inflammation in irritable bowel syndrome and prevent anxiety via

the gut-brain axis (Arboleya et al., 2016). We hypothesize that Bifidobacterium might also possess certain

geroprotective properties and should be studied in the context of biogerontology.

Another notable cluster in the ALEs top features are six species with documented butyrate-producing abil-

ities (Eubacterium rectale, E. eligens, E. hallii, Clostridium bolteae, Roseburia hominis, Faecalibacterium

prausnitzii) (Dehoux et al., 2016). Butyrate is an essential compound that regulates the gut immune system

Figure 4. Microbial Species Ordered by the Shift in the Predicted Age They Can Cause in the DNN Model

Microbes whose increased relative abundance causes either a generally positive or negative shift are called seno-positive

or seno-negative, respectively. Microbes that do not have a monotone effect on age prediction are called mixed. Only

microbes whose effect amplitude is > 0.1 years are displayed (see Tables S4 and S5 and Figure S2).
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and colon cancer apoptosis, as well as provides nutrition to colonocytes. It also affects gut-brain axis and

possibly autism development. Meanwhile, a decrease in butyrate producers is characteristic of various dys-

biotic states (Pequegnat et al., 2013; Rivière et al., 2016). Our results indicate that butyrate producers, akin

toA.muciniphila or Bifidobacterium, can be an aging-related group and affect, or be affected by, the aging

processes. Existing data show that butyrate producers do not consistently decrease in abundance with age,

as we would expect from a collection of seno-negative species (Biagi et al., 2010). Although this may be

attributed to sample differences, we would like to emphasize that a bacterium’s seno-status should always

be discussed while keeping in mind that it is determined by the performance of a DNN model that may

depend on nonlinear patterns.

The presence of various bacteria that are poorly described within the human gut community context,

namely, Shigella sp. PAMC 28760, Gordonibacter urolithinfaciens, Streptococcus salivarius,Ornithobacte-

rium rhinotracheale, Coriobacteriaceae bacterium 68-1-3, Streptococcus parasanguinis, Acidaminococcus

fermentans, Streptococcus equinus, Chryseobacterium gallinarum, Lactobacillus amylophilus, Clostridium

saccharolyticum, among the above described features could be attributed to batch effects. However, there

is a chance that these understudied taxa can still convey useful information regarding intestinal aging. To

decide between these alternatives, the ALEs should be computed on an independent dataset of magni-

tude comparable with its training set while accounting for various meta variables.

The present finding shows that microbiome profiles can be used to predict the age of healthy individuals

with relatively good accuracy. Moreover, patients with T1D exhibit age acceleration according to themicro-

biome clock. Further validation of this aging biomarker can lead to a valuable addition to the already ex-

isting aging clocks, e.g., epigenetic, blood biochemistry, and cell count clocks.

Hypothetical applications of microbiomic clocks may include ‘‘intestinal rejuvenation’’ with dietary inter-

ventions. This would require the ability to model microflora composition changes in response to such in-

terventions. Previous studies have shown that microbiome can be manipulated by diets to a certain degree

(Cotillard et al., 2013). But provided that microbiome itself is a major factor defining the outcome of dietary

interventions, creating such a model demands a deeper understanding of gut community dynamics and

metabolism before intestinal rejuvenation becomes a possibility (Zeevi et al., 2015).

Limitations of the Study

This study describes an early attempt to build an aging clock using microbiomic data from adult donors

obtained elsewhere. Child microbiota profiles were not used during training, since child microbiota is ex-

pected to have significantly different dynamics and balancing the age distribution using child microbiota

studies is particularly difficult. We tried predicting child intestinal age using the reported models, but they

failed to perform better than baseline in this setting.

It should be noted that no normalization techniques were employed after obtaining the taxonomic profiles.

Future work should be directed toward profile normalization to make the performance of such models

more consistent across various datasets. However, considering how diverse human gut community is,

the development of such normalization techniques poses a serious challenge in itself.

Further development of this work may include constructing an aging clock using genes or functional-level

features. However, this direction requires experimentation with feature reduction methods, since the

amount of genetic information contained within gut communities is overwhelming for the available sample

sizes. The detected number of microbial species in this project already was too big for efficient training, and

filtering out the minor species was used to bring down the number of dimensions. Such methods used in

the genetic setting may cause multiple artifacts, and more sophisticated approaches are suggested. One

of the promising approaches relies on Co-Abundance Group (CAG) calculation, as described in Minot and

Willis (2019).

