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Abstract: Several studies have suggested that distortion product otoacoustic emissions (DPOAEs)
may be an early marker not only of hearing loss (HL) but also of tinnitus. The purpose of this
study was to investigate whether DPOAEs measured up to 16 kHz are affected by the presence of
tinnitus. Pure tone thresholds and DPOAEs were measured in two groups: 55 patients with tinnitus
and 63 subjects without tinnitus. The subjects were divided into three groups according to their
audiometric results—better than 25 dB HL at all tested frequencies from 0.125 to 16 kHz, better than
25 dB up to 8 kHz, and hearing impaired. Receiver operator characteristics (ROCs) were used to test
whether DPOAEs could differentiate between normal hearing, hearing loss, and tinnitus. Comparison
of tinnitus subjects with the control group, matched accurately according to thresholds, did not yield
any significant difference in DPOAEs. However, in both these groups hearing loss was accompanied
by a decrease in DPOAEs, specifically, at 2–6 kHz and 16 kHz. The results suggest that any decrease
in DPOAEs seems to be related only to hearing loss and there is no additional effect from tinnitus.

Keywords: tinnitus; otoacoustic emissions; distortion product otoacoustic emissions; DPOAE; pure
tone audiometry

1. Introduction

Tinnitus is the sense of perceiving sound when there is no such sound in the environ-
ment (reviewed in [1]). It may take the form of pure tones, noise, or other types of sounds.
The exact mechanism of tinnitus generation is still unknown, but a possible explanation
is that it is related to neural processing of information coming from damaged hair cells.
Despite years of studies of this phenomenon, there is still no way of detecting it or mea-
suring its severity without the cooperation of the patient [2]. One approach that has given
some optimism in this regard is otoacoustic emissions (OAEs). OAEs are low-level sounds
that originate from the cochlea and are detectable in the ear canal (reviewed in [3]). Their
presence is directly linked to the normal functioning of outer hair cells, so it, therefore,
seems likely that they are sensitive to such pathological conditions as tinnitus.

Tinnitus is, in most cases, associated with hearing loss [4]. Curiously, there are cases of
people with profound hearing loss who experience a reduction in their tinnitus following
cochlear implantation [5]. At the same time, there are also subjects who experience tinnitus
even though their hearing is apparently normal [4].

OAEs are known to be even more sensitive to pathology than hearing thresholds
determined by pure tone audiometry [6]. They have sometimes been recommended [7] as
a tool to detect preclinical hearing loss (i.e., before a change can be seen in threshold). For
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these reasons, researchers have turned to OAEs as a possible marker for tinnitus—especially
in cases where there is no detectable hearing loss. The results so far have been inconclusive.
There are works that show changes in distortion product OAEs (DPOAEs) in subjects
with normal hearing and tinnitus compared to controls. Some of them report decreases in
DPOAEs of subjects with tinnitus [8–12], but interestingly others also report enhancement
of DPOAEs at some frequencies [13–15]. There are also some works that have seen changes
in DPOAEs only in a subset of subjects who have normal hearing and tinnitus (e.g., [16]);
other authors are skeptical that the cochlea is even involved in tinnitus [17].

Delving deeper into the matter of tinnitus subjects with normal hearing, it is also
worth noting that there are subjects who have very sensitive hearing (low thresholds) at
very high frequencies (>8 kHz). In such cases—tinnitus subjects with normal hearing up to
8 kHz but higher thresholds at 10–16 kHz compared to controls—the findings are that they
also have lower DPOAEs below 8 kHz [10]. So the question arises as to whether changes in
DPOAEs might also be seen in tinnitus subjects who had similar thresholds to non-tinnitus
controls right up to 16 kHz.

One relatively recent advance in DPOAE measurement is the possibility of acquiring
responses to ultra-high frequencies (i.e., >8 kHz), as done by Dreisbach and Siegel [18].
There are now commercial systems capable of such measurements, but not many studies
have used them to study tinnitus [19]. Indeed, there are relatively few studies of ultra-high
DPOAEs at all [20–23].

