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Abstract: RNA is increasingly recognized for its signifi cant functions in biological systems and has recently become an 
important molecular target for therapeutics development. Aminoglycosides, a large class of clinically signifi cant antibiotics, 
exert their biological functions by binding to prokaryotic ribosomal RNA (rRNA) and interfering with protein translation, 
resulting in bacterial cell death. They are also known to bind to viral mRNAs such as HIV-1 RRE and TAR. Consequently, 
aminoglycosides are accepted as the single most important model in understanding the principles that govern small 
molecule-RNA recognition, which is essential for the development of novel antibacterial, antiviral or even anti-oncogenic 
agents. This review outlines the chemical structures and mechanisms of molecular recognition and antibacterial activity of 
aminoglycosides and various aminoglycoside mimics that have recently been devised to improve biological effi cacy, binding 
affi nity and selectivity, or to circumvent bacterial resistance.
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Introduction
RNA performs pivotal biological functions when organisms, including bacterial and viral pathogens, 
replicate. Developing small molecules that can interact with RNA and interrupt undesired cellular 
activities is a promising new path for drug design.1 To date, RNA remains largely unexplored as a drug 
target and may provide untapped opportunities to develop novel therapeutics.

Antisense and RNAi strategies have been widely recognized as a powerful tool to control RNA genes 
and regulate development of various organisms and cellular functions of interest.2–4 However, these 
strategies are rather limited in practical therapeutic application due to complex and unusual RNA folding 
patterns and lack of effi cient cellular delivery methods for antisense nucleotides.5 This makes develop-
ment of small RNA binding molecules imperative.

RNAs can fold into complex three-dimensional structures such as loops, bulges and pseudo-knots, 
and consequently, they present a unique challenge for custom design of the RNA binding molecules. 
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Although some progress has been made in recent 
years in understanding how small molecules rec-
ognize RNA,6–8 there are still very few examples 
of small molecules that bind to natural RNA struc-
tures with high affi nity and specifi city. So far, there 
has been no general rule found that can be applied 
to design small molecules targeting specifi c RNA 
sequences or structures.

Since they have been shown to selectively bind 
to a variety of RNA targets, aminoglycosides9 have 
become a central focus in an effort to understand 
underlying principles of RNA recognition by 
small-molecules. Recent NMR and X-ray crystal 
structures of RNAs complexed with various 
aminoglycosides provide signifi cant insights on the 
RNA recognition by small molecules at the 
molecular level.10–12 Based on this structural infor-
mation, many chemical modifi cations have been 
devised to improve the binding affi nity and selectiv-
ity and to increase the antibacterial effi cacy of 
existing aminoglycosides. Some modifi cations were 
aimed at synthetic aminoglycosides that are less 
prone to bacterial resistance while others targeted 
RNAs from sources other than bacteria such as viral 
or oncogenic RNAs. This review examines various 
chemical approaches taken to realize these goals.

Chemical Structures 
of Aminoglycosides
Clinically signifi cant aminoglycosides include both 
naturally occurring drugs and some semi-synthetic 
derivatives, all of which have a highly-conserved 
aminocyclitol ring (ring II, Figure 1), a central 
scaffold that is linked to various aminosugar moi-
eties.13,14 The aminocyclitol ring is comprised 
primarily of 2-deoxystreptamine (2-DOS) and has 
1,3-diamino functionality and three or four 
hydroxyl groups that provide anchoring points for 
aminosugars. Aminoglycosides can be divided 
into 3 subclasses depending on the substitution 
pattern: 4-monosubsituted, or 4,5- or 4,6-
disubsituted (Fig. 1). Aminoglycosides in each 
subclass show close structural resemblance.  Although 
2-deoxystreptamine or 2-deoxy-myo-inosa-
1,3-diamine is actually derived from D-glucose-6-
phosphate biosynthetically, the numbering system 
is based on streptamine’s biogenic precursor myo-
inositol as described by Fletcher.15

Neamine, paromamine, and apramycin fall 
under the 4-monosubstituted aminoglycosides. 
Paromamine and neamine differ only in the 

R1 substituent and are typically not used 
alone as drugs, leaving apramycin being the 
only 4-monosubstituted compound that is actually 
used pharmaceutically. Apramycin is unique in that 
its ring I is bicyclic.

