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Abstract

Knowledge of contagion among economies is a relevant issue in economics. The canonical

model of contagion is an alternative in this case. Given the existence of endogenous vari-

ables in the model, instrumental variables can be used to decrease the bias of the OLS esti-

mator. In the presence of heteroskedastic disturbances this paper proposes the use of

conditional volatilities as instruments. Simulation is used to show that the homoscedastic

and heteroskedastic estimators which use them as instruments have small bias. These esti-

mators are preferable in comparison with the OLS estimator and their asymptotic distribution

can be used to construct confidence intervals.

Introduction

The spread of a crisis from one economy to other economies is called contagion. This issue has

been addressed recently in several studies due to its great importance to decisions and resource

allocations for risk management. Various definitions of contagion have been proposed but no

definition has been universally accepted.

[1] proposed the canonical model of contagion, which does not require a priori knowledge

of the periods of crisis. The model is able to identify them, and also gives a direct interpretation

of contagion. However, the canonical model suffers from the endogeneity problem of the

regressor variables, which leads to bias of the ordinary least squares (OLS) estimates of the

parameters that indicate contagion. To solve this problem [1] proposed to use valid instrumen-

tal variables (IVs) from economic theory. In their application, they considered the conditional

variance of the error term as constant. This is generally true when quarterly data are used, as in

[1] and [2], but this generally does not hold in daily financial data. [3] applied the canonical

model to daily data and also considered the GARCH model for the error term, but, he consid-

ered the same instruments as [1] and [2]. There are many works in the literature that use the

heteroskedasticity of the error as instruments, but they consider the contemporaneous covari-

ance matrix of the error terms. See, for instance, [4] and [5] for the general case, and [6] for

the canonical model of contagion. [7] considered the canonical model of contagion in the pres-

ence of conditional heteroskedastic errors. They showed that the conditional variance is a

valid instrumental variable and applied the estimation method to model the contagion among
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some Asian countries. However, they did not show the sample properties of the proposed

instruments and the present paper tries to fill this gap. The instruments proposed here have

some similarity with the approach suggested by [5]. There are also papers related to the use of

heteroskedasticity in simultaneous equation system dealing with the related problem of identi-

fication (see, for instance, [8] and [9]).

[10] noted that in the presence of weak instruments, the asymptotic approximations are not

valid even for large samples. [11] proposed a test, which was also studied by [12], to identify

weak instruments with the the null hypothesis that the instruments are weak. Other tests to

detect weak instruments have been proposed, such as [13]’s test, which was also studied by

[14]. The properties of the limited information maximum likelihood estimator (LIML), in the

context of many instruments, were studied by [15]. [16] investigated two-stage and LIML IV

estimators, whereas we have only one endogenous variable. Another study on the same subject

was carried out by [17]. The estimator considered in this work is two-stage when the variance-

covariance matrix of errors is considered homoscedastic and heteroskedastic.

The main contributions of this paper are: a) to show that the estimated volatility of the

error terms are valid instruments and, more importantly, that the estimators, which consider

the volatilities to be instruments, have small bias; and b) to show that the confidence intervals

based on the asymptotic estimator distribution have almost the right coverage. The paper is

organized as follows. The next section presents the canonical model of contagion and the

problem of endogeneity of the explanatory variables. Then, we present a brief review of the IV

theory, with emphasis on estimation and tests to detect weak instruments. Following we pro-

pose to use the volatility as instruments and uses simulation to show that the proposed vari-

ables are valid instruments. Next, we present three possible estimation methods and uses

simulations to study the properties of these estimators. It shows that the proposed estimators,

based on the volatilities as instruments, are able to estimate the contagion parameter. Finally,

we concludes.

Canonical Model of Contagion

Standard economic theory relates the performance of a given economy to its macro and

microeconomics foundations. Thus, an econometric model must take into account the macro

and microeconomic structures. Denoting yit as the variable that measures the performance of

the i-th country, i = 1, . . ., N, in the period t (t = 1, . . ., n), the performance is explained by eco-

nomic variables which are common to all economies, called observed common factors,

denoted by the s × 1 vector xt, and economic variables specific to each economy, called

observed specific factors, denoted by the ki × 1 vectors xit, : i = 1, . . ., N. The performance indi-

cator variables, yit, can be, for instance, stock market indexes, interest rates of public securities

and exchange rates, among others that are used in literature. Examples of common variable

are commodity prices, and of specific factors are inflation indexes and export levels. The

canonical model of contagion, based on [1], and further examined by [2], is given by

yit ¼ d
T
i xt þ aT

i xit þ biI
XN

j¼1;j6¼i

Ið� yjt � cjÞ

 !

