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Abstract

Vitamin D has well-documented effects on calcium homeostasis and bone metabolism 
but recent studies suggest a much broader role for this secosteroid in human health. Key 
components of the vitamin D system, notably the vitamin D receptor (VDR) and the vitamin 
D-activating enzyme (1α-hydroxylase), are present in a wide array of tissues, notably 
macrophages, dendritic cells and T lymphocytes (T cells) from the immune system. Thus, 
serum 25-hydroxyvitamin D (25D) can be converted to hormonal 1,25-dihydroxyvitamin D 
(1,25D) within immune cells, and then interact with VDR and promote transcriptional and 
epigenomic responses in the same or neighbouring cells. These intracrine and paracrine 
effects of 1,25D have been shown to drive antibacterial or antiviral innate responses, as 
well as to attenuate inflammatory T cell adaptive immunity. Beyond these mechanistic 
observations, association studies have reported the correlation between low serum 
25D levels and the risk and severity of human immune disorders including autoimmune 
diseases such as inflammatory bowel disease, multiple sclerosis, type 1 diabetes and 
rheumatoid arthritis. The proposed explanation for this is that decreased availability of 
25D compromises immune cell synthesis of 1,25D leading to impaired innate immunity 
and over-exuberant inflammatory adaptive immunity. The aim of the current review is to 
explore the mechanistic basis for immunomodulatory effects of 25D and 1,25D in greater 
detail with specific emphasis on how vitamin D-deficiency (low serum levels of 25D) may 
lead to dysregulation of macrophage, dendritic cell and T cell function and increase the risk 
of inflammatory autoimmune disease.

Introduction

Vitamin D and its metabolites are secosteroids that are 
derived primarily from the action of UV light on skin to 
photolytically convert epidermal 7-dehydrocholesterol 
to vitamin D3 (cholecalciferol). Vitamin D3 can also 
be obtained from some animal-based food sources and 
vitamin D2 (ergocalciferol) can be obtained from some 

non-animal foods. For the remainder of this review 
vitamin D3 and vitamin D2, and their metabolites will 
be referred to collectively as vitamin D. As outlined in Fig. 
1, the physiological actions of vitamin D metabolites are 
dependent on further metabolic steps (1). The first occurs 
in the liver via the enzyme vitamin D-25-hydroxylase 
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(25-OHase) to generate 25-hydroxyvitamin D (25D). 
While this is recognised as the main circulating form of 
vitamin D, it has also been reported that sulphate and 
glucuronide conjugated forms of 25D are present in 
serum in abundance and may represent an additional 
substantial reservoir of 25D (2). Vitamin D3 and D2 can 
be metabolised via the cholesterol side-chain cleavage 
enzyme to generate several alternative forms of vitamin D, 
including 20S-hydroxyvitamin D (3).

In classical vitamin D endocrinology, 25D 
is metabolised to the active form of vitamin D, 
1,25-dihydroxyvitamin D (1,25D) via the enzyme 
25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase), 
with this activity occurring primarily in the proximal 
tubules of the kidney under positive and negative control 
by parathyroid hormone (PTH) and fibroblast growth 
factor 23 (FGF23) respectively. Binding to its cognate 
nuclear vitamin D receptor (VDR), 1,25D functions 
as a steroid hormone to regulate transcription (4) and 
epigenomic effects (5). In this endocrine setting, 1,25D is 
thus able to promote the gastrointestinal acquisition of 
dietary minerals such as calcium and phosphate. 1,25D 
also plays a key role in stimulating FGF23 expression and 
suppressing PTH, and also promotes feedback regulation 
of 25D and 1,25D by stimulating catabolism of these 

forms of vitamin D to less active metabolites, notably 
via the enzyme 24-hydroxylase (6). The lipophilic nature 
of vitamin D metabolites means that they are mainly 
transported in the circulation by the binding globulin 
vitamin D-binding protein (DBP). Binding to DBP is 
particularly important for 25D as renal reabsorption 
of the DBP-25D complex is essential for the renal 
synthesis of 1,25D (7). However, in common with other 
steroid hormones, a small amount of 25D circulates 
either unbound (free 25D) or bound with low affinity to 
abundant serum proteins such as albumin. Although 
small, this fraction of 25D appears to be biologically 
important as free or bioavailable 25D may be the key form 
of 25D that is able to preferentially access extra-renal 
sites of 1α-hydroxylase activity (examples shown in Fig. 1  
include the placenta, spleen (representing the immune 
system) and lungs) (7). The relationship between 25D 
and DBP supports a role for the free hormone hypothesis 
in vitamin D physiology, but it has also highlighted the 
potential importance of non-endocrine actions of 25D 
and 1,25D. In many extra-renal sites, localised synthesis of 
1,25D appears to facilitate endogenous VDR responses that 
are distinct from the classical endocrine actions of 1,25D. 
A tissue-specific mode of action for vitamin D appears to 
be particularly prominent in the immune system, and the 

