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Mining contributes importantly to tropical deforestation and land
degradation. To mitigate these effects, mining companies are increasingly
obliged to restore abandoned mine lands, but factors driving restoration
success are hardly evaluated. Here, we investigate the influence of ecological
factors (restoration age, soil properties and surrounding forest area)
and management factors (diversity and density of planted species, mine
zone) on the recovery rate of forest structure and tree diversity on 40
post-mining restoration areas in Southern Amazonia, Brazil, using a 9-year
annualmonitoring dataset consisting of over 25 000 trees.We found that recov-
ery of forest structure was closely associated with interactions between soil
quality and the planted tree communities, and that tree diversity recovery
was positively associated with the amount of surrounding forests. We also
observed that forest structure and diversity recover more slowly in mine tail-
ings compared to pit surroundings. Our study confirms the complexity of
mine land restoration but also reveals that planting design and soil improve-
ment can increase restoration success. For resource-efficient mine restoration,
we recommend the focusing of efforts on tailings, which are hardest to restore,
and reducing efforts in pit surroundings and areas close to surrounding forest
because of their potential for restoration by natural regeneration.

This article is part of the theme issue ‘Understanding forest landscape
restoration: reinforcing scientific foundations for the UN Decade on
Ecosystem Restoration’.
1. Introduction
The restoration of degraded forest areas in the tropics has lagged behind that of
temperate and boreal zones, but is gaining momentum now [1]. This is reflected
by the substantial pledges made by tropical countries to restore degraded
forest land as part of the Bonn Challenge and New York Declaration on Forests.
These ambitious restoration commitments are supported by a recent overview
of methods [2], comparison of approaches [3] and identification of suitable
locations [4] for tropical forest restoration. Yet, most restoration activities are
still implemented in a trial-and-error fashion and systematic analyses of the
factors determining restoration success are scarce [5]. As a result, advice on
which restoration approaches to use in what situations is often formulated in
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Figure 1. (a) Study location (black cross) in the Brazilian Amazon region together with tree cover (light green), primary forest extent (dark green) and active mining
concessions (orange; global forest watch). (b) Picture of one of the studied open-pit mines in Brazil, indicating three mine zones. Capped tailings—tailings on which
topsoil is transplanted—are not included here; washed tailings are not included as they result from a different mining technique. (Online version in colour.)
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general terms [6]. Analyses of success are crucial to develop
practical guidelines for effective restoration but require
sound documentation of restoration measures and intensive
monitoring [7]. A central challenge in assessing restoration
success is to quantify the relative roles of ecology versus
active management [8]. Management factors relate to the
soil treatment applied, the diversity and composition of
planted tree species and the temporary use of exotics to
kickstart regeneration [9]. Ecological factors include the avail-
ability of seed sources from surrounding forests, natural
successional processes and soil characteristics [10]. The
relative importance of these factors is a central point of
discussion in ecological restoration literature [11], but
quantitative analyses of their roles are missing so far.

One of the severest forms of degradation in tropical forests
is open pit mining. Mining contributes importantly to total
tropical deforestation (approx. 9% in the Amazon) [12], but
mining companies are stimulated or legally obliged to restore
forests on former mine lands towards self-sustaining ecosys-
tems [13]. As a result, vast areas of abandoned surface mines
are now actively restored [14,15]. The restoration of open pit
mines constitutes a challenge because of topsoil removal and
soil deposition in tailings [16]. Mine restoration is therefore
an intensive endeavour and often requires soil amendment
and topographic modification [17], followed by active tree
planting [10] and natural regeneration [18]. Together, the
demanding mine restoration process and the vast extent of
abandoned mines form a formidable challenge for ecological
restoration. Analyses of the factors determining success of
past mine restoration processes are therefore urgently needed.

A specific challenge in mine restoration is to adapt to the
strong heterogeneity in soil conditions created by mining
operations [19]. The main mine zones created during oper-
ations are the surroundings of the pit, where the original
soil layering is preserved but might be compacted, and the
tailing dam, where the soil is unstructured as a result of
washing and mixing (figure 1b) [20]. Current research typi-
cally investigates restoration success on specific tailing
damn types, neglecting the presence and heterogeneity of
other mine zones, but recognizes that restoration techniques
should take into account differences in microhabitats [21,22].