þ uit; ð1Þ

where δi is the s × 1 vector of the unknown parameter that determines the influence of com-

mon factors in the country i, αi is the ki × 1 vector of unknown parameters that determines the

influence of specific factors in country i, and uit is the mean zero error term of country i in

period t. Denoting u.t = (u1t, . . ., uNt)T, we have that u.t is a random variable with zero condi-

tional mean (E(u.t|Ot) = 0) and conditional covariance matrix Ot (Var ðu:tjFt� 1Þ ¼ Ot), where

Ft� 1 is the information available up to time t − 1. Ot is an N ×N matrix with element [σijt],
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which follows a multivariate volatility model and cj j = 1, . . ., N, are threshold values for the cri-

sis defined in an ad hoc way.

Contagion is the dependence in moments of crisis among countries that cannot be

explained by macroeconomic fundamentals. Therefore, when economy j is in crisis, the other

economies will change their states; for example, the equilibrium performance of countries i 6¼ j
will change their levels. We define an economy as being in crisis when yjt is smaller than a cer-

tain lower boundary, (−cj). This will define an indicator variable, I(−yjt − cj), which is equal to

1 when economy j is in crisis, and 0 otherwise. I(x) is the indicator function, which is equal to

1 if x> 0, and 0 otherwise.

The use of ordinary or weighted least squares techniques to estimate the model is not

appropriate because as pointed out by [1], the estimators of βi are inconsistent due to the endo-

geneity of the indicator variable, I
PN

j¼1;j6¼i Ið� yjt � cjÞ
� �

; which is correlated with the error uit
by construction.

Estimation with Instrumental Variables

Introduction

Consider the general single-equation linear model, where for simplicity we have dropped the

equation subscript i:

y ¼ Xaþ Zbþ u; ð2Þ

where y 2 Rn; X 2 Rn�k and Z 2 Rn�q are the observed variables; a 2 Rk and b 2 Rq are

unknown parameters; and u is a vector of random unobservable errors with mean zero and

with E(uuT) = O. X is the matrix of exogenous variables, i.e., uncorrelated with the error term

u, while Z is the matrix of endogenous variables, i.e., correlated with the error term u. In the

canonical model of contagion Eq (1), for each equation we have that X is given by the variables

xt and xit and Z by the indicator function.

Denote B = [X : Z] as the regressor matrix of size n × (k + q) and η = vec([α : β]) as the vector

of unknown parameters of size (k + q) × 1. The operator vec transforms a matrix a × b into a

vector ab × 1 by piling the columns of the matrix. Then, Eq (2) can be written as

y ¼ BZþ u: ð3Þ

Thus, we can work either with Eq (2) or Eq (3). We consider there is no perfect collinearity

among the regressor variables, i.e., rank of B is (k + q).

Consider the linear model given by Eq (3), O = σ2 In with σ2 <1 with the assumptions:

[A1] 1

n ðB
TBÞ!P A finite and positive definite; [A2] 1

n ðB
TuÞ!P 0; and [A3] n� 1=2BTu!D Nð0; s2AÞ.

Then, the OLS estimator, given by Ẑols ¼ ðBTBÞ� 1BTy, is asymptotically normal, i.e.,

n1=2ðẐols � ZÞ!D Nð0; s2A� 1Þ: See Section 4.2.2 of [18].

If we substitute σ2 and A by consistent estimators, the asymptotic distribution is still valid.

In general, we take ŝ2 ¼ ðn � k � qÞ� 1
ðy � BẐolsÞ

T
ðy � BẐolsÞ and Â ¼ 1

n B
TB.

When assumption [A2] does not hold, we have 1

n B
Tu!P Q with Q 6¼ 0. Thus,

plimn!1Ẑ ols ¼ Zþ A� 1Q, where the term A−1Q is responsible for the inconsistency of Ẑols. This

problem can be tackled by IV methods.

Estimators based on instruments

Assume there is a matrix W 2 Rn�p, p� q, where its columns are: (a) asymptotically not corre-

lated with the error term u, and (b) correlated with Z, i.e., with the columns of Z. Then, the
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columns of W are instruments. Because the columns of the matrix X are uncorrelated with the

error term, they are instruments. Therefore, P = [X : W] is an n × (k + p) matrix of instru-

ments. However, to avoid confusion we only refer to the variables that are columns of the

matrix W as instruments, unless explicitly stated otherwise.