Ribostamycin, butirosin B, neomycin B, 
paromomycin, and lividomycin A belong to 
4,5-disubstituted aminoglycosides. These com-
pounds can be further divided into three groups 
based on the additional ring III and its substituents. 
Lividomycin A is the only aminoglycoside in this 
category that contains a fi fth ring.

4,6-disubstituted aminoglycosides includes 
kanamycin A, kanamycin B, kanamycin C, 
tobramycin, and amikacin in one category and 
gentamicin C1, gentamicin C2, gentamicin C1A, 
and geneticin in another. The major differences 
between these two subclasses is the variation of an 
extra R group attached to the 6’ position of ring I 
as well as the ring III connected to the 2-DOS.

Recognition of RNAs 
by Aminoglycosides
Aminoglycosides have been recognized to have 
binding capabilities with many different functional 
RNAs such as the prokaryotic ribosomal A-site,16–18 
HIV TAR,19 HIV RRE,20 Group I intron,21 RNase 
P,22 tmRNA23 and the eukaryotic A site24 even in 
some cases with relatively low micromolar binding 
affi nities.

The binding of the aminoglycosides to these 
target RNAs is mediated through two different 
interactions: (1) hydrogen bonding between amino 
and hydroxyl functional groups of aminoglyco-
sides and RNA bases,25 and (2) electrostatic inter-
actions between the negatively charged phosphate 
backbone of the RNA and positively charged 
amino functional groups of the aminoglycosides.26 
The latter dominates the interactions between 
aminoglycosides and target RNAs due to the 
presence of multiple amines among the aminosugar 
rings (ring I, III, IV and V), which makes 
RNA-aminoglycoside binding highly promiscu-
ous. For instance, neomycin binds to bulge regions 
of unrelated RNA sequences from the 16S ribo-
some,27 HIV TAR,28 HIV RRE,20,29 and Group I 
intron30,31 with affi nities in the low micromolar 
range. The ambiguous binding characteristic of 
aminoglycosides originates not only from the 
electrostatically driven binding mode but also 
from inherent conformational adaptability of 
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Figure 1. Chemical structures of the three representative classes of aminoglycosides and their substitution sites. The central scaffold 
2-deoxystreptamine (2-DOS) is ring II.
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aminoglycosides.32 The glycosidic connection 
assumes a variety of conformations and permits 
aminoglycosides to structurally adjust to diverse 
RNA targets.

Experiments have shown that aminoglycoside 
binding is somewhat dependent on the size of an 
asymmetric interior loop of the target RNAs rather 
than its sequence.33 These examples demonstrate 
that the design of small RNA-binding molecules 
is highly dependent on experimental trials and 
makes sequence- and/or site-specifi c recognition 
by small molecules a very diffi cult task.

Highly Conserved Interactions 
Observed by the Ring I 
and Ring II (2-DOS)
Despite the convincing facts that aminoglycosides 
recognize RNAs in a promiscuous manner, studies 
suggest that there are some sequence-dependent 
elements in the recognition of target RNAs. A wide 
variety of RNAs, such as A-site rRNA, ribozymes, 
and HIV-1 RRE and TAR, are known to bind to 
various aminoglycosides. These RNAs contain 
5’-GU-3’ or 5’-GG-3’ base steps in common next 
to the nucleotides in bulges or in noncanonical stem 
structures. A similar binding pattern was observed 
when A-site RNA sequence was treated with 
aminoglycosides of various sizes and substitution 
patterns on ring II. Specifi cally, the crystal struc-
tures of six aminoglycoside antibiotics (neamine, 
gentamicin C1A, kanamycin A, ribostamycin, 
lividomycin A and neomycin B) and oligonucle-
otides containing the decoding A site of bacterial 
ribosome revealed that rings I and II (2-DOS) are 
essential for recognition of A-site RNA, and inter-
actions between the rings I and II of all aminogly-
cosides and the target RNA are highly conserved 
and sequence-specifi c (Fig. 2).11 The two amino 
groups of the ring II (2-DOS) unanimously recog-
nizes the 5’-GU-3’ base step (bold) in A-site 
through hydrogen bonding with N7 of G1494 and 
O4 of U1495 and electrostatic interactions with 
negatively-charged phosphate backbone that are 
conserved throughout all six aminoglycosides. The 
puckered sugar ring I is inserted into the A site 
helix by stacking against G1491 and forms a 
pseudo base pair with two hydrogen bonds to the 
Watson-Crick sites of the universally conserved 
A1408. This clearly suggests that contacts made 
by the ring I and ring II (2-DOS) of various 
aminoglycosides to the target RNA are somewhat 

independent of their structural context of 
aminosugar subunits and more dependent on heli-
cal sequence.