Another valuable extension to this project would be observing numerous pathologies through the lens of

microbiome aging. Multiple biological processes are considered major drivers of aging, but gut microbio-

me’s involvement in this process is still vaguely understood. Approaches such as upgrading the DNN ar-

chitecture to have two output nodes (separate for age and disease) or predicting the health status using

the latent representation obtained from an aging clock DNN may prove to be useful for this task.
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Resource Availability

Lead Contact

Further information and requests should be directed to and will be fulfilled by the Lead Contact Alex

Zhavoronkov (alex@insilico.com).

Data and Code Availability

All data used in this article come from publicly available sources. Metagenomic studies’ identifiers in ENA:

ERP002061, ERP008729, SRP002163, ERP004605, ERP003612, ERP002469, ERP019502, SRP008047,

ERP009422, ERP005534, PRJEB2054, PRJNA375935, PRJNA289586.Only healthy individuals with age meta-

data available have been included in this study. These studies contain healthy individuals from Austria,

China, Denmark, France, Germany, Kazakhstan, Spain, Sweden, and USA aged 20–90 years. For more de-

tails on data selection and preparation see Supplemental Information. ENA identifiers of the runs used are

specified in Tables S1, S2, S3, S4, and S5.

The models are available at aging.ai in the Floro’clock section.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101199.
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Supplementary Materials 1 

 2 

Tables S1 to S5 are in a separate MS  Excel Files 3 

Transparent Methods 4 

Data description 5 

To construct the reported model, we used profiles obtained from 1165 donors and 13 6 

studies (Fig. S1). All these studies are deposited to ENA and contain Illumina-generated WGS 7 

fresh-frozen stool runs (TableS6). Only healthy (or control groups in case-control settings) were 8 

used for training, and in case multiple profiles were available for the same donor, they were 9 

collapsed into one average profile. 10 

The region of origin for 63% of donors is Europe, for the other 28% — Asia, and for the 11 

rest 8%  — US. 53% of donors are female, 47% are male. BMI is known for 1135 donors, of 12 

them 561 are overweight (BMI>25 kg/m
2
), 102 are underweight (BMI<20 kg/m

2
), 271 are obese 13 

(BMI>30 kg/m
2
) the rest (421) are normalweight (BMI ∈20-25 kg/m

2
). 14 

To define the CV cohorts we limited our selection of studies to only those performed 15 

with Illumina platforms with the exclusion of Illumina MiSeq. Then we performed tSNE analysis 16 

to locate the clouds of studies we could group together (learning rate = 200, perplexity = 30, 17 

random seed = 0, profiles processed with sklearn StandardScaler prior to tSNE, tSNE performed 18 

with sklearn‘s package manifold) (Fig. S6). After tSNE we excluded Illumina HiSeq 2500 19 

platform, which unfortunately included ERP015317 (TwinsUK) study with 3288 runs, since all 20 

its samples formed a detached cluster on the tSNE plot (Fig. S7, right). 21 



Files with <100‘000 reads after QC were discarded, and ultimately we used 3663 files for 1 

1165 donors, where the median file contained 4.6mln reads (Fig. S8).  2 

Quality control details 3 

k-mer entropy filtering was carried out with k-mer length of 4 nt as described in 4 

(Plaza Onate et al., 2015). To calculate normalized Shannon entropy ―entropy‖ function 5 

from ―scipy.stats‖ package was used. H=98% was used as the cutoof value. DSK was 6 

used to count k-mers (Rizk et al., 2013). 7 

Quality trimming and filtering were carried out with relaxed settings to increase 8 

the amount of information available to the classifier and ultimately — DNN. BBDuk 9 

quality trimming was carried out on both ends to eliminate all nucleotides with Phred 10 

score < 4 (60% correct detection), subsequently all trimmed reads with average Phred 11 

score <8 (84% correct detection) were removed. Additionally, adapters were checked and 12 

removed using BBMerge method based on pair overlap detection. Host filtering was 13 

based on Bowtie2 default aligning with hg19 and only reads with both ends unmapped 14 

were used (Bushnell, 2016; Langmead and Salzberg, 2012). 15 

Only runs with >1e+5 reads were used in subsequent work. The overall number of 16 

discarded reads typically did not exceed 10%. 17 

Relative abundance calculation 18 

All acquired sequencing files have been quality trimmed and quality filtered with BBTools 19 