The motivation for this study is that more information is needed on the relationship
between tinnitus and OAEs. So far, reports relating the two are often contradictory. In fact,
the relation between tinnitus and hearing loss is itself not clear—do OAEs diminish due to
tinnitus or simply due to hearing loss alone, regardless of tinnitus? Another consideration
is that there have not been many studies on ultra-high frequency DPOAEs for tinnitus
subjects [10,11]. It is known that OAE levels can diminish before changes are visible in pure
tone hearing thresholds, e.g., [24]. Do tinnitus subjects with normal hearing up to 16 kHz
have weaker DPOAEs in the 8–16 kHz range? Can ultra-high frequency DPOAEs be used
as a marker of preclinical hearing loss? The answers to these questions might be found by
studying receiver operator characteristics (ROCs) in a population of tinnitus subjects, but
to our knowledge, there are no studies that have used this approach.

The purpose of this work was to investigate DPOAEs up to 16 kHz in tinnitus subjects.
The aim was to investigate whether weaker DPOAEs are due to tinnitus or due to hearing
loss alone, irrespective of tinnitus. We used ROC analysis to evaluate whether DPOAEs,
especially those at ultra-high frequencies, were diagnostic of hearing loss or tinnitus.

2. Materials and Methods
2.1. Participants

Participants consisted of adults without tinnitus (controls—C, 63 subjects, age 21–77 years,
31 females) and others that reported tinnitus (tinnitus positive—T, 55 subjects, age 18–74,
30 females).

All subjects had normal middle ear function verified by 226 Hz tympanometry (tympa-
nometric peak pressure between –100 and +100 daPa and peak compensated static acoustic
admittance of 0.3–1.3 mmhos). None had any known history of otologic disease.

There were 25 subjects with bilateral tinnitus and 30 with unilateral tinnitus (15 left).
For the subjects with unilateral tinnitus, only one ear was included in the analyses. The
data was also pooled regardless of the laterality of the subject’s tinnitus because recent
studies have shown no difference in DPOAEs for tinnitus subjects with normal hearing
who had unilateral or bilateral tinnitus [25]. All subjects reported that their tinnitus was
tonal or like narrow-band noise. The duration of tinnitus was at least 6 months.

The subjects without tinnitus were chosen so as to audiometrically match a group of
tinnitus subjects. Each group was divided into three subgroups according to the hearing
threshold: better than 25 dB HL at all frequencies from 0.125 to 16 kHz (C16–20 ears,
T16–13 ears); equal or better than 20 dB up to 8 kHz (C8–40 ears, T8–41 ears); and hearing
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impaired (Cim—24 ears, Tim—26 ears). The subsets were created by ears (not by subjects)
since both ears of some subjects were used for the analyses (there were no cases of one
person’s ears fitting two different subsets). In order to obtain groups of ears of similar size
when considering only one ear for unilateral tinnitus, some ears of individuals without
tinnitus also had to be excluded.

2.2. Procedures

The status of the ears of each subject was assessed using otoscopy (visual evaluation
of the ear, mainly the tympanic membrane), pure tone audiometry, impedance audiom-
etry (IA), distortion product otoacoustic emissions (DPOAEs), and tinnitus evaluation.
Otoscopic examinations did not reveal any abnormalities.

Pure tone audiometry was performed using a Madsen Astera clinical audiometer (GN
Otometrics, Taastrup, Denmark). Air conduction hearing thresholds were determined for
0.125 to 16 kHz using Sennheiser HDA-200 headphones. For normal hearing, a criterion of
better than 25 dB HL was used.

IA in the form of tympanometry measurements was made using a Madsen Zodiac 901
impedance bridge (GN Otometrics). A standard test tone of 226 Hz was used.