Homoscedastic IV estimator. The homoscedastic estimator of η is obtained by minimiz-

ing (y − Bη)T PP(y − Bη), where PP = P(PT P)−1 PT. PP is the orthogonal projection matrix

to the plane generated by the columns of P. This brings us to the following estimator:

Ẑgiv ¼ ðBTPPBÞ
� 1BTPPy: ð4Þ

See [18] (Eq 5.22) or [19] (Eq 8.29).

Consider the linear models given by Eq (3) with O = σ2In with σ2 <1 and consider the

assumptions: [B1]: 1

n ðP
TPÞ!P C finite and positive defined; [B2]: 1

n ðB
TPÞ!P D matrix of rank

(k + q); [B3] 1

n ðP
TuÞ!P 0; and [B4] n� 1=2ðPTuÞ!D Nð0; s2Þ. Then Ẑgiv is asymptotically normal,

i.e.,

n1=2ðẐgiv � ZÞ� !
D Nð0; s2ðDC� 1DTÞ

� 1
Þ:

When we do not know σ2, D, and C, we estimate Var ðẐgivÞ by ŝ2ðBTPPBÞ
� 1

, which is a con-

sistent estimator if we use a consistent estimator for σ2. One consistent estimator is

ŝ2 ¼ 1

n ðy � BẐgivÞ
T
ðy � BẐgivÞ. See [18] (Theorem 5.2) or [19] (pp. 322–323). The estimate Ẑgiv

can be evaluated by the two-stage method (2SM) ([19], pp. 323–324).

Consider now the heteroskedastic linear model, i.e., the linear model given by Eq (3), with

error term with known variance-covariance matrix O. Then under assumptions [B1] − [B3]

and substituting [B4] by [B4�] n� 1=2PTu!D Nð0; EÞ, where 1

n PTOP!P E, Ẑgiv is asymptotically

normal, i.e.,

n1=2ðẐgiv � ZÞ� !
D Nð0; ðDC� 1DTÞ

� 1DC� 1EC� 1DTðDC� 1DTÞ
� 1
Þ:

The estimate of the variance estimator is given by

dVar ðẐgivÞ ¼ ðBTPPBÞ
� 1BTPPÔ PPBðB

TPPBÞ
� 1
; ð5Þ

which is called robust estimation of the estimator variance. See [18] (Section 5.2.5) or [19]

(p. 335).

Heteroskedastic IV estimator. The heteroskedastic IV estimator is the three-stage least

squares estimator presented in Section 8.3.4 [18]. When the correlation matrix O is known, the

heteroskedasticity IV estimator is obtained by minimizing (y − Bη)T P(POP)−1 PT(y − Bη),

which gives

Ẑgiv2 ¼ ðBTPðPTOPÞ
� 1

PTBÞ� 1BTPðPTOPÞ
� 1

PTy:

When the correlation matrix O is unknown, it is substituted by a consistent estimator. In

our problem, considering that the error terms have small contemporaneous correlation, we

estimate the matrix O by a diagonal matrix, with elements of the diagonal estimated by the

square of the residuals of the 2SLS estimates, i.e., by û2
i ¼

1

n ðyi � Bi:Ẑ
vigÞ

T
ðyi � Bi:Ẑ

vigÞ, where Bi.
is the i-th line of B.

Consider the linear model given by Eq (3), with variance-covariance matrix O 6¼ σ2In
known and consider the assumptions: [C1] 1

n PTOP!P E is finite and positively defined matrix;

[C2] 1

n B
TP!P D has rank (k + q); [C3] 1

n PTu!P 0; and [C4] n� 1=2PTu!D Nð0; EÞ. Then Ẑgiv2 is
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asymptotically normal, i.e.,

n1=2ðẐgiv2 � ZÞ� !D Nð0; ðDE� 1DTÞ
� 1
Þ:

The variance of the estimator Ẑgiv2 is estimated by ðBTPðPTÔPÞ
� 1

PTBÞ� 1
.

In the heteroskedastic model, Ẑgiv and Ẑgiv2 are both consistent and asymptotically normal.

However, Ẑgiv2 is more efficient than Ẑgiv, in the sense that VarðẐgivÞ � VarðẐgiv2Þ is a positive

semi-definite matrix.