Figure 1
Vitamin D metabolism and the ‘vitamin D metabolome’. Schematic showing the synthesis of vitamin D (vitamin D3 and vitamin D2) and different 
subsequent metabolic pathways: synthesis of 25-hydroxyvitamin D (25D) from vitamin D by 25-hydroxylase (25-OHase); synthesis of 17-hydroxyvitamin D 
(17OHD), 20S-hydroxyvitamin D (20OHD), and 22-hydroxyvitamin D (22OHD) from vitamin D by the side-chain cleavage enzyme; synthesis of 
1,25-dihydroxvitamin D (1,25D) from 25D by 1α-hydroxylase (1α-OHase); synthesis of 24,25-dihydroxvitamin D (24,25D) from 25D by 24-hydroxylase 
(24-OHase); synthesis of 1,24,25-trihydroxvitamin D (1,24,25D) from 25D by 24-OHase; synthesis of calcitroic acid from 1,24,25D by 24-OHase. 25D (and 
other vitamin D metabolites) can circulate bound to vitamin D-binding protein (DBP) or unbound (free 25D). Other prominent forms of 25D found in the 
circulation include 3epi-25D and sulphated and glucuronide forms of 25D. Intracrine synthesis of 1,25D from 25D in tissues such as the placenta, spleen 
(immune system) and lungs is associated with immunomodulatory effects. Endocrine synthesis of 1,25D in the kidneys is associated with mineral 
homeostasis and bone health.

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-21-0554

https://ec.bioscientifica.com © 2022 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-21-0554
https://ec.bioscientifica.com


J Fletcher et al. Vitamin D and autoimmune 
disease

e21055411:3

importance of this will be discussed in greater detail later 
in the current review.

Approximately 50% of the UK population has a risk of 
25D-deficiency based on Institute of Medicine parameters 
(<50 nM serum 25D) (8). This has led to national 
recommendations for vitamin D supplementation (9). 
However, current definitions of vitamin D-sufficiency are 
based on classical endocrine calcium/bone effects and 
may underestimate the requirements for extra-skeletal 
actions of vitamin D (10). Importantly this includes 
immunomodulatory responses linking 25D-deficiency 
to autoimmune diseases including common chronic 
inflammatory disorders (11, 12, 13). Furthermore, studies 
in vivo and in vitro have demonstrated potent anti-
inflammatory actions of 1,25D that affect the major cellular 
players associated with autoimmune disease (14, 15, 16, 
17). Supplementation with vitamin D or its analogues may 
therefore provide a cheap and safe therapeutic strategy 
for the prevention and/or treatment of autoimmune 
disorders but supplementation studies to address this have 
so far been limited and exploratory. The aim of the current 
review is to provide an update on the mechanistic basis for 
the interconnection of 25D and 1,25D with autoimmune 
disease, and how this informs future strategies for the 
clinical implementation of vitamin D supplementation.

Vitamin D, innate immunity and 
antigen presentation

The initial observation linking vitamin D with the 
immune system was the presence of specific binding 
sites for 1,25D in cells from the immune system (18). 
The subsequent identification of the VDR for 1,25D 
confirmed that this protein is expressed in activated, but 
not resting, lymphocytes and is ubiquitous in cells from 
the myeloid lineage such as monocytes and macrophages 
(19). In parallel with these observations, it was noted 
that monocytes and macrophages exhibited the ability 
to metabolise 25D to 1,25D. This 1α-hydroxylase activity 
was initially observed in macrophages from patients 
with the granulomatous disease sarcoidosis where it was 
sufficient to elevate circulating levels of 1,25D in some 
patients leading to potential hypercalcemia (20). Although 
immune cell 1α-hydroxylase activity has subsequently 
been demonstrated for a wide range of inflammatory and 
granulomatous diseases (21), this does not appear to be 
an exclusively pathological phenomenon. The ability 
to metabolise 25D to 1,25D has also been described for 
normal healthy monocytes/macrophages (22), which 

show enhanced expression of the genes for 1α-hydroxylase 
(CYP27B1), and VDR following immune stimulation (23). 
The resulting endogenous synthesis and action of 1,25D 
have been shown to promote antibacterial (24, 25), and 
antiviral (26, 27) innate immune responses to infection. 
The cell-specific nature of these responses, utilising 
endogenous 1α-hydroxylase activity, means that local 
levels of 25D rather than active 1,25D, are likely to be 
the primary determinant of vitamin D-mediated innate 
immune responses. Given that serum levels of 25D are 
the principal determinant of vitamin D ‘status’ in any 
given individual, the efficacy of antibacterial and antiviral 
immune responses may therefore be impaired in the 
setting of 25D-deficiency or enhanced following vitamin 
D supplementation (28, 29). This facet of 25D/1,25D 
immunomodulation has attracted much recent interest 
with respect to the possible impact of serum 25D levels on 
COVID-19 (30).