DPOAEs were measured using the HearID system (Mimosa Acoustics Inc., Cham-
paign, IL, USA) with an ER-10C probe (Etymotic Research, Elk Grove Village, IL, USA).
DPOAEs were evoked by two tones at frequencies of F1 and F2, and responses were mea-
sured at a frequency of 2F1–F2. DPOAEs were measured at 8 selected frequencies for F2
of 1, 2, 4, 6, 8, 10, 12, and 16 kHz; the F2/F1 ratio was 1.2, and the stimulus levels were 65
and 55 dB SPL, respectively. The measurement settings used were the same as the default
protocols of the HearID system; the only change was a different frequency arrangement,
with an extension up to 16 kHz.

All OAE recordings were evaluated by standard OAE parameters—response levels,
and signal to noise ratios (SNRs). Response levels were expressed in dB SPLs. SNR was
evaluated as the difference in dB between the response level and the noise floor. As we
wanted to compare results between subjects with normal and impaired hearing we included
in the analysis all measured signals irrespectible of SNR criterion, (similarly to some other
studies of similar design, e.g., [26]). Application of such criterion could introduce bias in
ROC analysis.

2.3. Statistical Analysis

All analyses were made in Matlab (version 2018b, MathWorks, Natick, MA). For all
measured parameters, the statistical significance of mean differences was evaluated using
analysis of variance (ANOVA), and a t-test was used for pairwise comparisons. As a
criterion of significance, a 95% confidence level (p < 0.05) was chosen. When conducting
multiple comparisons, p-values were adjusted using the Benjamini and Hochberg [27]
procedure to control false discovery rates.

Receiver operating characteristics (ROCs) and area under the ROC curve (AUC) were
used to gauge the efficiency with which OAEs could diagnose the presence or absence
of hearing loss or tinnitus. A ROC curve plots the relative proportion of hits (sensitiv-
ity) against the number of false alarms (1—specificity). Sensitivity is the likelihood of
identifying an ear as impaired when hearing loss is present; specificity is the chance of
identifying a normal-hearing ear as normal, and efficiency is the proportion of ears that are
correctly identified. AUC ranges from 0.5 for a test with no diagnostic power to 1.0 for a
test with perfect diagnostic ability. Some sources state that an AUC of 0.7 to 0.8 provides
acceptable discrimination, 0.8 to 0.9—excellent, and more than 0.9—outstanding (e.g., [28]).
The ROC analysis was summarized by AUCs and symmetry cutoff values (the point of
highest sensitivity and specificity). The symmetry cutoff values can be used as a threshold
for decision criteria (e.g., pass/refer).
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3. Results
3.1. Pure Tone Thresholds

The pure tone thresholds of described groups are shown in Figure 1. A repeated
measures ANOVA (rmANOVA) was used to examine differences in pure tone thresholds as
a function of group based on HL, tinnitus presence, and frequency (a repeated measure). It
was found that there was a significant effect of HL on threshold [F(2,158) = 115.6, p < 0.001]
but no effect of tinnitus [F(1,158) = 0.47, p = 0.49]. There was also a significant effect of
frequency on threshold [F(14,2212) = 129.1, p < 0.001]. Additionally, there was an interaction
effect of HL presence and frequency for threshold [F(28,2212) = 30.2, p < 0.001].

Figure 1. Average pure tone hearing thresholds in control groups (green—C) and in tinnitus patients
(red—T) divided into three groups according to thresholds. (A) Thresholds better than 25 dB HL
for frequencies up to 16 kHz—T16/C16. (B) Thresholds better than 25 dB HL up to 8 kHz—T8/C8.
(C) Impaired—Tim/Cim. Whiskers indicate standard deviations.

3.2. Comparison of Groups in Relation to Hearing Loss

First, we checked whether ultra-high frequency DPOAEs were affected by hearing
loss in ears without tinnitus (using the control groups C16, C8, Cim). The response levels
and SNRs of DPOAEs for C ears (without tinnitus) are shown in Figure 2. It can be
seen that there are only small differences between groups C16 and C8 while there are
more pronounced differences between both C16 and Cim, and C8 and Cim, mostly in the
2–6 kHz range.