This study aimed to determine the influence of ecological
and management factors on the success of mine land restor-
ation and to interpret their implications for restoration
practices. We monitored more than 25 thousand trees in
40 restoration areas (aged 10–25 years) that were located in
7 deactivated mines in the Amazon basin (Rondônia,
Brazil) over a 9‐year period. We quantified restoration success
as the recovery of forest structure (basal area, stemdensity) and
diversity (species richness and diversity) over time. We tested
contributions of ecological (soil physical and chemical proper-
ties, restoration age and landscape context) and management
factors (mine zone, planted stem density, planted species rich-
ness and planted species composition) to recovery. We
hypothesize that (i) the recovery of forest structure is mainly
driven bymanagement factors, while (ii) that of forest diversity
is governed by both management and ecological factors. In all
analyses, we also tested for effects of mine zones on recovery.
Our systematic assessment of driving factors for mine restor-
ation success contributes to the development of tailored and
resource-efficient restoration guidelines. Expanding the knowl-
edge base on how disturbances affect soil conditions and
therefore restoration success as well as on the impacts of
using native and exotic species in restoration is considered
crucial for achieving global forest restoration targets [23].
2. Material and methods
(a) Study location
We conducted this study in the Jamari National Forest, located in
the municipality of Itapuã do Oeste, Rondônia state, Brazil;
within the Amazon biome (figure 1a).

The Jamari National Forest spans 220 000 ha, in which mining
and logging are allowed. Data were collected in seven deactivated
Casserite mines (Casserite is a mineral used for tin production).
Together with one other active mine, the mining area accounts for
10%of the national forest. The other 90% is covered by evergreen tro-
pical forests. Climate is tropical wet with a well-defined dry season
(less than 100 mm monthly precipitation) from May to September
and wet season from October to April (monthly precipitation from
200 to 400 mm). Mean annual temperature is 22°C and mean
annual precipitation is 2500 mm. The dominant soil types in the
study area are Oxisols, Ultisols and hydromorphic soils.
(b) Mine zones
Two mining techniques were applied: pit mining and washing,
which involve different levels of substrate modification that were
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grouped into mine zones for the restoration action [19]. In pit
mining, pit holes are dug and sterile soil material is deposited on
tailing dams, resulting in four mine zones: pit surroundings, wet
tailing, dry tailing and capped tailing (figure 1b). Pit surroundings
were used for transportation, and operating heavyminingmachin-
ery, leading to physical soil compaction but keeping the original
soil structure. Mine tailings are dams of soil deposits composed
of unstructured sterile soils with a slope that allows for drainage.
The combination of slope and long-term exposure creates a
gradient of soil particle sizes, with sandy soils on the top and
clayey soils on the bottom. Three mine zones are differentiated
along the slope of the dams. First, ‘dry tailings’ are the upper
dam zones and characterized by higher sand content that causes
dry soil conditions through lower water retention capacity and a
loose soil structure due to a lack of heterogeneity in soil particle
sizes. Second, ‘wet tailings’ are the lower portions of the dam,
characterized by the dominance of finer soil particles (i.e. clay
and silt). These areas can become waterlogged due to high clay
content and their position in the landscape. Third, ‘capped tailings’
are present in some cases when the dry or wet tailings are covered
with topsoil obtained from recent forest openings elsewhere, and
thus richer in organic matter, soil biota and seeds.

In mines where washing is used, no pit hole is dug and the
mineral is extracted by mobile machinery that removes shallow
soil layers, extracts the mineral and deposits the washed sterile
soil back in its original location. Washing results in one mining
zone, ‘washed tailings’. The soil texture in washed tailings is
similar to original soil and thus differs from wet, dry and
capped tailings. Washed tailings are not exposed to slopes, pre-
venting the separation of soil particles and resulting in a
heterogeneous soil structure [24].

(c) Restoration activities
Before trees were planted, soil quality, organic matter content and
soil biology were improved for three years using a combination
of chemical fertilization, liming, cow manure and green manure.
Then, nine restoration areas (all capped tailings) were selected
for topsoil transplantation based on the nutrient availability deter-
mined by soil analyses. In all areas, chemical fertilization was
applied during tree planting and continued for at least 5 years
to provide macro-nutrients (N, P, K) for successful sapling
establishment.