The intracrine model described above for vitamin D 
in monocytes/macrophages and dendritic cells (DC) is not 
restricted to innate antibacterial and antiviral immunity. 
In studies that preceded the description of 1α-hydroxylase/
VDR-driven antibacterial responses in monocytes/
macrophages, we described similar localised metabolism 
of 25D to 1,25D in monocyte-derived DC leading to 
the suppression of antigen presentation cell surface 
antigens on DC such as CD80 and CD86 and concomitant 
inhibition of T lymphocytes (T cell) proliferation in 
co-culture analyses (31). Thus, in addition to antibacterial/
antiviral innate immune responses, localised synthesis of 
1,25D has the potential to influence antigen presentation 
and subsequent adaptive immune responses by T cells. 
Also, similar to antibacterial/antiviral responses, the 
efficacy of the DC intracrine system was enhanced by 
the maturation of DC using differentiation factors such 
as lipopolysaccharide and CD40-ligation, which further 
stimulated 1α-hydroxylase expression and the capacity 
for 1,25D production (31). To date, most studies of 
1α-hydroxylase and VDR expression in innate immunity 
have utilised monocytes, macrophages and DC-derived in 
vitro from cultures of peripheral blood mononuclear cells. 
Nevertheless, expression of 1α-hydroxylase (32) and VDR 
(33) has been reported for DC isolated directly from human 
tissue, indicating that DC in vivo have the potential to 
utilise 25D to 1,25D metabolism in an intracrine fashion. 
Vitamin D deficiency or supplementation therefore has 
the potential to influence antigen presentation and 
subsequent T cell adaptive immune responses.

Initial observations showed that 25D and 1,25D are 
able to supress DC maturation (34) and the expression 
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of cell surface antigens such as CD80 and CD86 that are 
associated with antigen presentation to T cells (31, 32), 
leading to impaired T cell activation (31, 35). Subsequent 
analyses have shown that DC exposed to 1,25D exhibit 
an immature phenotype that promotes the development 
of tolerogenic T cells, specifically regulatory T cells (Treg) 
(36, 37). In DC isolated from human peripheral blood, 
this response appears to be specific for myeloid DC rather 
than plasmacytoid DC (pDC), despite both DC sub-sets 
expressing similar levels of VDR (38). These DC subsets 
have yet to be assessed for intracrine responses to 25D and 
so it is unclear whether differential sensitivity to vitamin 
D status occurs with DC in vivo. Moreover, pDC are known 
to exhibit a tolerogenic phenotype at baseline, and the 
addition of 1,25D may therefore have little further impact 
on DC phenotype. The induction of a tolerogenic DC 
phenotype by 1,25D is associated with phosphorylation 
and nuclear translocation of NF-κB p65, induction 
of CCL22, suppression of IL-12 (38) and induction of 
ILT3 (39). Thus, 1,25D-treated DC exhibit many of the 
characteristics of conventional tolerogenic DC with the 
exception of increased expression of CD14 and decreased 
CD1a (40). Specific markers of 1,25D-induced tolerogenic 
DC include low secretion of IL-23 and expression of 
microRNA (miR) 155 and increased expression of miR378. 
More recent studies using unbiased analyses have described 
the transcriptomic (41, 42) and proteomic (43) profiles 
associated with 1,25D-induced tolerogenic DC. This, in 
turn, has highlighted the importance of cell architecture/
morphology (43), and cell metabolism (44, 45) pathways in 
mediating DC responses to vitamin D, notably with respect 
to altered DC phenotype. In particular, the promotion of 
glycolysis, oxidative phosphorylation and the citric acid 
cycle appears to be essential for 1,25D responses in DC (44). 
At a functional level, these metabolic changes appear to 
facilitate changes in fatty acid synthesis that may be pivotal 
in the regulation of DC morphology and phenotype (46).

T cell effects of 25D metabolism by  
antigen-presenting cells

After phagocytosis of a pathogen, cells such as macrophages 
and DC process the resulting antigens and present these, 
together with major histocompatibility complex (MHC) 
class II molecules, to CD4+ helper T cells (Th) to stimulate T 
cell activation and adaptive immune responses. As detailed 
above and outlined in Fig. 2, DC metabolism of 25D via 
1α-hydroxylase and interaction of the resulting 1,25D with 
endogenous VDR can modulate antigen presentation by 

promoting a tolerogenic DC phenotype. T cells activated 
by 1,25D-treated DC exhibit decreased expression of 
IFNγ and CD154, increased CD152 (35), and increased 
FoxP3 expression characteristic of Treg (39). Treg can also 
be induced in the presence of 25D if T cells are activated 
by antigen-presenting cells such as DC, where there is a 
capacity for 1α-hydroxylase-mediated synthesis of 1,25D 
(47). T cells activated in this way also show increased 
expression of CTLA4 and FoxP3, further highlighting 
the intracrine pathway for induction of Treg by vitamin 
D. However, T cells activated by 25D/1,25D-induced 
tolerogenic DC also exhibit decreased expression of IFNγ, 
IL-17 and IL-21, indicating suppression of inflammatory 
Th1, Th17 cells, and follicular B helper T cells (Thf) (47). 
While all of these cells play an important role in facilitating 
active adaptive immune responses to a pathogenic 
challenge, the sustained presence of these cells may lead to 
unregulated inflammation. It has therefore been proposed 
that a key immune function of 1,25D is to moderate the 
magnitude of inflammatory adaptive immune responses, 
thereby limiting potentially detrimental autoimmune 
responses (48, 49). It is interesting to note that the 
intracrine model for indirect regulation of T cells outlined 
in Fig. 2 appears to be highly dependent on the serum DBP, 
which is able to limit DC uptake of 25D. In studies in vitro, 
increased concentrations of DBP acted to suppress DC 
responses to 25D, consistent with the high binding affinity 
of 25D for DBP (47). This observation is similar to that 
previously described for monocytes, where antibacterial  
responses to 25D in monocytes were enhanced in the 
absence of DBP (50).