Test of weak instrumental variables

[12] developed a test statistic for the null hypothesis that the instruments are weak, based on

the Cragg and Donald [11] statistic. The test of Stock and Yogo [12] classifies whether an

instrument is weak according to the relative bias between the OLS estimator and the estimators

based on the instruments. In this test, the null hypothesis that the instruments are weak is

equivalent to saying that the maximum relative bias is larger than a fixed arbitrary value r. [12]

presented a table of critical values for some values of q, p, r, and level of significance. When

q = 1, the null hypothesis can be written as o H0 :
jEðb̂giv � bÞj

jEðb̂ols� bÞj
� r. In this table, for example, when

q = 1, p = 3, r = 0.10 and at 5% level of significance we reject the null hypothesis when the

Cragg-Donald statistic is larger than 13.91.

Proposed Instrumental Variables

In the analysis of contagion, the variable generally used to measure the performance during a

period is the return, during the same period, of a country’s stock market indicator; for exam-

ple, the return of the S&P 500 index for the USA, or the Nikkei for Japan and the FTSE for the

UK. A stylized fact of these return series, the yit in the model, is that their conditional volatility

changes over time. Hereafter, we call the conditional volatility just volatility. In the model, we

have that the indicator variable, I(−yit − ci), which indicates crisis, will be equal to one with

larger probability in a period of high conditional volatility than in a period of low volatility.

Thus, σjt, the volatility for countries j = 1, . . ., N, j 6¼ i can be used as instruments in the estima-

tion and testing of the contagion parameter βi.
The following proposition shows that the volatility of uit is an instrument for the canonical

model of contagion.

Proposition 1: In the canonical model of contagion given by Eq (1), for any i and j, we have:

(a) I
PN

j¼1;j6¼i Ið� yjt � cjÞ
� �

is correlated with uit;

(b) σjt is not correlated with uit;

(c) σit is correlated with I
PN

j¼1;j6¼i Ið� yjt � cjÞ
� �

.

The proof that I(−yjt − cj) is correlated with uit and σit can be found in [7] for N = 2 and

time varying threshold values given by cj σjt, where σjt is the (conditional) volatility of ujt, but

the proposition is also valid for N> 2 constant threshold values. The proposition states that

the indicator function is an endogenous variable, and that the conditional volatility of country

i (σit) is an instruments and can be used to estimate βi. Similarly, we can prove that ρijt, the cor-

relation between the errors is also a valid instruments.

Estimation of the Heteroskedastic Canonical Contagion Model
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Simulation of Proposition 1

The magnitude of the correlations between the error terms and the endogenous variables indi-

cates the influence on the bias, while the correlations between the instruments and the endoge-

nous variables indicates the strength of the instruments. However, it is not easy to find

analytical expressions for items (a) and (c) in Proposition 1 to evaluate the correlations. Fortu-

nately, the correlations can be easily estimated by a Monte Carlo simulation. By simulating a

large sample size we can estimate CorrðI
PN

j¼1;j6¼i Ið� yjt � cjÞ
� �

; uitÞ and

CorrðI
PN

j¼1;j6¼i Ið� yjt � cjÞ
� �

; sitÞ for i, j = 1, . . ., N almost without error.

In the simulation presented in this paper, the error follows a DCC-GARCH (1, 1) model for

the regression error and threshold values cj = 1.64, j = 1, . . ., N. Thus, the simulated data gener-

ating model used in this paper is:

yit ¼ di þ aiyi;t� 1 þ biI
XN

j¼1;j6¼i

Ið� yjt � cjÞ

 !

þ uit; ð6Þ

u:t ¼ H1=2
t �t; �t � iidð0; INÞ ð7Þ

Ht ¼ DtPtDt; Dt ¼ diagðsitÞ ð8Þ

s2
it ¼ ai0 þ ai1u2

i;t� 1
þ ai2s

2
i;t� 1 ð9Þ

Pt ¼ ðQt � INÞ
� 1=2QtðQt � INÞ

� 1=2 ð10Þ

Qt ¼ ð1 � y1 � y2ÞQ � y1�t� 1�
T
t� 1
þ y2Qt� 1; ð11Þ

where Q is the sample covariance of �t; ai0, ai1, ai2, θ1, θ2 are all positive such that ai1 + ai2 < 1

8i = 1. . ., N and θ1 + θ2 < 1; and� is the Hadamard product. The Hadamard product is the

product element by element of two matrices of the same order.