Because no rapid natural tree regeneration took place in the
areas, active tree planting was required. Tree saplings were
grown in a local tree nursery from seeds obtained from easily
accessible seed trees located inside and outside the national
forest. Planting densities and species mixture varied among sites.
Reforestation started in 1991 and activities are still ongoing
(December 2021); the mean start year of reforestation was 2003
(s.d. ± 2.7 years). A total of 105 tree species were included in plant-
ing (electronic supplementary material, S1) and on average 1680
(s.d. ± 1059) trees were planted per hectare. The two dominant
planted tree species were Syzigium cumini (Myrtaceae), an exotic
species originating from the Indian subcontinent, and the native
Inga laurina (Fabaceae), a fast-growing legume. These species
were planted in high abundance, particularly at the beginning of
the restoration activities, because they withstand harsh environ-
mental conditions such as low nutrient content, degraded soil
biota, low water availability in the dry tailings or water logging
in the wet tailings. The exotic species were used to colonize the
sites to initiate the establishment of natural regeneration. The
exotic trees were removed after fulfilling this function.

(d) Data collection
We recorded each individual’s taxonomic identity and size in 89
permanent plots located in 40 restoration areas in seven deacti-
vated mines (electronic supplementary material, S2) annually
from 2009 to 2017. Each plot was 50 × 50 m and contained six
subplots of varying dimensions where different tree and seedling
sizes were sampled (see electronic supplement material, S3 for
inclusion criteria). The size of the studied mines ranged from
6 to 196 ha. The mines were divided into restoration areas
depending on their former location in the mine. Their sizes
ranged from 0.4 to 135.6 ha, and age since planting ranged
from 10 to 26 years (in 2017).

Annual monitoring was conducted during the dry season.
Diameter at breast height (DBH) was taken for trees with a
DBH> 10 cm. All trees and saplings taller than 0.3 m were ident-
ified to the highest taxonomic level possible by local
parataxonomists. Additionally, we identified whether each indi-
vidual tree was regenerated naturally or planted. Similar
measurements were conducted in 26 reference plots (in 2010)
in secondary forests outside the mines (aged 15–30 years) and in
24 reference plots in old-growth forests surrounding each mine.

(i) Composition of regeneration method and tree species origin
We calculated the proportion of planted and naturally regener-
ated trees for the beginning (2009) and the end (2017) of the
study period using the tree observations from all restoration
areas. We then determined the proportion of exotic and native
trees for the classes ’planted’ and ’naturally regenerated’ trees.

(ii) Soil variables and landscape configuration
The composition of sand, silt and clay was measured in 2011.
We collected three soil samples per restoration area and
measured pH, organic matter, sulfate, calcium, magnesium,
potassium, aluminium and total soil phosphorus (using the
Mehlich-1 method) in 2017 following Raij et al. [25]. The mean
value per restoration area was used in further analyses. Soil
particle fractions were analysed on soil samples of 1000 g.
We constructed a principal component analysis (PCA; figure 2)
including all soil variables and used the calculated scores
of the first two components to describe the soil properties in
subsequent analyses.

We characterized the landscape context for each plot using
seven proxies: the area of surrounding forest in buffer circles
with radii of 500, 300, 200, 100 m, the distances to secondary
and old-growth forest, and the size of the restoration area.
These proxies were strongly correlated (r = 0.2 to 0.91; Pearson)
and we therefore selected the best landscape proxy by comparing
a set of (preliminary) linear mixed effect models. Each model
included one of the seven landscape variables as covariate. The
best landscape proxy (i.e. the model with lowest AIC) for the
relationship between landscape and biodiversity recovery was
the area of surrounding forest (secondary and old-growth
forest) within a radius of 500 m.

(e) Statistical analyses
(i) Rationale and preparation of response variables
In active restoration, trees are planted to create a favourable micro-
environment that allows native species to regenerate, and succes-
sion to proceed [26]. We investigated the development in forest
structure including both planted and naturally regenerating trees
and evaluated changes in forest diversity including only naturally
regenerated trees. For forest structure, we calculated plot basal area
and stem density as the sum of the planted and naturally regener-
ating trees from all subplots after extrapolating to a hectare. For
species richness, we summed the total number of naturally regen-
erating species per plot. Since there were often only few species
present within monitoring plots at early stages of succession
(ca 1.5 species per plot in 2009), rarefaction was not applied
because it would result in a very low maximum species richness.
For species diversity, we calculated the Shannon diversity index
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including only naturally regenerating trees after extrapolating the
species abundance data of the subplots to one hectare.

