

A New Route to α -Carbolines Based on 6π -Electrocyclization of Indole-3-alkenyl Oximes

Sophie J. Markey, William Lewis, and Christopher J. Moody*

School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K. c.j.moody@nottingham.ac.uk

Received November 5, 2013

Indoles are converted into α -carbolines in four steps by acylation at C-3, Boc-protection, olefination of the resulting 3-indolyl aldehydes or ketones to give *N*-Boc-3-indolyl alkenyl oxime *O*-methyl ethers, which upon heating to 240 °C under microwave irradiation undergo loss of the Boc-group, and 6π -electrocyclization to α -carbolines, following aromatization by loss of methanol (11 examples, 30–90% yield).

In contrast to β -carbolines that are widely represented among natural products and synthetic bioactive compounds,¹⁻³ α -carbolines (pyrido[2,3-*b*]indoles) are considerably less well investigated.^{4,5} Nevertheless there are some important examples such as the naturally occurring anticancer compounds grossularine-1 and -2⁶⁻⁹ and the neuronal

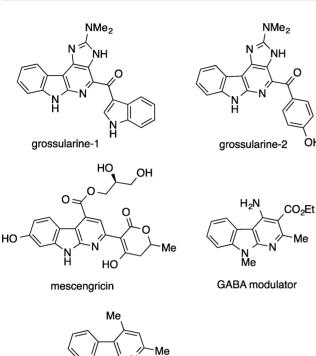
- (3) Cao, R.; Peng, W.; Wang, Z.; Xu, A. Curr. Med. Chem. 2007, 14, 479–500.
- (4) Smirnova, O. B.; Golovko, T. V.; Granik, V. G. *Pharm. Chem. J.* USSR **2011**, *44*, 654–678.
- (5) Smirnova, O. B.; Golovko, T. V.; Granik, V. G. Pharm. Chem. J. USSR 2011, 45, 389–400.
- (6) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. Synlett **1995**, 147–148.
- (7) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. J. Org. Chem. 1995, 60, 5899–5904.
- (8) Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1995, 36, 2615–2618.
- (9) Miyake, F. Y.; Yakushijin, K.; Horne, D. A. Angew. Chem., Int. Ed. 2005, 44, 3280–3282.
- (10) Kim, J. S.; ShinYa, K.; Furihata, K.; Hayakawa, Y.; Seto, H. *Tetrahedron Lett.* **1997**, *38*, 3431–3434.

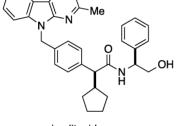
10.1021/ol403191k © 2013 American Chemical Society Published on Web 11/26/2013 cell protective agent mescengricin (Figure 1).¹⁰ In the medicinal chemistry arena, α -carbolines such as the GABA modulator,¹¹ and the inhibitor of microsomal triglyceride transport protein implitapide,^{12,13} have also been widely studied.

As a consequence, routes for the construction of the α -carboline nucleus are of interest, but unlike their β -carboline counterparts that are almost invariably prepared from tryptophan or tryptamine derivatives, there is no main synthetic access to the isomeric α -carbolines. Thus, α -carbolines have been obtained from 2-aminoindoles, ^{14–16} by a variation of the Graebe–Ullmann synthesis of

- (12) Pahan, K. Cell. Mol. Life Sci. 2006, 63, 1165-1178.
- (13) Ueshima, K.; Akihisa-Umeno, H.; Nagayoshi, A.; Takakura, S.; Matsuo, M.; Mutoh, S. *Biol. Pharm. Bull.* **2005**, *28*, 247–252.
- (14) Kumar, A. S.; Nagarajan, R. Org. Lett. 2011, 13, 1398–1401.
 (15) Gupta, S.; Kumar, B.; Kundu, B. J. Org. Chem. 2011, 76, 10154–
- (16) Super A S, Pao P V A, Nagarajan P, Org. Biomed Chem
- (16) Kumar, A. S.; Rao, P. V. A.; Nagarajan, R. Org. Biomol. Chem. **2012**, *10*, 5084–5093.

2013 Vol. 15, No. 24 6306–6308

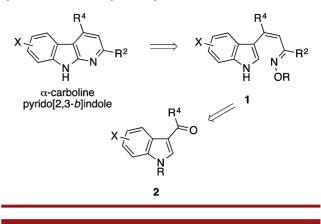

ORGANIC LETTERS

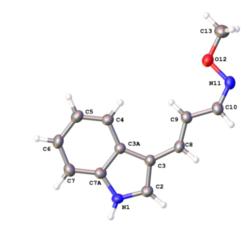

⁽¹⁾ Airaksinen, M. M.; Kari, I. Med. Biol. 1981, 59, 21-34.

