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Appendix A: Multiple imputation of missing values for serum CA-125

In the available data, the serum CA-125 level was missing in 31% of the women. The
value was more often missing in women with a benign tumour (36%) than in women with
a borderline (18%), stage I invasive (20%), stage II-IV invasive (17%), or secondary
metastatic (25%) tumour. The missing values are highly likely to have occurred for two
reasons. First, following different local management practices some centres were more
committed than others to measure CA-125. Second, investigators sometimes refrained
from measuring CA-125 based on the overall clinical picture and the appearance of the
tumour on ultrasound. The percentage of missing values per centre varied between 0%
and 94% with a median of 19%. Seventeen of 24 centres had at most 30% missing values,
and four centres had clearly more than 50% missing values: Bologna (N=348, 69%
missing values), Genk (N=428, 72% missing values), Barcelona (N=37, 84% missing

values), Maurepas (N=64, 94% missing values).

We used multiple imputation to handle the missing values in the analysis': the missing
CA-125 values were estimated (i.e. imputed) multiple times to acknowledge the
uncertainty in the imputed values. To estimate the missing values, we used predictive
mean matching regression? using variables that were related to either the level of CA-125
itself, or to the unavailability of CA-125 (i.e. a binary indicator indicating for each
woman whether CA-125 was missing or not). This was repeated 100 times to generate
multiple imputations of the missing values, resulting in 100 completed data sets. To
reduce computational burden, we used only five of the completed datasets for variable
selection. Differences in results between these five datasets were minimal. Subsequent
model fitting was carried out on all 100 completed datasets and the resulting coefficients

were averaged to obtain a final set of model coefficients.



We consider multiple imputation more appropriate than an analysis including only
patients with information on CA-125 (complete case analysis). A complete case analysis
will introduce bias: (1) because CA-125 is more often missing in patients with a tumour
judged to be benign based on its ultrasound appearance, estimated risks for malignant
tumour types will be too high, and (2) exclusion of these “easy” tumours will make the
complete case sample more homogeneous and will therefore decrease model performance.
In addition to introducing bias, a complete case analysis would waste large amounts of

precious data because there is complete information on all variables except CA-125.



Appendix B: Variable selection

Variable selection was performed in two stages. To avoid overfitting, we relied on
subject matter knowledge to reduce the number of potential predictors.>* Clinicians with
experience in diagnosing adnexal masses judged the available variables with respect to
‘measurement harm’ as well as their likely ability to differentiate between the four
subtypes of malignant tumours. Measurement harm refers to issues such as subjectivity,
dependency on operator experience, and burden for the patient. In addition we estimated
to what extent the values of the variables varied between centres after controlling for
tumour histology, in order to favour predictors with limited heterogeneity.> Finally, we
aimed to include some baseline information on centre type, in order to improve the
calibration of the estimated probabilities. All of these issues were taken into account
when selecting variables. We selected four clinical variables, i.e. age (years), serum CA-
125 (U/mL), family history of ovarian cancer (yes/no), and type of centre (oncology
centre vs other hospitals), and six ultrasound variables, i.e. the maximum diameter of the
lesion (mm), proportion of solid tissue (i.e. maximum diameter of the largest solid
component divided by the maximum diameter of the lesion), the presence of more than
10 cyst locules (yes/no), number of papillary projections (0, 1, 2, 3, more than 3),
presence of acoustic shadows (yes/no), and presence of ascites (yes/no). We believe that
this a priori selection was sensible because it was done through collaboration between

four experienced clinical researchers (DT, TB, CVH, LV).

The second stage of the variable selection procedure involved limited data-driven
variable selection based on the method of multivariable fractional polynomials, which
simultaneously selects variables and determines the optimal transformation of numerical
variables using fractional polynomials.® The variable selection procedure (called RA2) is

a variant of the standard backward selection procedure. The RA2 procedure was



performed separately for the four submodels of the multinomial logistic regression
model: Borderline versus Benign, Stage I cancer versus Benign, Stage II-IV cancer
versus Benign, and Secondary metastatic cancer versus Benign. The variable selection
analysis was carried out using logistic regression analysis with random centre intercepts.
As elimination criterion in the backward selection process and as criterion for the
selection of functional form we used the p-value that mimicked the Bayesian Information
Criterion,* in order to end up with a parsimonious model. We allowed a first degree
polynomial for age, serum CA-125, the maximum diameter of the lesion, and the number
of papillary projections. For the proportion of solid tissue a second degree polynomial
was allowed because this is considered an important predictor that is of semi-continuous
nature because a large number of tumours do not have a solid component. The final set of
predictors for the polytomous model consisted of the variables that were selected in any
of the four submodels. If different transformations were selected in the submodels, one
final transformation was chosen. Two predictors were forced into the model and hence

could not be eliminated: age and type of centre.