It is not easy to find analytical expressions for items (a) and (c) in Proposition 1 to evaluate

the correlations. Fortunately, this can also be easily done by a Monte Carlo simulation. By sim-

ulating a large sample size, we can estimate CorrðI
PN

j¼1;j6¼i Ið� yjt � cjÞ
� �

; uitÞ and

CorrðI
PN

j¼1;j6¼i Ið� yjt � cjÞ
� �

; sitÞ for i, j = 1, . . ., N almost without error.

Four scenarios were used in the simulation, with N = 3. The values are given in Table 1.

In all of the scenarios given in Table 1 the elements of the matrix Q are: qii = 1, q12 = 0.5376,

q13 = 0.5467 and q23 = 0.5922, where qij = qji, i, j = 1, 2, 3. The scenarios differ in the temporal

variability of the countries’ volatilities and temporal variability of the correlation between the

error series (uit), because we want to study the effects of these factors on the quality of the

instruments postulated. The basic scenario of this analysis is scenario 1, which replicates a

model fitted by [20] to actual data rates of returns of the stock markets in Brazil, Mexico and

the USA.

We simulated 50000 observations for each scenario considering there is no contagion, i.e.,

βi = 0, i = 1, 2, 3. The percentage of crises for different countries and scenarios did not change

much, varying from 3.70% to 4.43%. A country was contaminated by the others approximately

7.1% of the time and approximately 1.2% of the time at least two countries were simulta-

neously in crises. The volatility is higher in scenarios 1 and 3, where we gave less weight to the

Estimation of the Heteroskedastic Canonical Contagion Model
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errors (ai1), and especially more weight to the past (ai2). In scenarios 3 and 4, the variation of

the conditional correlation is larger than in scenarios 1 and 2, which is due to the parameters

θ1 and θ2. When we gave more weight to the error term (θ1) and less to the past (θ2), we had a

larger variability.

The twelve estimated correlations between the crisis indicator variables and the errors for

the four scenarios are in the interval (−0.2996, −0.2678). The results strongly indicate that the

indicator variable is endogenous, that is, the variables that indicate the existence of crisis in a

block of economies is correlated with ujt. In all cases the p-values of the test of the null hypoth-

esis that the correlation coefficient is zero (H0: ρ = 0) against the alternative hypothesis H1:

ρ 6¼ 0, is smaller than 10−4. The test of the hypothesis that ρ = 0 is based on Student’s test

because we have a large sample and the dependence for two different times is small.

The estimates of the correlation between the postulated instruments and the endogenous

variable (crisis indicator function) are around 0.10 or 0.20 depending on the scenario and the

economy. The values are not negligible and the p-values to test the null hypothesis that the cor-

relation is equal zero are always smaller than 10−4. In this regard, we expect that the proposed

instruments are able to correct the bias of the OLS estimator. We also ran similar tests for

other scenarios and different values of ci, such as ci = 1.96 and ci = 1.38, but the results were

almost the same.

Monte Carlo Study of the Estimators

Introduction

In this section, we use a Monte Carlo simulation to compare the three estimators proposed for

the contagion parameter βi in the canonical contagion model: the OLS estimator, and the two

estimators based on the IVs. The OLS estimation results are presented to show that the bias

can be very large. We also test whether the confidence intervals based on the asymptotic distri-

butions of the three estimators have the right coverage. The data generator process is that

given by Eqs (6) to (11) with N = 4.

The proposed instruments are not observable and must be estimated. They are not exactly

generated instruments, as defined in Section 6.1 of [18], because they must be estimated by the

same model. Because of this, in Subsection Proposed estimators we propose an iterative

method to find the IV estimates, and in Subsection Effect of the instruments’ estimation we

show that the IV estimates using the exact volatility values and those using the estimation

Table 1. Parameters used in the simulation of Proposition 1. Four scenarios of the data generating model given by Eqs (6) to (11) with N = 3.

Scenario i= δi αi ai0 ai1 ai2 θ1 θ2

1 1 8 × 10−4 0.02 10−5 0.107 0.864 0.03 0.96

2 7 × 10−4 0.06 6 × 10−6 0.119 0.861 0.03 0.96

3 3 × 10−4 -0.01 10−6 0.099 0.898 0.03 0.96

2 1 8 × 10−4 0.02 10−5 0.200 0.600 0.03 0.96

2 7 × 10−4 0.06 6 × 10−6 0.100 0.800 0.03 0.96

3 3 × 10−4 -0.01 10−6 0.099 0.898 0.03 0.96

3 1 8 × 10−4 0.02 10−5 0.106 0.864 0.20 0.70

2 7 × 10−4 0.06 6 × 10−6 0.119 0.861 0.20 0.70

3 3 × 10−4 -0.01 10−6 0.099 0.898 0.20 0.70

4 1 8 × 10−4 0.02 10−5 0.200 0.600 0.20 0.70

2 7 × 10−4 0.06 6 × 10−6 0.100 0.800 0.20 0.70

3 3 × 10−4 -0.01 10−6 0.099 0.898 0.20 0.70

doi:10.1371/journal.pone.0168967.t001
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procedure are almost the same. The remainder of the section presents the comparison of the

estimators.