(Bushnell, 2016). Human sequences have been detected using hg19 genome index. Additionally, 20 

specimen dilution test has been carried out as specified in
 
(Plaza Onate et al., 2015). Resulting 21 

https://jgi.doe.gov/data-and-tools/bbtools/


reads have been analyzed with Centrifuge and mapped against the collection of bacterial and 1 

archaeal genomes (Kim et al., 2016). 2 

In certain cases, abundance tables have been modified to exclude unreliably detected 3 

microbes (relative abundance < 1e-5) and minor microbial species (<1.3e-3 prevalence). No 4 

sample has lost more than 5% of its abundance. After all the modifications, individual taxonomic 5 

profiles have been renormalized to add up to one. 6 

DNN training 7 

All deep neural networks (DNNs) were implemented using the Python 3.6 Keras library with 8 

Tensorflow backend. DNNs were trained using a full list of species-level features, which 9 

includes 1,673 microbial taxa. Optimal architecture was established with grid search.  10 

Two regressors were built: one using taxonomic profiles derived from individual samples 11 

(sample-based model) and a second one using taxonomic profiles averaged among all the 12 

samples belonging to the same host (host-based model). The former one was trained with five-13 

fold CV, while the latter one — with ten-fold CV. Folds were stratified to maintain the 14 

proportion of studies observed in the complete data set. After completing grid search for various 15 

model configurations, the best performing model was selected based on MAE.  16 

It contains three hidden layers with 512 nodes in each, with PReLU activation function, 17 

Adam optimizer, dropout fraction 0.5 at each layer, and 0.001 learning rate. The host-based 18 

model has similar settings except for having 1024 nodes in each hidden layer (Fig. S5). 19 

Machine Learning Models 20 

All other machine learning models were implemented using the following Python 3.6 21 

libraries: sklearn.linear_model.ElasticNet, sklearn.ensemble. RandomForestRegressor, xgboost. 22 

https://ccb.jhu.edu/software/centrifuge/
https://keras.io/
https://www.tensorflow.org/install/


All models were trained in a five-fold CV setting with folds stratified to keep the proportion of 1 

studies similar to that in the whole data set. 2 

The best performing models in CV have the following parameters: 3 

 EN sample-based: {‗alpha‘ : 0.1, ‗l1_ratio‘ : 1.0}; 4 

 EN host-based: {‗alpha‘ : 0.1, ‗l1_ratio‘ : 1.0}; 5 

 RF sample-based: {‗max_features‘ : ‗auto‘, ‗min_samples_leaf‘ : 1, 6 

‗n_estimators‘ : 700}; 7 

 RF host-based: {‗max_features‘ : ‗auto‘, ‗min_samples_leaf‘ : 1, 8 

‗n_estimators‘ : 100}; 9 

 XGB sample-based: { ‗alpha‘ : 0.5, ‗eta‘ : 0.1. ‗eval_metric‘ : ‗mae‘, 10 

‗gamma‘ : 1.0, ‗lambda‘ : 0.5, ‗max_delta_step‘ : 0, ‗max_depth‘ : 6}; 11 

 XGB host-based: { ‗alpha‘ : 1.0, ‗eta‘ : 0.1. ‗eval_metric‘ : ‗mae‘, 12 

‗gamma‘ : 1.0, ‗lambda‘ : 1.0, ‗max_delta_step‘ : 0, ‗max_depth‘ : 6}; 13 

 14 

Accumulated local effects 15 

The features deemed most important have been further assessed with the Accumulated Local 16 

Effects (ALE) method to determine the change in age prediction upon minor changes in a 17 

microbial species abundance. ALE has been implemented following the algorithm described 18 

below. For each of the selected species, a quantile value table (with 5% steps) has been 19 

composed. Local Effects (LE) for each quantile bin have been calculated by measuring the 20 

average change in prediction upon substituting observed abundance of a feature, with right and 21 

left bin border values. ALEs for each quantile are calculated by adding up all the previous LEs 22 



and centering the result to make the average effect of each taxon zero (Fig. S2). All illustrations 1 