Endocrine, paracrine and intracrine 
mechanisms for T cell responses to 1,25D

The induction of T cell responses, including the Th cells 
outlined above, takes place within microenvironments 
in tissues such as lymph nodes where multiple immune 
cells exist in close proximity. Thus, while 25D appears to 
utilise an intracrine model to synthesise 1,25D, regulate 
DC function and indirectly promote anti-inflammatory, 
pro-regulatory T cell responses, direct effects of both 25D 
and 1,25D on T cells may also be possible. Activated, but 
not resting, T cells express VDR (18) and T cells activated 
using cell-free systems show direct anti-inflammatory, 
pro-regulatory responses to 1,25D, including induction 
of CTLA4, FoxP3 and IL-10, and suppression of IFNγ, 
IL-17 and IL-21 (51). Thus, in vivo, it is possible that some 
T cell responses may occur via conventional endocrine 
mechanisms utilising circulating 1,25D.
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An additional scenario outlined in Fig. 2 is that 
1,25D synthesised locally from 25D by DC or monocytes/
macrophages can act in a paracrine fashion on adjacent 
T cells. These effects may also include actions on MHC 
class I-induced CD8+ cytotoxic T cells which also express 
VDR and respond to 1,25D (52). Cytotoxic T cells play a 
key role in mediating the effects of vitamin D on tumour 
cells and bacterial and viral infections (53). However, it has 
been reported that CD8+ cytotoxic T cells are not required 
for the effects of 1,25D in preventing the mouse model 
of multiple sclerosis (MS), experimental autoimmune 
encephalomyelitis (54), suggesting that Th rather than 
cytotoxic T cells are the principal adaptive immunity cells 
required for autoimmunity effects of 1,25D. Interestingly, 
in mice, cytotoxic T cells may be a more important source of 
local 1α-hydroxylase expression than murine macrophages 
(55), raising the possibility of intracrine actions of 1,25D in 
some T cell populations, and also suggesting that cytotoxic 
T cells may be an alternative source of paracrine 1,25D. 
Expression of CYP27B1 and intracrine responses to 1,25D 

have also been reported in human cytotoxic T cells (56), 
but the precise magnitude and function of this source of 
immune 1,25D are still to be determined.

Crucially, the expression of CYP27B1 has also been 
described in T cells (57). To date, the relevance of this 
for T cell synthesis of 1,25D has been unclear but recent 
studies by Chauss et al. have shown that C3b Complement 
activation of human T cells via CD46 induced VDR and 
CYP27B1 expression in the resulting Th1 cells (58). Here, 
both 25D and 1,25D were able to regulate expression of 
key genes associated with Th1 cell function, such as IFNγ 
and IL-17, demonstrating a functional intracrine pathway 
for 25D/1,25D in T cells (58). In this particular study, the 
authors have hypothesised that intracrine metabolism 
could provide a basis for the reported link between low 
serum 25D and severity of Th1 cell inflammation in patients 
with COVID-19 disease. However, as outlined in Fig. 2, it 
is also possible to speculate that similar dysregulation of 
intracrine 1,25D and Th1 cell function may contribute to 
the development and severity of the autoimmune disease.

Figure 2
Intracrine vs paracrine effects of vitamin D on helper and regulatory T cell function. Schematic showing the metabolism of 25-hydroxyvitamin D (25D) to 
active 1,25-dihydroxyvitamin D (1,25D) via 1α-hydroxylase (1α-OHase) activity in antigen-presenting cells such as dendritic cells and T helper (Th)1 cells. 
Serum transport of 25D by vitamin D-binding protein (DBP) may suppress cellular availability of 25D. Transcriptional response to 1,25D following binding 
to the vitamin D receptor (VDR) modulates antigen presentation through target molecules such as CD80 and CD86 to influence the activation of 
quiescent T helper (Th)0 cells to Th1, Th17 , Tfh and regulatory T cells (Treg). These T cell phenotypes require specific cytokines (shown next to arrows). 
Production of 1,25D by antigen-presenting cells may result in paracrine effects on adjacent VDR-expressing T cells leading to the down or up-regulation 
of specific T cell cytokines (shown next to the T cell sub-types). Production of 1,25D by Th1 cells may also result in intracrine effects to suppress 
inflammatory Th1 immunity.