⁽²⁾ Peduto, A.; More, V.; de Caprariis, P.; Festa, M.; Capasso, A.; Piacente, S.; De Martino, L.; De Feo, V.; Filosa, R. *Mini-Rev. Med. Chem.* **2011**. *11*, 486–491.

⁽¹¹⁾ Bolton, D.; Forbes, I. T.; Hayward, C. J.; Piper, D. C.; Thomas, D. R.; Thompson, M.; Upton, N. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 1941–1946.

carbazoles,¹⁷ by intramolecular Diels–Alder reaction of pyrazinones,¹⁸ from palladium-catalyzed reactions of anilines with 2,3-dihalopyridines,^{19,20} by cyclization of 2-isocyanato-indoles,^{6–8} and of iminyl radicals.^{21–24} However, we were attracted by the possibility of developing a more general route based on a 6π -electrocyclic process, and we now report our initial results.


implitapide


Figure 1. Structures of naturally occurring and bioactive α -carbolines.

The projected precursors to α -carbolines were the 3-indolyl alkenyl oxime ethers 1, accessible from 3-acylindoles 2 (Scheme 1). 3-Acylindoles are readily available by exploiting the natural reactivity of indoles to undergo facile

- (17) Vera-Luque, P.; Alajarín, R.; Alvarez-Builla, J.; Vaquero, J. J. Org. Lett. 2006, 8, 415–418.
- (18) Tahri, A.; Buysens, K. J.; Van der Eycken, E. V.; Vandenberghe, D. M.; Hoornaert, G. J. *Tetrahedron* **1998**, *54*, 13211–13226.
- (19) Hostyn, S.; Van Baelen, G.; Lemiere, G. L. F.; Maes, B. U. W. Adv. Synth. Catal. **2008**, 350, 2653–2660.
- (20) Laha, J. K.; Petrou, P.; Cuny, G. D. J. Org. Chem. 2009, 74, 3152–3155.
- (21) Tanaka, K.; Kitamura, M.; Narasaka, K. Bull. Chem. Soc. Jpn. 2005, 78, 1659–1664.
- (22) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. *Chem. Commun.* **2007**, 4041–4043.
- (23) Portela-Cubillo, F.; Surgenor, B. A.; Aitken, R. A.; Walton, J. C. J. Org. Chem. 2008, 73, 8124–8127.
- (24) Ono, A.; Narasaka, K. Chem. Lett. 2001, 146-147.

Scheme 1. Projected Route to α -Carbolines by 6π -Electrocyclization of 3-Indolyl Alkenyl Oxime Ethers

Figure 2. X-ray crystal structure of (*E*)-3-(1-methyl-1*H*-indol-3-yl)-propenal (*Z*)-methyl oxime.

acylation at the 3-position. The participation of oxime ethers in 6π -electrocyclic processes is known from the work of Hibino,²⁵ and the possible intermediacy of imines related to **1** has been implicated in other work²³ and in a biomimetic synthesis of grossularine-1.⁹

The precursors to the desired oxime ethers were 3-acylindoles **2** and phosphonates **3**. The phosphonates were prepared by reaction of the corresponding carbonyl compound with *O*-methyl hydroxylamine, with the aldoxime precursor being prepared by acid hydrolysis of the commercially available diethyl (2,2-diethoxy)ethylphosphonate. The subsequent Horner–Wadsworth–Emmons reaction with *N*-Boc-protected 3-indolyl aldehydes or ketones gave the required alkenyl oxime ethers **4** generally as mixtures of E/Z-alkene isomers that could be readily separated and characterized, apart from alkene **4g** which was formed as the *E*-alkene.

In general only one oxime isomer was observed which, on the basis of the chemical shift of the oxime RCH= NOMe proton in the ¹H NMR spectrum, suggested that

⁽²⁵⁾ Choshi, T.; Hibino, S. Heterocycles 2011, 83, 1205-1239.