contain ALEs only within 5-95% range of a feature to remove outliers. 2 

Sample-based model 3 

We explored whether a model trained on the full set of 3663 samples, without 4 

paying attention to their donor of origin. This way the training set was significantly 5 

expanded, although sample information was leaking between the training and testing sets 6 

of each fold. Our hypothesis was that oversampling in this fashion may prove beneficial 7 

during independent verification. 8 

As expected, MAE for this sample-based model was lower than for the host-9 

based, which is reported in the main text (Table S7). Importantly, superior results 10 

obtained for the sample-based model (MAE = 3.94 years in CV) did not hold in 11 

independent verification, where the best performing sample-based DNN showed MAE 12 

similar to other ML methods — 7.28 years (Fig. S9). 13 

Predicted intestinal age for sample-based DNN positively correlated (r = 0.23) 14 

with BMI, which is in line with existing data on connections between BMI and biological 15 

age (Yoo et al., 2017). However, this correlation was lower than that between donor BMI 16 

and observed age: r = 0.3. 17 

We also carried out ALE-analysis for the sample-based DNN (Fig. S3, S10), and 18 

found that ALE vectors were in many cases significantly correlated across both models 19 

(r= 0.49), as well as their total effect amplitudes (r = 0.73). These results from 20 

independent verification indicate that the method of oversampling by using multiple 21 



taxonomic profiles from the same donor as independent may produce biologically 1 

relevant models despite possible overfitting issues. 2 

Linear Mixed Effects 3 

We used R‘s lme4 package to build a mixed-effects model for predicted age both 4 

in CV (Age ~ Age_DNN +  Sex  + 1|Study) and in verification (Age ~ Age_DNN +  Sex 5 

+ Diagnosis  + 1|Study). In both cases the slope coefficient is positive within three 6 

standard deviations: 0.10±0.03 and 0.58±0.05, respectively. Study random effect std is 7 

13.48 and 3.28, respectively. 8 

16S model 9 

We tried to use 16S data as our starting point, since they are more lightweight and are 10 

easier to analyze than WGS-data. We used a QIIME2 based pipeline comprising DADA2 and 11 

RDP-classifier to obtain genus-level features (Bolyen et al., 2019; Callahan et al., 2016; Wang et 12 

al., 2007). We used data from the American Gut Project (AGP): a total of 300 most prevalent 13 

geni in 8522 samples. On average only 0.46% of the community did not belong to any defined 14 

genus and were grouped into a separate feature. AGP data was additionally bloom-filtered, as 15 

suggested by its creators  (Amir et al., 2017). Sex and BMI were added as predictive features as 16 

well.  17 

The best performing model obtained with deep learning had MAE=10.8 years in 18 

verification with baseline being 12.45 years for the verification set. However, we have been 19 

unable to reproduce this in any other 16S dataset, probably due to the specifics of AGP and the 20 

suggested deblooming preprocessing. 21 



 1 

 2 

Figure S1. Related to Figure1. Age distribution in training data for sample-based (A) 3 

and host-based (B) aging clocks. 4 



 1 

Figure S2. Related to Figures 3,4 Accumulated Local Effects (ALE) method used in 2 

this study to assess specific taxa influence on age prediction. Changes in predicted age upon 3 

substituting observed taxon abundance with quantile values are averaged and recorded for every 4 

quantile bin. Then, they are summed to produce ALEs, which are additionally centered for 5 

convenience. 6 



 1 

Figure S3. Related to Figures 3,4.  Amplitude of effects of 143 most prevalent bacteria 2 

(prevalence > 25%) on aging models. In the host-based clock changes in abundance of only 3 3 

bacteria can shift the predictions by >1 year on average, while in the sample-based model there 4 

are 8 such species. Related to Figure 4 5 



 1 

Figure S4. Related to Figure 3. Overlayed ALE plots of seno-positive (blue hues) and 2 

seno-negative (red hues) microbes. In most people, minor perturbations in a specific taxon‘s 3 

abundance only weakly affect the predicted age, as indicated by most ALE plots steeply 4 

increasing or decreasing once a microbe‘s abundance reaches values higher than in a 60-80% of 5 

the population. 6 

Normalized ALE [Y = ALE(X) – ALEmin / ALEmax-ALEmin] was obtained for 108 highly 7 

prevalent microbes in 1,165 hosts. 8 



 1 

Figure S5. Related to "Transparent Methods: DNN training", Figures 1, 2. Neural 2 

network configuration for the best performing DNN sample-based regressor. The regressor takes 3 

in a full species level taxonomic profile and estimates the donor‘s exact chronological age. Host-4 

based DNN regressor has a similar architecture with 1024 nodes in each layer. 5 



 1 

Figure S6. Related to "Transparent Methods: Data Description", Figures 1, 2. tSNE 2 

scatter plot results of samples from the CV cohort (left) and all samples considered for training 3 