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-21-0554

https://ec.bioscientifica.com © 2022 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-21-0554
https://ec.bioscientifica.com


J Fletcher et al. Vitamin D and autoimmune 
disease

e210554

PB–XX

11:3

Synthesis of and response to 1,25D 
with inflammation

The dynamics of the intracrine vs paracrine effects of 1,25D 
on T cell function remain unclear, particularly as T cells are 
themselves able to stimulate DC expression of CYP27B1 
when in contact with DC (47). It is possible that both 
intracrine and paracrine actions of 1,25D occur in vivo, but 
the magnitude of influence of each pathway may depend 
on the local availability of 25D for metabolism. Specifically, 
lower concentrations of 25D may be adequate to drive the 
intracrine effects on DC antigen presentation, but not 
sufficient to enable secretion of enough 1,25D to influence 
T cells in a paracrine fashion. Conversely, conditions of 
25D repletion may act to enhance both intracrine and 
paracrine responses to DC-synthesised 1,25D. Paracrine 
release of 1,25D may also provide a mechanism by which 
DC are able to support the initial activation of T cells while 
moderating over-exuberant inflammation. Specifically, 
there appears to be a reciprocal relationship between 
expression of 1α-hydroxylase and VDR as DC differentiate, 
with mature DC having higher levels of 1α-hydroxylase but 
lower VDR than immature DC (31). Thus, it is possible that 
for mature DC the intracrine pathway is limited by lower 
levels of VDR, while paracrine actions on neighbouring 
immature DC may be more viable as these cells express more 
VDR (59). In this way, paracrine 1,25D would favour the 
maturation of some DCs to prime T cell activation, while 
inhibiting the further development of other less mature 
DCs to prevent an exponential increase in T cell activation. 
Another potential benefit of combined intracrine and 
paracrine actions of 1,25D during antigen presentation 
is to better facilitate the development of memory T cells. 
Inflammatory stimuli are required to activate DC to enable 
antigen presentation and subsequent expansion of effector 
T cells and the development of memory T cell pools. 
However, sustained inflammation impairs the effective 
generation of memory T cells via inappropriately sustained 
T cell proliferation and apoptosis (60). In this setting, 
intracrine 1,25D may act to moderate DC maturation 
and antigen presentation, while paracrine 1,25D may 
attenuate the inflammatory environment during effector 
T cell development. Collectively, this would then favour 
the development of more tolerogenic T cell responses with 
enhanced memory T cell development.

Vitamin D metabolism and function in 
autoimmune disease

The majority of reports linking 1,25D with immune 
function have involved studies of normal peripheral 

blood cells cultured under inflammatory conditions in 
vitro. However, the effects of 1,25D may be more complex 
in the setting of inflammatory disease. In studies using 
synovial fluid, we showed that T cells from the inflamed 
joints of rheumatoid arthritis (RA) patients are insensitive 
to the anti-inflammatory effects of 1,25D relative to paired 
blood T cells from the same patient, despite expressing 
similar levels of VDR (61). This T cell ‘resistance’ to 
1,25D was due in part to the predominant memory T cell 
phenotype in RA joint synovial fluid. However, other, 
tissue-specific, mechanisms are also involved as memory 
T cells from RA synovial fluid were less sensitive to 1,25D 
than circulating memory T cells from the same patient 
(61). Collectively these observations indicate that some of 
the T cell anti-inflammatory/tolerogenic effects of 1,25D 
on T cells observed in vitro may be less effective in vivo 
in the setting of inflammatory disease. Specifically, the 
ability of T cells to respond to 1,25D in an inflammatory 
disease setting correlated inversely with the capacity of 
phenotype change in the T cells – the more committed 
cells are phenotypically, the less responsive they are to 
1,25D. The precise mechanism for this remains unclear 
but does not appear to be due to impaired capacity for 
1,25D signalling.

As outlined earlier, a key observation linking vitamin 
D with the immune system is the capacity for synthesis of 
1,25D by macrophages from patients with sarcoidosis, with 
this extra-renal 1α-hydroxylase activity being sufficient 
to raise circulating levels of 1,25D in some patients (20). 
Elevated serum levels of 1,25D have also been reported 
for patients with some autoimmune disorders. In patients 
with Crohn’s disease, but not ulcerative colitis, raised 
serum 1,25D has been associated with decreased bone 
mineral density, although the precise source of increased 
1,25D in these inflammatory bowel disease (IBD) patients 
remains unclear (62). By contrast, in patients with RA, 
macrophages from the synovial fluid exhibit increased 
capacity for synthesis of 1,25D relative to macrophages 
from patients with osteoarthritis (63). However, this 
potential for enhanced macrophage 1,25D production in 
RA may also lead to elevated serum levels of 1,25D (64), 
although this appears to be dependent on the availability 
of 25D in the RA patients (65). In a recent analysis of 
multiple vitamin D metabolites from patients with RA, 
serum 1,25D levels were not statistically different from 
healthy controls, and were higher than paired synovial 
fluid 1,25D concentrations from the same patients 
(66). Despite the apparent lack of elevated 1,25D in RA 
patients in the absence of vitamin D supplementation, 
both serum 25D and 1,25D levels have been reported to 
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show inverse correlation with RA disease activity scores, 
suggesting that increased synovial inflammation is not 
driving systemic spill-over of any immune cell-derived 
1,25D (67). In other autoimmune disorders such as MS, 
serum 1,25D concentrations do not appear to be higher in 
patients vs controls (68), and have been reported to decline 
with MS relapse rate (69). In both cases, the circulating 
levels of 1,25D in patients with MS appear to be highly 
dependent on serum 25D concentrations and do not 
appear to be driven by inflammatory disease activity. The 
over-arching conclusion from these observations is that 
while extra-renal metabolism of 25D to 1,25D is a key 

feature of autoimmune disorders, this does not appear to 
be associated with the unregulated 1α-hydroxylase activity 
that is characteristic of granulomatous diseases.