An rmANOVA was used to examine differences in response levels and SNRs as a
function of HL and frequency (a repeated measure). It showed a significant effect of
HL on response level [F(2,81) = 15.9, p < 0.001] and on SNR [F(2,81) = 10.0, p < 0.001].
As expected, there was also a significant effect of frequency on response level (since
DPOAEs have different properties across frequencies) [F(8,648) = 38.3, p < 0.001] and on
SNR [F(8,648) = 94.9, p < 0.001]. Additionally, there was an interaction effect of HL presence
and frequency for both response level [F(16,648) = 3.2, p < 0.001] and SNR [F(16,648) = 2.3,
p = 0.003].
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Figure 2. Average response levels (A) and SNRs (B) of DPOAEs from control groups for three
PTA groups: C16, C8, and Cim. Whiskers indicate standard deviations. Asterisks mark significant
differences between subgroups C16 vs. Cim, and C8 vs. Cim. There were no significant differences
for C16 vs. C8.

Pairwise comparisons for response levels at different frequencies showed significant
differences between C16 and Cim for frequencies of 2–8 kHz and 16 kHz, and between C8
and Cim for frequencies of 1–6 kHz (marked by asterisks in Figure 2A).

Likewise, for SNR, pairwise comparisons of SNRs at different frequencies showed
significant differences between C16 and Cim for frequencies of 2–8 kHz, and between C8
and Cim for frequencies of 2–6 kHz (marked by asterisks in Figure 2B).

3.3. Comparison between Controls and Tinnitus Subjects

In order to try to isolate the effect of tinnitus from the effect of HL, we now compare,
according to their hearing thresholds, the control groups (C16, C8, Cim) with the matching
tinnitus groups (T16, T8, Tim), as shown in Figure 1. The corresponding DPOAE response
levels for both groups are shown in Figure 3, while SNRs are shown in Figure 4. In these
latter two figures, the control groups C are the same as in Figure 2, and it can be seen
that the DPOAE properties are virtually the same for both the tinnitus subjects and the
control subjects.

When comparing the T16 group with the C16 group, an rmANOVA showed no
significant effect of tinnitus on response level [F(1,31) = 0.06, p = 0.8], as shown in Figure 3A,
or on SNR [F(1,31) = 0.05, p = 0.8], as shown in Figure 4A. As expected, there was a
significant effect of frequency on response level [F(8,248) = 21.0, p < 0.001] and on SNR
[F(8,248) = 45.2, p < 0.001]. Additionally, there was no interaction between tinnitus presence
and frequency for both response level [F(8,248) = 0.99, p = 0.43] and SNR [F(8,248) = 0.29,
p = 0.9].
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Figure 3. Average response levels of DPOAEs in control groups (green) and in tinnitus patients
(red) according to the threshold groupings (A–C) shown in Figure 1. Whiskers indicate standard
deviations. There were no significant differences between the tinnitus and control groups.

Figure 4. Average SNRs of DPOAEs in control groups (green) and in tinnitus patients (red) according
to the threshold groupings (A–C) shown in Figure 1. Whiskers indicate standard deviations. There
were no significant differences between the tinnitus and control groups.
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When comparing the T8 group with the C8 group, an rmANOVA showed no signif-
icant effect of tinnitus on response level [F(1,79) = 0.20, p = 0.65], as shown in Figure 3B,
but there was an effect on SNR [F(1,79) = 4.48, p = 0.037], as shown in Figure 4B. How-
ever, pairwise comparisons did not yield significant result at any frequency. As expected,
there was a significant effect of frequency on response level [F(8,632) = 64.8, p < 0.001]
and on SNR [F(8,632) = 129.9, p < 0.001]. Additionally, there was no interaction between
tinnitus presence and frequency for both response level [F(8,632) = 0.77, p = 0.62] and SNR
[F(8,632) = 1.12, p = 0.34].