We expressed restoration success as the increment rate of
basal area and stem density for forest structure recovery, and
as the increment rate of species richness and species diversity
for species diversity recovery. We estimated recovery rates of
basal area, density, species richness and diversity using linear
mixed effects models with normally distributed errors, calendar
year (i.e. multiple census) as main explanatory variable, and plot
ID and calendar year as random intercept and random slope,
respectively. These models yielded estimates of the rates of recov-
ery at the community level via fixed effects and at the plot level
via random effects (i.e. random slopes). This random structure
also allowed us to control for multiple observations per plot.
Plot-level coefficients served as our estimates for the increment
rates per plot, a measure of restoration success, and used in
subsequent analyses. We additionally included area ID nested
within mine ID as additional random intercepts to control for
the nested and unbalanced structure of the design and the
higher relatedness among closely located plots. Year was centred
and standardized prior to the analyses.
(ii) Covariate’s specification and multiple regression models
We related the recovery rates of basal area, stem density, species
richness and diversity to five management variables (i.e. planted
species richness, planted tree density, two principal component
analyses (PCoA) axes of planted species composition (electronic
supplementary material, S4) and mine zones), four ecological
variables (i.e. age of the restoration areas (centred at the midpoint
of the monitoring period: 2013), two soil PCA axes (electronic
supplementary material, S4), and the amount of area of sur-
rounding forest within 500 m distance) and 13 interactions
using linear models with normally distributed errors (electronic
supplementary material, S5). For tree density recovery rates, we
used a (generalized) linear model with Gamma-distributed
errors. All continuous variables were centred and standardized.
For each response variable, we first compared models that
included fixed and random terms (areas nested within mines)
with models that included only the fixed terms by using AIC
and the restricted maximum-likelihood estimator. Models
without random terms had lower AIC values. We then simplified
the models by removing interaction terms and variables that did
not improve the predictive quality of the models. The best-fit
model for each analysis was selected using AIC [27]. We con-
sidered models with DAIC of less than 4 to have a similar level
of empirical support from the data and selected the most parsimo-
nious model when two models had similar AIC values.
Descriptive statistics of response and explanatory variables are
documented in electronic supplementary material, S6.

We constructed all models using the lme4 package v. 1.1-23
[28] in R v. 4.0.0 [29] to estimate recovery rates and the first set
of mixed models (fixed versus fixed + random terms). We used
the base R function ‘lm’ for basal area, species richness and
species diversity and the function ‘glm’ for stem density.
Model validation was assessed graphically as detailed in Zuur
& Ieno [30]. We finally estimated the precision of model terms
by computing the 95% confidence interval of the parameter esti-
mates using 1000 parametric bootstrap simulations and the
percentile interval method.
3. Results
(a) General restoration dynamics
The share of planted trees declined from almost 70% to 12%
throughout the study period and, simultaneously, the pro-
portion of planted exotic trees halved. The natural
regeneration is dominated by the establishment of native
trees. The share of naturally regenerated exotic trees declined
from 9.8% to 2.0% (table 1).

(b) Soil properties
The first axis of the PCA on soil properties explained 26.7% of
variation (figure 2a) and represents plots with high sand con-
tent, Mg and Ca in the negative side of the axis, and plots
with high clay content, low magnesium and calcium in the
positive side of the axis. We hereafter refer to this axis as
‘soil texture’. The second component on soil properties



Table 1. Percentages of different regeneration methods (planted and natural) and species origins (native and exotic) as well as their combinations for stem
density at the beginning (2009) and the end (2017) of the monitoring period.