Table 1. Preparation of Indolyl Alkenyl Oxime Ethers 4 [Indoles, Phosphonates, **3a**, $R^2 = H$; **3b**, $R^2 = Me$] and Their Conversion into α -Carbolines **5** by 6π -Electrocyclization

	X N Boc 2		EtO EtO <i>n</i> -BuLi, TI 2 - 4	R ² N∵OM HF, 0 ℃ I h	1e 5 → X √ 6 \\	N Bo 4		$\begin{array}{c} 1,2-\text{Cl}_2\text{C}_6\text{H}_4\\ \hline 240 \text{ °C}\\ \text{MW, 3 h} \end{array} X \xrightarrow[7]{6} \\ \hline N\\ H\\ \end{array} X \xrightarrow[7]{6} \\ \hline N\\ H\\ H\\ \end{array} X \xrightarrow[7]{6} \\ \hline N\\ H\\ H\\ \hline S$			
entry	2	\mathbf{X}^{a}	\mathbb{R}^4	3	\mathbb{R}^2	4	E yield/%	Z yield/%	\mathbf{X}^{b}	5	yield/%
1	a	Н	Н	а	Н	a	46	38	Н	а	73
2	b	5-OMe	Н	а	Н	b	37	25	6-OMe	b	36
3	с	6-OMe	н	а	Н	с	38	60	7-OMe	с	30
4	d	5-Cl	Н	а	Н	d	49	42	6-C1	d	55
5	а	Н	Н	b	Me	е	11	22	Н	е	90
6	с	6-OMe	Н	b	Me	f	28	62	7-OMe	f	77
7	b	5-OMe	Н	b	Me	g	34^c	_	6-OMe	g	41
8	е	Н	CO_2Me	а	н	h	38^c	49	Н	h	52
9	f	Н	Me	a	н	i	49	16^c	Н	i	62
10	f	Н	Me	b	Me	j	45	23	Н	j	65
11	е	Н	$\rm CO_2Me$	b	Me	k	52	29	Н	k	51
^{<i>a</i>} Indo	le numbe	ering. ^{<i>b</i>} α -Carbo	line numbering	g. ^c Mixtu	re of oxime	e geometr	ic isomers.				

the oximes have the (Z)-geometry. In the case of oxime 4a, removal of the Boc-protecting group gave the crystalline *E*-alkene-*Z*-oxime (Figure 2), confirming the *Z*-stereochemistry of the oxime double bond. The olefination reaction was then extended to indole-3-carbaldehydes bearing chloro- and alkoxy-groups, and indolyl ketones with methyl or ester groups (Table 1).

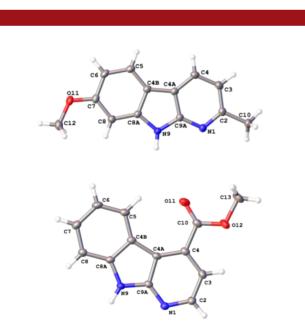


Figure 3. X-ray crystal structures of α -carbolines 5f and 5h.

With a range of oxime ethers **4** in hand, their thermal cyclization reactions were studied. Initially, these were investigated leaving the Boc-group in place since it was

assumed that it would be cleaved under the high temperature conditions. In the event, heating 4a, as a mixture of geometric isomers, to 180 °C in 1,2-dichlorobenzene gave a mixture of the desired α -carboline 5a (12%) plus the Boc-deprotected starting material. Increasing the temperature to 240 °C under microwave irradiation delivered the α -carboline **5a** in 73% yield. We assume that the reaction involves initial thermal removal of the Boc-group to give the NH indole in which isomerization of the alkene into the cis-isomer required for electrocyclization is facilitated. In support of this, prior removal of the Boc-group in 4a under hydrolytic conditions (82%) gave the corresponding NH indole that cyclized to α -carboline 5a (54%) upon heating to 240 °C. It would appear that the NH is essential for cyclization since the corresponding N-methyl compound does not give 9-methyl- α -carboline under the same conditions. Electrocyclization of the indolyl alkenyl oxime ethers 4b-4k, starting with either (Z)- or (E)-alkene isomers, proceeded similarly to give a range of α -carbolines 5 in 30-90% yield (Table 1). The structures of the carbolines 5f and **5h** were confirmed by X-ray crystallography (Figure 3).

In conclusion, we have developed a new general route to α -carbolines that proceeds in just four steps from indoles.

Acknowledgment. We thank the EPSRC for DTA studentship support to S.J.M.

Supporting Information Available. All experimental procedures, copies of ¹H and ¹³C NMR spectra, and cif files for X-ray structures. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.