(Right) colored by inclusion in this study. Red samples were removed from the study. 4 

 5 

Figure S7. Related to "Transparent Methods: Data Description", Figures 1, 2. tSNE 6 

scatter plot results of samples considered for this study colored by the study of origin. 7 

ERP015317 was removed from this work, despite its great size and favorable age distribution. 8 



 1 

Figure S8. Related to "Transparent Methods: Quality Control Details", Figures1, 2. 2 

Read number distribution in the 3,663 files used in this work in linear scale (left, 1 bin = 1), and 3 

log scale (right, 1 bin = 0.1). 4 



 1 

Figure S9. Related to Figure 2. Sample-based (left column) and host-based (right 2 

column) clock predictions in CV (top row) and independent validation (bottom row). Solid lines 3 

indicate linear fits for predictions derived from healthy individual (HC) samples: R
2
CV,Sample = 4 

0.97, R
2

CV,Host = 0.64. Dash-dotted lines indicate linear fits for predictions derived from samples 5 

of people with type 1 diabetes (T1D). ―N‖ stands for the number of metagenomic profiles used in 6 

either CV or verification stages. 7 



 1 

Figure S10. Related to Figure 3. Accumulated local effect (ALE) plots for 4 selected 2 

microbial taxa derived from perturbing taxonomic profiles in CV data set. ALE plots display 3 

how changes in a specific microbe‘s abundance (over a span of population-specific values) shift 4 

the model predictions towards acceleration or regression of age (in years). E.g. people with the 5 

abundance of Veillonella parvula higher than 95% of the population are predicted to be 0.25-0.3 6 

years younger than those who have very little of this bacterium. 7 



 1 

Figure S11. Related to Figures 1, 2. Box  plot of errors produced from the reported 2 

model predictions. Last four boxes belong to the verification studies. The number above the 3 

boxes marks number of samples in the study. 4 
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 1 

Platform N samples N studies 

Illumina HiSeq 2000 

  

650 8 

Illumina Genome Analyzer II 320 3 

Illumina Genome Analyzer IIx 195 2 

Table S6. Related to Figures 1, 2. — platforms used in CV cohort. 2 

  3 
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CV 
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CV Host 
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HC 
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Independe
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T1D 

N
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N
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R2 
0.81±0.0

2 
0.21±0.1

3 
0.25±0.10 0.29±0.09 -0.92±0.13 -0.98±0.17 

MAE, 
yrs 

3.94±0.2
6 

10.60±1.
12 

7.28±0.48 5.91±0.40 17.61±0.54 18.02±0.82 

R 
0.90±0.0

1 
0.52±0.1

1 
0.49±0.04 0.53±0.05 0.08±0.06 0.14±0.08 

Baselin
e MAE, 

yrs 
13.68 13.03 9.27 9.27 13.65 13.65 

Median 
age, 
yrs 

46 50 49 49 33.5 33.5 

N, 
profiles 

3663 1165 402 402 34 34 

M
a

c
h

in
e

 L
e
a

rn
in

g
 

Elastic 
Net 

MAE, 
yrs 

13.94±2.
65 

13.75±2.
92 

10.25±0.56 9.625±0.34 16.12±0.60 16.95±0.63 

Rando
m 

Forest 
MAE, 
yrs 

11.18±4.
21 

11.32±4.
18 

7.25±0.54 7.06±0.49 18.44±1.00 18.51±1.04 

XGBoo
st MAE, 

yrs 

11.03±3.
95 

11.06±3.
91 

7.78±0.50 7.11±0.54 18.11±1.37 18.40±1.47 

Table S7. Related to Table 1 — Performance of host-based and sample-based models on 2 

independent testing sets for healthy individuals (HC), subjects with Type 1 Diabetes (T1D) 3 

and on cross-validation (CV) test. Green highlights the smallest MAE in each column, and 4 

red — MAEs that are greater than baseline MAE. 5 
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