The variable “type of centre” was included because the risk of malignancy is likely to be
higher in oncology centres than in other centres even after adjusting for clinical and
ultrasound characteristics. We chose to add type of centre as a predictor rather than to
develop separate models for oncology centres and other hospitals. Developing separate
models means that sample size is reduced, mainly for the non-oncology hospitals. This
would increase the possibility of overfitting. Developing one model with type of centre as
a predictor assumes that the effects of clinical and ultrasound predictors are the same in

both types of centres, an assumption that we consider plausible.



Appendix C: Shrinkage factors

We multiplied the predictor coefficients with uniform ‘shrinkage factors’ to avoid
exaggerated model coefficients.*” These factors were estimated as follows. For every
submodel (Borderline versus Benign, Stage I cancer versus Benign, Stage II-IV cancer
versus Benign, and Secondary metastatic cancer versus Benign) a separate random
intercepts logistic regression model was fitted using the selected predictors. If M is the
improvement in the minus 2 log-likelihood over a random intercepts only model, the
shrinkage factor is obtained as (M — df)/M, where the df are the degrees of freedom spent
for the candidate predictors. In our situation df is 17: one for each of the five binary
predictors (family history of ovarian cancer, type of centre, >10 cyst locules, acoustic
shadows, and ascites), two for the four predictors for which a first degree polynomial was
allowed in the multivariable fractional polynomial procedure (age, serum CA-125,
maximum diameter of the lesion, and number of papillary projections), and four for the

predictor for which a second degree polynomial was allowed (proportion of solid tissue).®

After fitting the random intercepts multinomial logistic regression model, we multiplied
the obtained coefficients with the appropriate shrinkage factor. Then, we re-estimated
model intercepts accordingly such that the average value of the linear predictors after

shrinkage equal the average value of the fitted model without shrinkage.



Appendix D: The formula of the ADNEX model after retraining on the pooled data

The ADNEX model uses the following predictors, with measurement unit between
parentheses and reference letter between square brackets: patient age (years) [A], serum
CA-125 (U/mL) [B], maximal diameter of lesion (mm) [C], maximal diameter of largest
solid component (mm) [D], more than 10 cyst locules (1-yes vs 0-no) [E], number of
papillary structures (0, 1, 2, 3, 4; with 4 indicating more than three) [F], acoustic shadows
(1-yes vs 0-no) [G], ascites (1-yes vs 0-no) [H], and type of centre (1-oncology centre vs

0-other centre types) [1].

The linear predictors z1 to z4 contain model coefficients for each predictor for the
prediction of borderline vs. benign tumours (z1), stage I cancer vs. benign tumours (z2),
stage II-IV cancer vs. benign tumours (z3), and secondary metastatic cancer vs. benign

tumours (z4). The linear predictors are as follows:

71 =—7.577663+0.004506* A +0.111642* Log2(B)+0.372046 * Log2(C) + 6.967853*(D/ C)

—5.65588*(D/C)2 +1.375079*E+0.604238*F-2.04157 *G +0.971061*H +0.953043 *1
7, =—12.276041+0.017260 * A + 0.197249 * Log2(B) + 0.873530 * Log2(C) + 9.583053 * (D / C)

-5.83319*(D /C)* +0.791873* E +0.400369 * F-1.87763* G + 0.452731 * H + 0.452484 * |
23 =—14.915830+0.051239 * A +0.765456 * Log2(B) + 0.430477 * Log2(C) + 10.37696 * (D / C)

-5.70975* (D/C)2 +0.273692*E +0.389874 *F-2.35516 *G + 1.348408 *H + 0.459021 *|
74 =-11.909267 +0.033601 * A +0.276166 * Log2(B) + 0.449025 * Log2(C) + 6.644939 *(D / C)

-2.30330*(D/ C)2 +0.899980*E +0.215645 *F -2.49845* G + 1.636407 *H + 0.808887 * I

The probabilities of the five types of tumour are computed as follows:
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Table S1. Prevalence of specific pathologies in the pooled data (N=5909) and
separately for patients from oncology centres and other hospitals.