Vitamin D-deficiency, genetic variation in the 
vitamin D system and animal models of 
autoimmune disease

Low serum concentrations of 25D are a common health 
issue across the globe (70, 71). While this continues to 
provide a challenge to calcium homeostasis and bone 

Table 1 Summary of reported studies of vitamin D and specific autoimmune disease. Publications for individual autoimmune 
diseases reporting effects of (i) serum vitamin D-deficiency; (ii) genetic variation in vitamin D status determined by Mendelian 
randomisation; (iii) SNPs for specific components of the vitamin D transport/metabolism/signalling system.

Autoimmune disorder Vitamin D deficiency Mendelian randomisation SNPs

Rheumatoid arthritis Reviewed in Harrison et al.  
2020 (49)

Bae and Lee 2018 (83)
Viatte et al. 2014 (84)

VDR systematic review Bagheri-
Hosseinabadi et al. 2020 (85)

DBP/GC Yan et al. 2012 (86)
Sjögren's syndrome Systematic review Kuo et al.  

2020 (87)
Li et al. 2019 (88)
Erten et al. 2015 (89)

Systemic lupus 
erythematosus 

Arshad et al. 2021 (90)
Reviewed in Kamen et al.  

2006 (91)
Reviewed in Dall’Ara et al.  

2018 (92)

Bae and Lee 2018 (83) VDR Chen et al. 2017 (93)
CYP27B1 Fakhfakh et al. 2021 (94)

Inflammatory bowel 
disease (IBD)

Systematic Review Del Pinto 
et al. 2015 (95)

Systematic Review Gubatan 
et al. 2019 (96) 

Lund-Nielsen et al.  
2018 (97)

VDR Gisbert-Ferrándiz et al. 2018 (98)
DBP/GC Eloranta et al. 2011 (99)

Multiple sclerosis (MS) Reviewed in Sintzel et al.  
2018 (100)

Mokry et al. 2015 (78)
Rhead et al. 2016 (79)
Harroud et al.  

2018 (101) 

CYP27B1 Sundqvist et al. 2010 (102); Orton 
et al. 2008 (103)

CYP2R1 Scazzone et al. 2018 (104)
DBP/GC Agliardi et al. 2017 (105)
VDR Reviewed in Scazzone et al. 2021(106)

Type 1 diabetes mellitus Meta-analysis Hou et al.  
2021 (107)

Meta-analysis Feng et al.  
2015 (108)

Manousaki et al.  
2021 (109)

VDR Nejentsev et al. 2004 (110)
CYP2R1, DBP/GC, CYP24A1 Almeida et al. 

2020 (111) 

Guillain-Barre syndrome
Chronic inflammatory 

demyelinating 
polyneuropathy

Elf et al. 2014 (112)

Psoriasis Fu et al. 2021 (113)
Pitukweerakul et al. 2019 (114)
Reviewed in Hambly and Kirby 

2017 (115)

VDR Liu et al. 2020 (116)

Autoimmune thyroid 
disease

Ke et al. 2017 (117)
Xu et al. 2015 (118)
Wang et al. 2015 (119)

VDR Zhou et al. 2021 (120)
VDR Meng et al. 2015 (121)
CYP27B1 Jennings et al. 2005 (122)

Myasthenia gravis Justo et al. 2021 (123)
Kang et al. 2018 (124)
Askmark et al. 2012 (125)

VDR Han et al. 2021 (126)

Vasculitis Korkmaz et al. 2021 (127)
Yoon et al. 2020 (128)
Systematic Review Khabbazi 
et al. (2019) (129)

Zhong et al. 2021 (130)
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health in both adults and children (72, 73), there has 
also been a dramatic increase in studies reporting extra-
skeletal health issues in the setting of 25D-deficiency 
(74). Prominent amongst these are association studies 
linking low serum 25D status with immune dysregulation, 
notably autoimmune disease. Table 1 summarises the 
various reports that have assessed the impact of 25D status 
on specific autoimmune diseases. The central conclusion 
from these studies is that low serum 25D concentrations 
are associated with increased prevalence and/or severity 
of autoimmune disease, but the key question remains as 
to whether 25D-deficiency is a cause or consequence of 
autoimmune disease. To address this question, more recent 
studies have assessed the impact of genetic variability 
within the vitamin D system as a marker of lifelong 
variations in 25D status. One approach to this has been 
to determine if SNPs in genes associated with vitamin 
D metabolism, transport or function correlate with the 
prevalence or severity of autoimmune diseases. These 
genes primarily include serum DBP (GC), 25-hydroxylase 
(CYP2R1), CYP27B1, 24-hydroxylase (CYP24A1) and VDR. 
The general conclusion from these studies is that genetic 
variations within the vitamin D system, notably VDR, 
may contribute to autoimmune disease susceptibility. 
The major caveat is that the functional relevance of many 
of these SNPs is still unclear and, thus, the impact of this 
genetic variability cannot yet be fully defined.