When comparing the Tim group with the Cim group, an rmANOVA showed no
significant effect of tinnitus on response level [F(1,48) = 0.17, p = 0.68]—see Figure 3C—or
on SNR [F(1,48) = 2.03, p = 0.16]—see Figure 4C. As expected, there was a significant effect
of frequency on response level [F(8,384) = 18.2, p < 0.001] and on SNR [F(8,384) = 29.9,
p < 0.001]. Additionally, there was no interaction between tinnitus presence and frequency
for both response level [F(8,384) = 1.15, p = 0.33] and SNR [F(8,384) = 1.81, p = 0.074].

3.4. Discrimination of Hearing Loss

We wanted to check if ultra-high DPOAEs can discriminate HL. To do this, an ROC
analysis was performed between groups having different hearing thresholds, that is, C16
vs. C8, C16 vs. Cim, and C8 vs. Cim. The results of this analysis are summarized in Table 1
and show AUCs and symmetry cutoff values for response levels at different frequencies.
The C16 vs. C8 comparison (last column) shows acceptable discrimination (AUC = 0.7)
only for F2 = 16 kHz (in the tables, ROC values higher than 0.70 are highlighted in red). The
C16 vs. Cim comparison showed acceptable discrimination for 2 and 8 kHz, and excellent
discrimination for the 3–6 kHz range. The C8 vs. Cim comparison showed acceptable
discrimination over the 2–6 kHz range.

Table 1. ROC analysis when DPOAE response levels (at each frequency shown) were used to dis-
criminate hearing loss between groups C16, C8, and Cim. AUCs and symmetry cutoff values shown.

AUC Symmetry Cutoff Value

F [kHz] C16 vs. Cim C8 vs. Cim C16 vs. C8 C16 vs. Cim C8 vs. Cim C16 vs. C8

1 0.63 0.63 0.52 −0.9 −4.1 1.3
2 0.72 0.73 0.51 2 0.6 8.3
3 0.86 0.74 0.63 2.1 2.2 4.4
4 0.87 0.79 0.62 0.5 −0.3 5.8
6 0.87 0.75 0.60 1.6 −3.2 4.1
8 0.71 0.64 0.55 −8 −9.2 −5

10 0.50 0.48 0.51 −0.1 −0.1 −0.1
12 0.63 0.60 0.53 5.7 0.5 5.7
16 0.70 0.48 0.70 −12.6 −12.7 −12.6

A similar analysis for SNRs yielded slightly worse results (Table 2). The C16 vs. C8
comparison did not show acceptable discrimination for any frequency. The C16 vs. Cim
comparison showed acceptable discrimination (AUC > 0.70) for 2, 3, 4, and 8 kHz, and
excellent discrimination (AUC = 0.86) for 6 kHz. The C8 vs. Cim comparison showed
acceptable discrimination for the 2–6 kHz range (AUC > 0.70).

3.5. Discrimination of Tinnitus

Since the main idea of this study was to check whether DPOAEs might be sensitive
to tinnitus only (regardless of HL), the ROC analysis was performed using DPOAEs from
groups that had matched hearing thresholds: C16 vs. T16, C8 vs. T8, and Cim vs. Tim.
The results of this analysis for DPOAE response levels are summarized in Table 3. As this
table shows, the AUC did not reach 0.7 (acceptable discrimination) at any frequency. Very
similar results were obtained for SNRs (not shown).
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Table 2. ROC analysis when DPOAE SNRs (at each frequency shown) were used to discriminate
hearing loss between groups C16, C8, and Cim. AUCs and symmetry cutoff values shown.