Tumour pathology Full Oncology Other
dataset, centres, hospitals,
N (%) N (%) N (%)

Benign
Endometrioma 1055 (17.9) 551 (14.7) 504 (23.3)
Benign teratoma (dermoid) 633 (10.7) 369 (9.8) 264 (12.2)
Simple/parasalpingeal cyst 386 (6.5) 197 (5.3) 189 (8.8)
Functional cyst 156 (2.6) 81 (2.2) 75 (3.5)
Hydrosalpinx 147 (2.5) 68 (1.8) 79 (3.7)
Peritoneal pseudocyst 39 (0.7) 23 (0.6) 16 (0.7)
Abscess 59 (1.0) 40 (1.1) 19 (0.9)
Fibroma 282 (4.8) 186 (5.0) 96 (4.4)
Serous cystadenoma 679 (11.5) 370 (9.9) 309 (14.3)
Mucinous cystadenoma 453 (7.7) 236 (6.3) 217 (10.0)
Rare benign pathologies 91 (1.5) 57 (1.5) 34(1.6)

Malignant
Primary invasive stage | 263 (4.5) 211 (5.6) 52 (2.4)
Primary invasive stage II 94 (1.6) 72 (1.9) 22 (1.0)
Primary invasive stage III 731 (12.4) 626 (16.7) 105 (4.9)
Primary invasive stage [V 119 (2.0) 99 (2.6) 20 (0.9)
Rare primary invasive pathologies 137 (2.3) 92 (2.5) 45 (2.1)
Bordeline stage I 299 (5.1) 228 (6.1) 71 (3.3)
Bordeline stage 11 14 (0.2) 9(0.2) 5(0.2)
Bordeline stage 111 25(0.4) 23 (0.6) 2(0.1)
Bordeline stage IV 1(<0.1) 1 (<0.01) 0(0)

Secondary metastatic cancer 246 (4.2) 210 (5.6) 36 (1.7)




Table S2. Demographic and reproductive characteristics by tumour type for the pooled

dataset (N=5909).

Variable Benign Borderline Stage I Stage I1-1V Metastatic
N=3980 N=339 N=356 N=988 N=246
Age (years) 42 49 54 59 57
Postmenopausal 30.1% 42.8% 57.6% 72.5% 65.9%
Parity* 1 1 1 2 2
Nulliparous® 44.5% 34.9% 30.7% 20.3% 23.3%
Personal history of ovarian cancer 0.9% 11.2% 1.1% 1.6% 2.4%
Family history of ovarian cancer, 2.0% 3.0% 3.7% 5.8% 2.0%
Previous hysterectomy 6.3% 5.9% 9.8% 6.5% 6.9%
Current use of hormonal therapy 14.9% 10.6% 7.3% 7.1% 10.6%
Personal history of breast cancer® 3.2% 2.2% 7.4% 7.9% 15.8%
Family history of breast cancer® 8.6% 12.9% 14.2% 13.1% 9.2%

Statistics shown are median for age and parity, and percentage for categorical variables.

4 Results based on the development data (N=2557, N=186, N=176, N=467, N=120 for the five tumour types) because this
information was not collected in phase 3 of the IOTA study (validation data).



Table S3. Discrimination results on the validation data (n=2403) and after retraining of
the model on the pooled data (n=5909). The results are shown separately for oncology
centres and other hospitals.

Oncology centres Other hospitals

After After

Performance measures Validation retraining on Validation retraining on
pooled data pooled data

AUC Benign vs Malignant 0.94 0.94 0.93 0.95
AUC Benign vs Borderline 0.85 0.87 0.84 0.88
AUC Benign vs Stage I 0.90 0.92 0.93 0.94
AUC Benign vs Stage II-IV 0.98 0.98 0.99 0.99
AUC Benign vs Metastatic 0.94 0.95 0.97 0.97
AUC Borderline vs Stage [ 0.74 0.74 0.83 0.82
AUC Borderline vs Stage II-IV 0.94 0.93 0.97 0.92
AUC Borderline vs Metastatic 0.87 0.88 0.94 0.89
AUC Stage I vs Stage II-IV 0.86 0.85 0.87 0.83
AUC Stage I vs Metastatic 0.70 0.74 0.75 0.76
AUC Stage II-1V vs Metastatic 0.82 0.81 0.81 0.71
Polytomous Discrimination 0.56 0.56 0.56 0.56

Index

AUC, area under the receiver operating characteristic curve.

For five tumour types, the Polytomous Discrimination Index for random prediction equals 0.2, hence its
value cannot be directly compared with the AUCs.