year

regeneration method planted trees natural regeneration

planted natural native exotic native exotic

stem density 2009 68.6 31.4 64.6 35.4 90.2 9.8

2017 12.0 88.0 82.3 17.7 98.0 2.0
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explained 19% of variation and revealed a gradient from plots
with high to low pH (4.4–3.6), organic matter, potassium,
phosphorus and aluminium. We hereafter refer to this axis
as ‘soil acidity’ (figure 2a). The PCA separated mine zones
by physical soil properties, with dry and capped tailings
associated with a high sand content, and wet tailings and
pit surroundings with higher clay content. The areas on the
washed tailings were distributed across the full range of the
first axis, indicating a high variability in soil particle compo-
sitions in this mine zone, corresponding to the soil treatment
in this mining type. The chemical soil properties were not
clearly linked to mine zones.
6

(c) Planted species composition
The first two PCoA axes of the planted species composition
(figure 2b) explained 22.8% of the variation. The species
Syzigium cumini and Inga laurina contributed most to the
ordination along both axes due to their overall dominance in
planted species composition, while the other more equally
planted species among plots contributed less to the variation
of the planted species composition. The first PCoA axis (here-
after PSC1) ordinates areas based on the dominance of
I. laurina (positive values) or S. cumini (negative values). The
second PCoA axis (hereafter PSC2) shows a gradient from
low dominance of these species (negative values) towards
high dominance by both species (positive values). Mine
zones were not distinguished based on species composition.
(d) Speed of forest recovery
We observed a steady increase of forest structure and
diversity over time (figure 3). Reference values from
secondary forest for basal area and Shannon diversity index
were reached by 30% and 20% of the restoration plots,
respectively. Restoration sites showed a mean basal area
recovery of 1.33 m2 y−1 and the mean basal area in 2017
(12.5 [s.d. ± 5.5] m2 ha−1) was close to the value of surround-
ing secondary forest (15.2 m2 ha−1) and half the value
of nearby old-growth forests (27.3 m2 ha−1). Stem density
recovery rates ranged between −112 and 6783 y−1 with a
mean of 1001 new stems per year, indicating different
successional stages across the sites. Mean stem density
(10 000 stems ha−1) in 2017 recovered to roughly 40% of
the secondary forest values (26 000 stems ha−1) and old-
growth forests (24 000 stems ha−1) but variation across restor-
ation sites was large (8740 stems ha−1) and some sites
exceeded the stem numbers of old-growth forests (figure 3).
Species richness showed a constant increase of 1.15 species
per year with a standard deviation of 0.15, and species diver-
sity recovery had the largest variability across restoration
sites and increased on average by 0.15 per year (electronic
supplementary material, S6).

(e) Factors associated with forest structure recovery
The recovery rate of basal area was explained by the inter-
action between mine zones and soil texture (figure 4;
electronic supplementary material, S7), accounting for 35%
of the variation in recovery rates of basal area. Increasing
clay content led to higher recovery rates of basal area in
capped tailings but lower recovery rates in dry tailings.

The rate of stem density increment was related to both
axes of the planted species composition, the mine zones
and their interaction (figure 4). The model explained 49% of
the variation in stem density increment across plots. Pit sur-
roundings showed consistently higher rates of stem density
increment compared to the dry and wet tailings and no
difference from washed tailings. The interaction between
mine zones and species composition indicates that in the
dry and capped tailings (associated with sandy soils), density
recovery rates were associated with species composition of
the planted trees. Generally, in sandy soils, the abundance
of S. cumini and I. laurina (PSC2) was associated with lower
recovery rates of stem density. On dry tailings, however,
stem density increment increased with clay content, with
increasing densities of I. laurina and with decreasing densities
of S. cumini (PSC1). The effect of these two species was
the reverse in the capped mine tailings (figure 4).

( f ) Factors associated with forest diversity recovery
The increment of species richness increased with the area of
surrounding forest and, similar to stem density increment,
was higher in the pit surroundings compared to other mine
zones (figure 4; electronic supplementary material, S7),
explaining 28.6% of the variation.

Species diversity (Shannon index) was related to inter-
actions between the area of surrounding forest, mine zones,
planting parameters and soil texture. Constrained by soils
with high pH and clay content, species diversity recovered
faster with increasing amount of the surrounding forest.
Higher planted species richness had a positive effect in the
dry and wet tailings, suggesting that planted diversity is
more crucial for restoration in these mine zones where there
are more constraints to natural regeneration. In the washed
tailings increasing clay content caused slower recovery rates.
4. Discussion
Overall, the results show that within 21 years of restoration,
post-mining sites can attain values of vegetation structure
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and tree species diversity similar to secondary forests. The
rates of recovery, however, varied enormously and were
related to the level of soil transformation (mine zones and
soil texture), the composition and richness of planted trees
and the proximity to surrounding forests. Management prac-
tices of soil amendment and tree planting played a crucial
role in the recovery of basal area, and combined with ecologi-
cal processes related to seed dispersal and establishment of
natural regeneration they determined the recovery of tree
density and species diversity. These results show the com-
plexity of forest restoration in post-mining areas and the
need to define restoration practices tailored to the soil con-
ditions and the landscape context.