We used the parameters found by [20] when fitting the DCC-GARCH(1, 1) model for a

data set of stock market indexes from Argentina, Brazil, Mexico and the United States. The ele-

ments of the matrix Q are: qii = 1, q12 = 0.4948, q13 = 0.5382, q14 = 0.5472, q23 = 0.4352, q24 =

0.4275, q34 = 0.5941, where qij = qji, i, j = 1, . . ., 4. The other parameters in the data generating

process are given in Table 2.

Proposed estimators

The homoscedastic IV estimate, Ẑgiv, is found iteratively in three steps as follows:

• (Step 1) Estimate models given by Eq (6) with βi = 0, i = 1, . . ., N by OLS method and calcu-

late the residuals ûols, where ûolsit ¼ yit � d̂ols � âolsyit; i = 1, . . ., N, t = 1, . . ., n;

• (Step 2) Fit a DCC-GARCH(1, 1) model (Eqs (7) to (11)) to ûols and estimate the volatilities

(ŝit);

• (Step 3) Estimate model (Eq (6)) i = 1, . . ., N by the IV method, with the instruments esti-

mated in step (2).

If the estimates in steps (1) and (3) are close, we consider there is convergence. Otherwise

we iterate steps (2) and (3) recursively until the estimates in two consecutive iterations of step

(3) are close. At the end we have the homoscedastic IV estimate Ẑgiv. The iteration is necessary

because the estimator in step (1) is biased, so it is expected that the residuals are also biased

estimates of the error terms.

The heteroskedastic IV estimate is estimated as given in Subsection Heteroskedastic IV esti-

mator, where the residuals are evaluated using Ẑgiv; found in the iterative procedure just

described.

Effect of the instruments’ estimation

In this subsection we test whether the iteration of steps (2) and (3) overcomes the problem

of bias, i.e., whether the estimated volatilities work as valid instruments. We showed in

Section Proposed Instrumental Variables that the volatilities are valid instruments. Taking

βi = 0, i = 1, . . ., 4, we generated 100 replications of size 1000 using as data generating process

the model given by Eqs (6)–(11). Then we estimated the model using the true volatility as

instruments and the iterative three-step procedure. Fig 1 presents the scatterplot of the esti-

mates of β1 using the true volatilities as instruments against the estimates when the instru-

ments are estimated by three models: univariate GARCH(1, 1), CCC-GARCH(1, 1) and

DCC-GARCH(1, 1). The difference between the estimates using the true volatility or any of

the three estimates are negligible, especially compared to the variability of the estimates. Thus,

there is strong evidence that the iterative procedure overcomes the problem of estimated

instruments.

Table 2. Parameters used in the simulation section. Data generating model given by Eqs (6) to (11) with N = 4.

Economy δi αi αi0 αi1 αi2 θ1 θ2

1 8 × 10−4 0.02 10−5 0.10 0.86 0.02 0.96

2 4 × 10−4 0.06 10−5 0.12 0.84 0.02 0.96

3 7 × 10−4 0.06 6 × 10−6 0.11 0.86 0.02 0.96

4 3 × 10−4 -0.01 10−6 0.10 0.88 0.02 0.96

doi:10.1371/journal.pone.0168967.t002
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The result just presented can be very helpful in the study of the distribution of homoscedas-

tic and heteroskedastic IV estimators of the contagion parameter. Because there is almost no

difference between the estimates, we can use the true volatilities as instruments and we have

the traditional estimates presented in Sections Homoscedastic IV estimator and Heteroskedas-

tic IV estimator for the homoscedastic and heteroskedastic IV estimators, respectively.