AUC Symmetry Cutoff Value

F [kHz] C16 vs. Cim C8 vs. Cim C16 vs. C8 C16 vs. Cim C8 vs. Cim C16 vs. C8

1 0.66 0.66 0.48 −2.2 −2.1 1.9
2 0.74 0.72 0.52 17.9 17.4 25.6
3 0.79 0.70 0.55 23.3 22.9 26.2
4 0.78 0.77 0.51 20.5 21.2 26.1
6 0.86 0.75 0.60 12.5 11.9 14.4
8 0.73 0.62 0.59 3.2 1 3.2

10 0.44 0.53 0.42 8.3 7.5 8.3
12 0.58 0.56 0.51 1.8 6.5 10.4
16 0.64 0.47 0.68 −1.4 −0.6 2.3

Table 3. ROC analysis when DPOAE response levels (at each frequency shown) used to discriminate
tinnitus between groups C16, C8, Cim and T16, T8, Tim. AUCs and symmetry cutoff values shown.

AUC Symmetry Cutoff Value

F [kHz] C16 vs. T16 C8 vs. T8 Cim vs. Tim C16 vs. T16 C8 vs. T8 Cim vs. Tim

1 0.44 0.42 0.46 −1.6 4.1 −5.4
2 0.39 0.48 0.43 9.5 5.1 −1.7
3 0.54 0.53 0.54 3 2.6 −0.8
4 0.56 0.54 0.53 6.7 4.4 −6.4
6 0.57 0.59 0.57 6.4 6.5 −14.6
8 0.38 0.58 0.42 −8 −9.2 −7.6

10 0.42 0.56 0.69 3.6 −2.6 −1.3
12 0.60 0.51 0.52 5.7 10.3 5.5
16 0.56 0.55 0.60 −8.8 −15.7 −15.6

3.6. Examples of Criteria and Their Performance

When DPOAEs are used as a functional test, certain criteria are employed to determine
whether a signal is present. Often the criteria are certain response levels or SNRs that should
be met for particular frequencies (e.g., three of six identified frequencies). Such an approach
was used here. Table 4 lists six criteria, based on a combination of several frequencies,
which were used to evaluate the sensitivity, specificity, and efficiency with which DPOAEs
could detect HL. The criteria we selected are based on the six best frequencies shown in
Table 1—that is, 2, 3, 4, 6, 8, and 16 kHz—and use the symmetry cutoff values as set out
in the column headed C16 vs. Cim. The best performance, as evaluated by efficiency, was
when 3 or 4 of the DPOAE frequencies (out of 6) which exceeded the symmetry cutoff value
were used.

Table 4. Sensitivity, specificity, and efficiency for groups C16 and Cim based on various numbers of
six best symmetry cutoff values (for frequencies 2, 3, 4, 6, 8, and 16 kHz).

No. of Frequencies Sensitivity (%) Specificity (%) Efficiency (%)

1 of 6 25 100 59
2 of 6 67 95 80
3 of 6 79 95 86
4 of 6 83 85 84
5 of 6 88 50 70
6 of 6 100 15 61

4. Discussion

This work has shown that when tinnitus subjects are matched to a control group with
similar pure tone audiometry results, there seems to be no difference in their DPOAEs. At
the same time, we have duplicated the finding that DPOAEs are reduced when there is
mild hearing loss. An additional result of interest is that ultra-high frequency DPOAEs (at



Int. J. Environ. Res. Public Health 2022, 19, 2123 9 of 12

F2 = 16 kHz) may have the potential to detect hearing loss at this frequency. Surprisingly,
DPOAEs at F2 = 10 or 12 kHz do not seem to provide this capability.

4.1. Relationship of DPOAEs to Tinnitus

Some earlier studies have claimed that there is a difference in DPOAEs between
subjects with tinnitus and controls, both with normal hearing thresholds (e.g., [8,9,11,12]).
Here we found no such dependence. The discrepancy might be related to the underlying
methodology, i.e., what we understand to be a normal hearing threshold [29]. If one takes as
criterion better than 25 dB HL, it is possible to have two subjects, one with a 0 dB threshold
and another with a 20 dB threshold—a difference of as much as 20 dB. In the present study,
we constructed our dataset to ensure that there was no significant difference between the
hearing thresholds of the tinnitus group and the control group.