We found that the recovery of forest structure was mainly
affected by management practices (interactions between
the planted species community, soil properties and mine
zones), whereas the recovery of forest diversity was affected
by the combination of management practices and ecological
processes (amount of surrounding forest, soil texture and
richness of planted trees). Similarly, in naturally regenerating
forests, the recovery of vegetation structure is reduced
where soil fertility is low and the soil seed bank had been
impoverished, while the recovery of species richness and
diversity is more related to the proximity to forest fragments
[7]. The processes that govern forest recovery in active restor-
ation are, therefore, similar to those in naturally regenerating
forests [21,31,32].

Accordingly, we showed that forest structure recovers
faster than species diversity (figure 3), as also found by other
studies on natural regeneration [33] and active restoration
[34]. Multiple areas reached basal area and stem density
values similar to surrounding secondary forests within 12
years of restoration on average, while diversity took at least
much longer (figure 3). This is because in highly diverse tropi-
cal forest systems, the recovery of diversity dependents on the
recruitment of native species and its accumulation over time
[2]. In active restoration of very degraded areas, such as in
post-mining sites, tree planting contributes to the formation
of a canopy that increases the density and diversity of natural
regeneration [35,36]. Only in situations of extreme degradation,
such as in the tailing dams, where natural regeneration is lim-
ited by constraints in soil conditions, did the recovery of
diversity dependmore strongly on the planted trees. Therefore,
for a combined recovery of forest structure and diversity, it is
crucial that areas are made permeable to the arrival and
establishment of natural regeneration.

We showed that natural regeneration is denser and
more diverse closer to the surrounding forests and on less
degraded soil conditions. Previous studies on tropical succes-
sional forests also found higher species richness [31], species
diversity [37] and higher density of late successional species
[38] closer to old-growth forests. The positive effect of
proximity to the forest, however, is only realized on less
degraded soils. Interestingly, we found that natural regener-
ation contributed to a faster increase in stem density than
in species diversity, likely due to the high abundance of a
few generalist tree species that dominate the seed rain in
regenerating forests [35,39]. Still, the influx of species led to
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an increased overlap of species composition between restor-
ation areas and surrounding forests over time. Therefore,
the natural regeneration under the canopy of the planted
trees contributes importantly to the restoration success and
can be enhanced by restoring the forest cover in the landscape
and improving local soil conditions.

Interestingly, the species composition of planted trees had
limited influence on restoration success, corroborating
previous studies [40]. Despite the large number of planted
species (105), S. cumini (exotic) and I. laurina (native)
dominated the plantings and could potentially exert high
influence on restoration success. These species were planted
in high densities because they are tolerant to a wide range of
soil conditions and were able to survive and grow in the
harsh conditions where other species were not. For example,
these two species are specially highly dominant in the dry tail-
ings, where we also found low establishment rates of natural
regeneration. It is unclear whether this low natural regener-
ation is caused by the poor soil conditions or by the
competition for light and nutrients with the dominant species
[41] or by the combination of both. This aspect could
be further evaluated with population dynamics analyses.
Nevertheless, in the other less-limiting substrates, we found
no evidence relating the identity or origin (exotic or native)
of these dominant species to the restoration success. Other
studies found negative effects of planted exotics on the recov-
ery of disturbed soils and on the establishment of native
natural regeneration [42–44]. In this study, however, the
exotic species showed low invasiveness potential, significantly
decreasing in density over the years and showing low recruit-
ment success (table 1). Although our study shows that this
exotic species did not hinder restoration, we also show that
it had similar behaviour to the native I. laurina, which
should therefore be preferred in programs that aim to restore
the native flora. These results suggest that the composition
of tree plantings has limited effect on restoration success,
that a high dominance by one species might be detrimental,
and that a mine-zone specific selection of planted species
[26] may improve restoration success. Further research is
needed to disentangle the effects of planted species compo-
sitions and site conditions on restoration success [42].