Properties of the OLS estimator and of the IV estimators

In this subsection we present the results of the Cragg-Donald test and the estimates of the bias

and the mean square error (MSE) of the OLS estimator and the proposed heteroskedastic and

homoscedastic IV estimators. The simulations are based on 1000 replications for different

sample sizes and for the i-the equation we used the true volatilities σjt, j 6¼ i, j = 1, . . ., 4 as

instruments. We have 1000 estimates of the parameter of interest βi, i = 1, . . ., 4, for each one

of the three methods.

The results for the estimators of δi and αi, i = 1, . . ., 4, which are unbiased, because these

parameters are not related to the endogenous variables of the model are not presented.

The results for the bias and the MSE for the three estimators are presented in Subsection

Bias and mean square error of the estimators. Subsection Asymptoticconfidence intervals ana-

lyzes the use of the asymptotic distribution to construct confidence intervals.

Bias and mean square error of the estimators. We first analyze how often the Gragg-

Donald test rejects the null hypothesis that the relative bias is larger than r, with r equal to 0.05,

0.10 and 0.20 at 5% level of significance. The results are based on 1000 replications and the

critical values are taken from Table 1 of [12] paper. Because the results are almost the same for

the four economies, the discussion is in relation to the average rejection of the null hypothesis

for the four economies. For sample size 500, the percentages of rejection of the null hypothesis

are equal to (9.6, 26.5, 44.8) for r equal to 5, 10 and 20%, respectively. For sample size 1000, the

percentages increased to (47.8, 75.9, 89.1), while for sample sizes 1500 and 2000, the percent-

ages increased to (79.4, 94.6, 98.2) and (95.0, 99.1, 99.9), respectively. We can say that for sam-

ple size 500 we do not expect the bias to be small, but for sample size 1000 we already expect a

Fig 1. Scatterplot of the estimates of β1 by the heteroskedastic IV method, when the instruments are the true volatility against the

estimates of β1 by the heteroskedastic IV method, when the instruments are the volatility estimated by: (a) univariate GARCH(1, 1)

model, (b) multivariate CCC-GARCH, and (c) multivariate DCC-GARCH.

doi:10.1371/journal.pone.0168967.g001
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substantial decrease in the bias, while for sample size 2000 the bias with the instrumental vari-

ables is almost always smaller than 5% of the bias of the OLS estimator.

Because the bias decreases substantially for sample sizes equal to 1500, we estimate the bias

and MSE only for sample sizes equal to 100, 500 and 1000. Table 3 presents the estimated val-

ues of the bias and MSE of the three estimators of βi considered in this paper, for sample sizes

n equal to 100, 500 and 1000. We took βi = 0, i = 1, . . ., 4.

According to Table 3, the bias of the OLS estimators is significant, because in the absence of

contagion, the estimated models indicate that the economy has an average decline of 2% in the

performance index when one of the other economies is in crisis. This is in agreement with the

previous theoretical results, which have suggested the use of instruments, as proposed by [1].

Table 3 presents the estimated bias for the homoscedastic and heteroskedastic estimators

presented in Subsections Homoscedastic IV estimator and Heteroskedastic IV estimator. The

analysis of the results shows that the bias of the IV estimators is smaller than the bias of the

OLS estimator, especially for samples of moderate size, i.e., n = 500 and n = 1000. For the het-

eroskedastic IV estimator, the results are very similar to those found for the homoscedastic IV

estimator. The bias, for moderately large samples, is almost nonexistent in comparison with

the OLS estimator’s bias. Notice that the MSE of the heteroskedastic IV estimators for

Table 3. Estimates of the bias and MSE of the OLS estimator and the homoscedastic IV estimator (IV homo) and the heteroskedastic IV estimator

(IV hete) of βi. In brackets the standard error of the estimate of the expected value of the bias and MSE. Results based on 1000 replications of the data gener-

ator model given by Eqs (6) to (11) and parameters from Table 2 and sample size n.

n Economy 1 Economy 2 Economy 3 Economy 4

100 Bias OLS -0.0240 -0.0213 -0.0184 -0.0090

(0.0004) (0.0004) (0.0003) (0.0002)

IV homo -0.0167 -0.0170 -0.0152 -0.0076

(0.0018) (0.0020) (0.0014) (0.0007)

IV hete -0.0168 -0.0170 -0.0162 -0.0081

(0.0018) (0.0020) (0.0014) (0.0007)

MSE OLS 0.0007 0.0006 0.0004 0.0001

IV homo 0.0036 0.0043 0.0022 0.0006

IV hete 0.004 0.0044 0.0023 0.0006

500 Bias OLS -0.0239 -0.0211 -0.0186 -0.0090

(0.0002) (0.0002) (0.0002) (0.0001)