The present results support some recent studies using various techniques, which
seem to point to some extra-cochlear source of tinnitus (e.g., [30]). In this context, our
work is probably the first to explore the relationship between ultra-high frequency hearing
thresholds and DPOAEs. We set out to investigate whether ultra-high frequency DPOAEs
might be suitable as a marker of preclinical changes that cannot be observed with pure tone
audiometry. As it turned out, we did not succeed in uncovering any such relationship.

4.2. Relationship between DPOAEs and HL

As discussed above, we did not succeed in showing any effect of tinnitus on DPOAEs.
However, we did find some potential for using ultra-high frequency DPOAEs to detect
changes in hearing. This aspect looks promising, but at the same time should be treated
with caution as the reliability of DPOAEs at frequencies above 6 kHz is worse than at lower
frequencies (e.g., [31,32]). This reliability issue might also explain why, at 10–12 kHz, we
saw no difference in DPOAEs between groups that had different hearing thresholds.

Looking at the general properties of DPOAEs, the minimum level at 8 kHz and
maximum at 12 kHz seem to relate to the characteristics of OAEs and the middle ear
transfer function. These features have also been noted in measurements using different
systems [31,33].

The ROC results obtained here are similar to previous studies which have shown the
best performance of DPOAEs in the 2–8 kHz range (e.g., [26,34]). The quite promising result
for 16 kHz cannot be compared as there appears to be no other ROC data at this frequency.

4.3. Limitations

It should be noted that there are reports that the ER-10C probe used here for DPOAE
assessment tends to generate artifacts at frequencies greater than 8 kHz [35]. Indeed, the
poor discrimination shown here between groups at frequencies above 8 kHz may be indirect
proof of such problems. From the analyses presented here, it may appear that DPOAEs at
16 kHz are excluded from the influence of artifacts. Nevertheless, this may also be a result
of too small a dataset. Therefore, the overall results presented here for frequencies above
8 kHz need to be treated with caution.

4.4. Thoughts on the Usefulness of OAEs

This study tends to support some other recent studies that have put a question mark
over previous findings. For example, Riga et al. [36] showed that, in various studies of
tinnitus subjects, suppression of DPOAEs by contralateral stimulation (CAS) differs so
much in design, instrumentation, protocol, and subjects that it is virtually impossible to
compare them. Some other confounding factors which are relatively rarely discussed,
such as differences between results obtained using different equipment [37] and certain
calibration issues, e.g., [35], also need to be considered. Certainly, if OAEs are to be
useful diagnostically, we need to first look critically at some earlier results. Furthermore,
OAEs need to give either objective information that aligns with other methods, especially
pure tone audiometry, or give precise and certain preclinical information (for example,
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a prediction of a change in high-frequency pure tone audiometry that is later verified).
More studies of ROC analysis on DPOAEs are needed because so far there has only
been a limited number. The diverse findings regarding tinnitus (e.g., [9–12]) imply that
DPOAEs are unlikely to form the basis of reproducible findings, and, more to the point,
appear to indicate that we are far away from using them to provide a clinical basis for
diagnosing tinnitus.

5. Conclusions

The present study shows that when tinnitus subjects were matched with a control
group having similar hearing thresholds there were no apparent differences in DPOAEs,
i.e., the decrease in DPOAEs seems to be related only to hearing loss and there was no
additional effect of tinnitus. This would suggest that DPOAEs are not helpful in detecting
tinnitus. Nevertheless, in agreement with previous studies, DPOAEs can be used to
differentiate hearing loss in the 2–8 kHz range. Furthermore, DPOAEs at 16 kHz have the
potential to detect preclinical decreases in the hearing threshold.

The results here suggest that tinnitus generation is not directly related to cochlear
mechanics and that the tinnitus sensation is probably generated further along the auditory
pathway. This is in line with some recent imaging studies that were able to differentiate
tinnitus subjects from controls based on activation of certain brain regions [38,39].
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