Some vitamin D-related SNPs, notably GC and CYP2R1, 
have been linked to serum 25D concentrations (75). The 
correlation between vitamin D SNPs and serum 25D levels 
means that it is possible to predict gene haplotypes that 
are associated with higher vs lower serum 25D status over 
the lifetime of a particular individual. The prevalence of 
these SNPs in patient cohorts therefore has the potential to 
provide a statistically robust analysis of whether particular 
SNPs linked to low serum 25D are more common in a specific 
disease, a process known as Mendelian randomization (MR) 
(76). The advantages of this strategy are that it enables the 
analysis of large numbers of subjects and provides a long-
term perspective of serum 25D status that is independent 
of potential confounders and disease influence. The 
disadvantages of MR are that the genetic variations used 
in this analysis are only a small component of the overall 
serum level of 25D, with one study estimating this to be 
approximately 7.5% (77). The other key caveat with MR is 
that this analysis of the genetic component of 25D status 
is less accurate at sub-optimal serum concentrations of 
25D. Thus, in populations, including the UK, where serum 
25D levels are known to be persistently low, particularly 
in winter months, MR analysis of vitamin D-related SNPs 

may have limited value. Nevertheless, MR strategy has 
been used to investigate further the links between serum 
25D levels and specific autoimmune diseases (see Table 
1). Broadly speaking, data do not support a significant 
association between genetically defined 25D levels and 
autoimmune disease. The notable exception to this is MS, 
where studies have reported significant associations for 
this disease (78, 79). This, coupled with the association 
between low serum 25D and MS, and the links between MS 
and several individual vitamin D system SNPs, means that 
of all the autoimmune diseases, MS has the strongest link 
to vitamin D.

Vitamin D and autoimmune disease in 
animal models

In addition to studies of serum 25D status and genetic 
variations in humans, the associations between vitamin D 
and autoimmune disease have been explored using animal 
models, predominantly mice. This includes the analysis of 
mice under conditions of 25D deficiency, and or following 
supplementation with vitamin D or 1,25D, and the use 
of mice with knockout or transgenic expression of genes 
from the vitamin D system. A summary of key publications 
from these animal studies is shown in Table 2. Consistent 
with human studies, 25D-deficient mice appear to be 
more susceptible to mouse models of specific autoimmune 
diseases. In contrast to human studies, vitamin D 
supplementation in mouse models of autoimmune disease 
has to date primarily involved treatment with 1,25D rather 
than conventional vitamin D supplementation used for 
human studies. In most cases this strategy ameliorated 
the specific disease, suggesting that elevated circulating 
1,25D is sufficient to modulate inflammatory disease in 
animal models. This raises the question of whether the 
intracrine 25D metabolism model that has arisen from 
studies of human immune cells in vitro is generalisable to 
animal models in vivo. It is also important to recognise that 
potential hypercalcemic effects of 1,25D maybe less evident 
in mouse models of inflammatory disease, and the long-
term efficacy of similar strategies in humans is far from 
clear and may be clinically unacceptable because of the 
potential hypercalcemic side-effects of 1,25D. In a similar 
fashion to 25D-deficiency, murine knockout of vitamin D 
genes such Vdr and Cyp27b1 appears to exacerbate mouse 
versions of all of the autoimmune diseases studied so far, 
suggesting that the vitamin D system plays some part in 
moderating the immune responses that are associated with 
the inflammatory disease in these mouse models.
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Conclusions and future challenges

The aim of this review is to provide a mechanistic and 
model context for the interconnection between vitamin D 
and autoimmune disease. The general conclusion from the 
studies described in this review is that there is an association 
between low serum levels of 25D and autoimmunity. 
Supporting this statement are robust data that 1,25D 
has potent immunomodulatory effects on leukocytes, 
consistent associations between 25D-deficiency in humans 
and animals, autoimmune disease prevalence and severity 
and beneficial effects of vitamin D supplementation 
in animal models. To date, the crucial missing piece of 
the jigsaw has been the absence of robust randomised 
controlled trials of vitamin D supplementation in humans. 
This is a subject in its own right and has not been discussed 
in detail in the current review. Nevertheless, it is important 
to highlight recent randomised control trial data from the 
Vitamin D and Omega 3 Trial involving 25,871 participants 
supplemented with placebo, omega 3 fatty acids or vitamin 
D (2000 IU/day). Supplementation with vitamin D, with 
or without omega 3 fatty acids, was shown to decrease the 
incidence of autoimmune disease in this cohort by 22% 
after a follow-up of 5 years (with a 39% reduction when 
only the last 3 years of the study were considered) (80). It is 
therefore clear that successful use of vitamin D to prevent 

autoimmune disease is possible but may require lengthy 
periods of supplementation.

Another key challenge in designing effective 
supplementation trials to assess the potential impact of 
vitamin D on autoimmune disease is that it is still not 
clear what serum level of 25D is optimal for immune 
function. It is possible that the target level for serum 25D 
is different from more generalised recommendations made 
by organisations such as the Institute of Medicine that are 
based on bone health (81). It is also possible that different 
levels of 25D are optimal for innate antibacterial and 
antiviral responses relative to anti-inflammatory effects. 
Another important consideration is whether vitamin D can 
be used to help prevent autoimmune disease or whether 
it provides any therapeutic benefit once the disease has 
become established. Again, it is quite likely that these two 
different facets of vitamin D treatment will require different 
serum levels of 25D for optimal function.