In mined areas, the deep transformations in the soil
structure form the most important factor negatively affecting
restoration success. We found that in open-pit mines the
chances of restoration success decreases with the intensity
of soil transformation, being higher for pit surroundings
and washing planting (where the original soil is maintained)
and lower for wet and dry tailings (where the original soil
has been lost). Pit surroundings and washed tailings provide
more favourable conditions for natural regeneration and tree
growth because they keep a structured soil profile and more
active soil biota [45]. The 3-year soil amendment applied to
all mine zones before tree planting proved efficient in
improving soil quality and restoration success for most
mine zones [24], but was not sufficient to correct soil physical
characteristics of dry and wet tailings. In tailing dams, the
transplantation of topsoil helped improve the recovery of
forest structure, as seen by the higher recovery rates in
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capped compared to dry and wet tailings. We estimated that
topsoil transplantation to tailings increases the rate of basal
area growth by 13%, meaning a reduction of 3.7 years
needed to achieve levels similar to the surrounding second-
ary forests. The transplanted topsoil introduces clay and silt
particles that sustain soil water retention capacity, organic
matter content, nutrient availability, soil biota and seed avail-
ability [14], supporting higher survival and growth rates of
recruiting trees [41]. Our results thus confirm the importance
of soil structure and the effectiveness of topsoil transplan-
tation to improve soil conditions for tree growth and the
establishment of natural regeneration.

In contrast to our predictions, restoration success was not
significantly related to age. Explanations for this include: (i)
the young age of restoration sites (less than 21 years old)
when recovery shows a close-to-linear trend [32], (ii) the stron-
ger influence of other factors on recovery rates (discussed
below) and (iii) the improvement of restoration practices
applied over time. According to the local restorationmanagers,
past restoration practices (before 2003) included only the
application of lime and chemical fertilizers followed by tree
planting, while in more recent years (after 2003) soil was
amended for 2 years using a combination of chemical fertilizers
and greenmanure before tree planting. Additionally, the diver-
sity of seedling species produced in the local tree nursery
increased over time, allowing a higher diversity of species to
be used in total-area plantings and in enrichment plantings.
The absence of an age effect reinforces the potential of adaptive
management practices to foster forest restoration success.

(a) Implications and recommendations for post mining
restoration

This study therefore shows how crucial the soil conditions
and the proximity to forest fragments are for the success of
restoration. Tailoring restoration strategies according to soil
conditions and distance to seed sources (forest fragments)
can increase the success of restoration and reduce costs. In
tailing dams, not only do planted trees perform worse but
also the natural regeneration cannot establish, even if the
area is adjacent to a forest fragment. Tailing dams therefore
represent the largest challenge for open mines’ rehabilitation
and restoration, requiring a large effort to restore soil struc-
ture prior to tree planting. Corrections to soil particle
composition are necessary to restore the soil texture and
hydrology of tailings and allow the survival and growth of
a range of native species. Topsoil transplantation into tailings
can help to foster restoration [14,40]. Ideally, other mine waste
techniques that minimize the separation (or promote the
mixture) of soil particles in tailing dams should be investi-
gated as a way to increase the chances of restoration
success [42,43,46].

Tree planting is crucial for the rehabilitation and restor-
ation of mined areas because it facilitates the recruitment of
native species and the re-establishment of the successional
process [47]. In landscapes with high forest cover and there-
fore high availability of seeds, restoration projects should
invest more in restoring soil chemical and physical conditions
than in planting a high diversity of tree species.
5. Conclusion
This study confirms the complexity of mine land restoration
but also the effectiveness of soil amendment and tree planting
for restoration success. While forest structure can be restored
based on management of the restoration areas, restoring
forest diversity requires the assistance of surrounding seed
sources and dispersers. To increase the restoration success in
post-mining areas, it is crucial to continue evaluating the limit-
ations imposed on succession, and zoning the area according to
soil chemical and physical conditions and distance to the sur-
rounding forest (i.e. in mine zones). Restoration plans should
be tailored to each mine zone to increase restoration success
and reduce implementation costs.
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