IV homo -0.0025 -0.0028 -0.0034 -0.0013

(0.0006) (0.0007) (0.0006) (0.0003)

IV hete -0.0029 -0.0033 -0.0035 -0.0014

(0.0006) (0.0007) (0.0006) (0.0003)

MSE OLS 0.0006 0.0005 0.0003 0.00009

IV homo 0.0004 0.0005 0.0004 0.00008

IV hete 0.0004 0.0005 0.0003 0.00007

1000 Bias OLS -0.0243 -0.0216 -0.0188 -0.0094

(0.0002) (0.0002) (0.0001) (0.0001)

IV homo -0.0010 -0.0009 -0.0009 -0.0003

(0.0004) (0.0005) (0.0004) (0.0002)

IV hete -0.0012 -0.0007 -0.0010 -0.0005

(0.0004) (0.0005) (0.0003) (0.0002)

MSE 0.0004 0.0005 0.0003 0.00009

IV homo 0.0002 0.0003 0.0001 0.00004

IV hete 0.0001 0.0002 0.0001 0.00003

doi:10.1371/journal.pone.0168967.t003
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moderately large samples is smaller than the MSE of the homoscedastic IV estimators. These

facts were already expected, as explained in Section Estimation with Instrumental Variables.

We ran a similar simulation with β1 2 {−0.05, −0.03, −0.01, 0, 0.01, 0.03, 0.05} and βi = 0,

i = 2, . . ., 4, with sample size 1000. We found similar results based in 1000 replications.

Asymptotic confidence intervals. The variances of the IV estimators for moderately large

samples (n = 1000 and n = 500) are small, such that the estimators are unbiased or nearly unbi-

ased, and with little probability of having a large error. An important point in inference is the

construction of the confidence interval. In this subsection we test whether we can use the

asymptotic Student-t distribution to construct confidence intervals in the usual way. We com-

pare the coverage and the width of the intervals based on the homoscedastic and heteroskedas-

tic IV estimators. The confidence interval based on the homoscedastic IV estimator is

constructed using the robust estimator of the variance given by Eq (5).

We use the same data generating process given by Eqs (6) to (11), with the same parameter

values. Using different values of β1 we find the confidence interval and test whether it covers

the true value. We ran 1000 replications for each value of β1 2 {−0.1, −0.05, −0.03, −0.02,

−0.01, 0, 0.01, 0.02, 0.03, 0.05, 0.1}, with sample size n = 1000. The estimated coverages of the

90% and 95% asymptotic confidence intervals are presented in Table 4. The estimated cover-

age using both estimators is almost equal to the nominal values, so we can say that in terms of

coverage they are equivalent.

We also evaluated the mean, median and standard deviation of the width of the 90% and

95% confidence intervals. The mean, median and standard deviation of the width of the confi-

dence intervals based on the heteroskedastic IV estimator are always smaller than the same

measures of the confidence intervals based on the homoscedastic IV estimator. In summary,

this simulation study shows that we can use the asymptotic distribution of both estimators

based on instruments to construct confidence intervals for the contagion parameter, and that

the confidence intervals based on the heteroskedastic IV estimators should be preferred.

Conclusion

The canonical model of contagion was extended to cases where the errors are heteroskedastic.

This is a common case when a country’s stock market index is used as the indicator of the per-

formance of the economy. We showed that in this case, the volatilities are valid instruments

and the Cragg-Donald statistics showed they could reduce the bias considerably. Further simu-

lation showed that the bias of the heteroskedastic estimator of the contagion parameter, based

on the proposed instruments is zero or almost equal to zero, and that the confidence intervals

constructed using the asymptotic distribution of the estimator has a coverage percentage close

to the nominal values. We also showed that although the homoscedastic IV estimator also has

zero or almost zero bias, the performance of its punctual and confidence estimators are a little

worse than the punctual and confidence estimators given by the heteroskedastic IV estimator.

Table 4. Percentage of coverage of the (a) 90% and (b) 95% confidence interval. Results based in 1000 replications for each value of β1 in the model

given by Eqs (6) to (7) with sample size equal to 1000.

True values of β1

-0.10 -0.05 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.05 0.10

90% homo 0.91 0.91 0.90 0.90 0.90 0.91 0.90 0.90 0.90 0.90 0.89

hete 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.90 0.90 0.90

95% homo 0.95 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.95

hete 0.95 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94

doi:10.1371/journal.pone.0168967.t004
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