It is also important to recognise that almost all 
studies of vitamin D supplementation and human 
disease outcomes have relied on a single marker to define 
vitamin D deficiency or – sufficiency – namely serum 
concentrations of 25D. Serum 25D is a relatively cheap and 
straightforward measurement but this neglects the fact 
that 25D is an inactive form of vitamin. Recent studies have 
demonstrated that, like other steroid hormones, vitamin D 

Table 2 Mouse models of vitamin D and specific autoimmune disease. Publications for individual autoimmune diseases 
reporting effects of (i) dietary vitamin D-deficiency; (ii) supplementation with vitamin D or 1,25-dihydroxyvitamin D (1,25D); (iii) 
knockout/over-expression of specific vitamin D-related genes.

Autoimmune disorder Vitamin D deficiency Vitamin D supplementation Gene knockout/transgene

Rheumatoid arthritis 1,25D Cantorna et al. 1998 (131)
1,25D Zhou et al. 2019 (132)
1,25D Galea et al. 2019 (133)

Vdr Zwerina et al. 2011 (134)
Cyp27b1 Gu et al. 2016 (135)

Systemic lupus 
erythematosus 

Reynolds et al. 2016 (136)
Yamamoto et al. 2020 (137)

Vitamin D Correa Freitas et al. 
2019 (138)

Inflammatory bowel 
disease 

Lagishetty et al. 2010 (139)
Assa et al. 2014 (140)
Ryz et al. 2015 (141)
Wei et al. 2021 (142)

1,25D analogue Laverny et al. 
2010 (143)

1,25D Ooi et al. 2013 (144)
Vitamin D Yoo et al. 2019 (145)

Vdr Froicu et al. 2003 (146)
Vdr Kong et al. 2007 (147)
Cyp27b1 Liu et al. (148)
Vdr Kim et al. 2013 (149)
Vdr Lu et al. 2021 (150)

Multiple sclerosis DeLuca and Plum 2011 (151)
Wang et al. 2012 (152)
Fernandes de Abreu et al. 2012 (153)

1,25D Cantorna et al. 1996 (154)
1,25D Spach et al. 2004 (155)
1,25D Spach et al. 2006 (156)
1,25D Mayne et al. 2011 (157)

Vdr Wang et al. 2012 (152)
Cyp27b1 Wang et al. 2016 (158)

Type 1 diabetes mellitus Giulietti et al. 2004 (159)
Mathieu et al. 2004 (160)

1,25D Zella et al. 2003 (161) Vdr Mathieu et al. 2001 (162)
Vdr Gysemans et al. 2008 (163)
Vdr Morro et al. 2020 (164)
Gc Viloria et al. 2021 (165)

Psoriasis Vdr Kong et al. 2006 (166)
Autoimmune thyroid 

disease
Misharin et al. 2009 (167)

Vasculitis 1,25D Choi et al. 2011 (168)
1,25D Galea et al. 2019 (133)
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is defined by a wide range of metabolites that constitute 
the ‘vitamin D metabolome’, including active 1,25D (1) 
(see Fig. 1). Other, less commonly measured, vitamin D 
metabolites may also have distinct immunomodulatory 
actions in their own right. For example, recent studies 
have shown that the cholesterol side-chain cleavage 
enzyme can metabolise vitamin D before conversion to 
25D (3). One of the metabolites from this enzyme activity, 
20S-hydroxyvitamin D, has potent anti-inflammatory 
effects that do not require metabolism by CYP27B1 (82). 
This coupled with the distinct mechanisms for the uptake 
and catabolism of 25D and 1,25D, as well as the presence of 
reservoirs of conjugated and epi forms of 25D outlined in 
Fig. 1, means that relatively simplistic model for intracrine 
immune modulation initially proposed for 25D is now 
outmoded. In the original model, it was proposed that 
simple changes in serum 25D levels were sufficient to define 
extra-skeletal functions of vitamin D such as its effects on 

anti-inflammatory immunity. We can now greatly expand 
this model to include not only the concentration of 25D 
but also its transport, and target cell levels of 1α-hydroxylase 
and VDR, as well as the catabolic enzymes that attenuate 
25D/1,25D function (Fig. 3). Thus, it will be important in 
future studies to broaden our perspectives beyond simple 
serum measurement of 25D to include multiple other 
vitamin D metabolites and possibly genetic variants for 
proteins in the vitamin D system.
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Figure 3
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between vitamin D and the immune system. The principal marker of vitamin D function continues to be serum levels of 25-hydroxyvitamin D (25D) as 
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vitamin D metabolites, particularly 25D, involves the vitamin D binding protein (DBP) which is essential for renal conversion of 25D to 
1,25-dihydroxvitamin D (1,25D) by 1α-hydroxylase (1α-OHase). By contrast, acquisition of 25D by immune cells appears to involve free (unbound) 25D 
and subsequent 1α-OHase activity. In immune cells, the level of 1α-OHase expression, as well as expression of the vitamin D receptor (VDR) for 1,25D 
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