Table S4. Discrimination performance of the model without CA-125 as a predictor as
obtained on the validation data and after retraining on the pooled data.

Performance measures

After retraining on

Validation data
(n=2403) pooled data
(n=5909)
AUC Benign vs malignant 0.932 (0.922t0 0.941)  0.940 (0.934 to 0.946)

AUC Benign vs Borderline
AUC Benign vs Stage |

AUC Benign vs Stage II-IV
AUC Benign vs Metastatic
AUC Borderline vs Stage [
AUC Borderline vs Stage II-IV
AUC Borderline vs Metastatic
AUC Stage I vs Stage II-IV
AUC Stage I vs Metastatic
AUC Stage II-IV vs Metastatic

Polytomous Discrimination Index

0.85 (0.81 to 0.87)
0.91 (0.89 to 0.93)

0.97 (0.96 to 0.97)
0.95 (0.93 to 0.96)
0.76 (0.69 to 0.80)
0.91 (0.88 to 0.93)
0.87 (0.82t0 0.91)
0.76 (0.72 to 0.80)
0.70 (0.64 to 0.76)
0.59 (0.53 to 0.64)

0.494 (0.467 to 0.509)

0.88 (0.86 to 0.90)
0.93 (0.92 to 0.94)

0.97 (0.96 to 0.97)
0.96 (0.94 to 0.97)
0.76 (0.72 to 0.79)
0.90 (0.88 t0 0.92)
0.89 (0.86 0 0.91)
0.75 (0.72 to 0.78)
0.74 (0.70 to 0.78)
0.62 (0.59 to 0.66)

0.511 (0.494 to 0.526)

AUC, area under the receiver operating characteristic curve.
For five tumour types, the Polytomous Discrimination Index for random prediction equals 0.2,
hence its value cannot be directly compared with the AUCs.
95% confidence intervals are shown in parentheses



Figure S1. Forest plot with centre-specific areas under the receiver operating
characteristic curve (AUC) with regard to discrimination between benign and malignant
tumours. Results for the validation data are presented. The AUC is consistent over centres,
notwithstanding the variability observed for centres that contributed few patients. NC, not
computed.

Centre Malignant AUC
location N n (%) (95% CI)
Rome 443 265 (60) 0.93 (0.90 to 0.95) —-
Prague 264 183 (69) 0.91 (0.87 to 0.94) .
Genk 228 34 (15) 0.95 (0.91 to 0.97) —u-
Milan 218 124 (57) 0.96 (0.93 to 0.98) —-
Bologna 213 65 (31) 0.95(0.91 to 0.97) —a—
Malmé 201 47 (23) 0.92 (0.86 to 0.95) —a—
Lublin 131 49 (37) 0.93 (0.86 to 0.96) —a
Leuven 129 60 (47) 0.93(0.88 to 0.96) —a—
Stockholm 120 53 (44) 0.93 (0.87 to 0.96) —a—
Cagliari 107 17 (16) 0.98 (0.94 to 0.99) —
Monza 105 24 (23) 0.94 (0.88 to 0.97) —a—
Milan2 86 15(17) 0.95 (0.88 to 0.98) —_—a
Udine 47 12(26) 0.97 (0.87 to 0.99) —=—
Lund 39 13(33) 0.97 (0.88 to 0.99) —
Barcelona 37 11(30) 0.74 (0.52 to 0.88)
Naples 6 3(50) 0.67(0.10 to 0.97)
Naples2 8 5 (63) 1 (NC)
Milan 3 21 0(0) NC
All centres 0.943 (0.934 to 0.952) ¢

T T T 1
0.7 0.8 0.9 1



Figure S2. Calibration plots of the predicted risks for each type of tumour in oncology
centres. Data have been calculated using the validation data (n=1715). The plots show
how well the predicted probabilities (x-axis) agree with the observed probabilities (y-
axis). For perfect agreement, the calibration curve falls on the ideal diagonal line. The
histograms below the plots show the distribution of the estimated risks.
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Figure S3. Calibration plots of the predicted risks for each type of tumour in other than
oncology centres. Data have been calculated using the validation data (n=688). The plots
show how well the predicted probabilities (x-axis) agree with the observed probabilities
(y-axis). For perfect agreement, the calibration curve falls on the ideal diagonal line. The
histograms below the plots show the distribution of the estimated risks. For this subgroup
the results contain a fair degree of uncertainty due to limited number of malignancies.
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