The sequence-specific recognition pattern 
of 2-DOS is further supported by the following 
mutation study. A mutation of G1494A in the target 
site was deleterious for paromomycin binding 
because it prevented specifi c hydrogen bonding of 
2-DOS to the RNA.18 This result indicates that the 
2-DOS ring of paromomycin strictly recognizes 
the 5’-G(N7)-U(O4)-3’ sequence but not 
5’-A(N7)-U(O4)-3’, probably because of a steric 
clash between the bulky amino group of A and the 
2-DOS moiety.

Strikingly, the same binding pattern of 2-DOS 
was demonstrated when Puglisi and coworkers 
treated isolated 2-DOS, without the aminosugar 
subunit attached, with wild type A-site of 16S rRNA 
(Fig. 3).12 The binding activity between 2-DOS and 
A-site RNA was monitored by high-resolution 
NMR techniques. The 2-DOS specifi cally recog-
nized the two 5’-GU-3’ base steps (G1494-U1495 
and G1405-U1406) even though their binding affi n-
ity is low (∼1 mM). A titration experiment with the 
RNA whose A1492 bulge nucleotide was deleted 
confi rmed that the bulge residue of A-site RNA was 
required to open the major groove for accommoda-
tion of the deoxystreptamine molecule.

2-DOS Mimics
Universal existence of the 2-DOS moiety at the 
central position of almost all clinically important 
aminoglycosides suggests its crucial role in RNA 
recognition and biological activity. Therefore, 
mimicking the 2-DOS structure has been of great 
interest in preparing novel aminoglycoside ana-
logs. The 2-DOS mimics that have been reported 
so far can be divided into two different groups 
based on whether an aminosugar subunit was 
included in the mimic or not (Fig. 4).

Although most 2-DOS mimics are based on the 
neamine backbone as the building platform, some 
use 2-DOS as the sole component, as 2-DOS alone 
has demonstrated RNA-binding capability without 
the assistance of aminosugars. Wang et al. demon-
strated this example (1) by removing aminosugar 
rings from the original aminoglycoside structures, 
leaving only the core 2-DOS as the main constituent 
of the compound.34 This compound demonstrated 
strong affi nity (Kd value of 88 μM) for the target 
RNA A-site and inhibited bacterial translation. This 
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example supports the idea of generating small 
synthetic compounds that mimic the conformation 
and function of aminoglycosides without using 
aminosugar residues.

Following are examples that use 2-DOS as the 
central scaffold and replace the aminosugar ring I 
of neamine with other structural motifs. Ding and 
coworker prepared heterocyclic 2-DOS derivatives 
2 based on modeling studies.35 Most 2-DOS 
analogs demonstrated a modest increase in binding 
affi nity upon conjugation with a variety of hetero-
cycles, while the binding affi nity of the compound 
containing an electron-withdrawing group (CF3) 
did not show any increase.

Hermann et al prepared a small library of mono-
meric 2-DOS analogs 3 conjugated with non-sugar 
heterocycles through an amide bond (Fig. 7).36 

Although some compounds show slightly improved 
binding affi nity to the target RNA A-site of bacte-
rial 16S RNA, most did not, suggesting that the 
rigid amide linkage locked the non-sugar scaffold 
in an unfavorable conformation for the recognition 
of the target RNA.

3,5-Diamino-piperidinyl triazines (DAPT) 4 
were reported as novel antibacterial translational 
inhibitors using cis-3,5-diaminopyridine (DAP) 
to mimic the 2-DOS scaffold.37 Many of the 
DAPT compounds that behaved as potent 
inhibitors of bacterial protein synthesis did not 
show corresponding antibacterial activity. The 
potency of the DAPT compounds in the antibac-
terial activity was finally achieved when the 
R2 substituent was replaced by aromatic structures 
that facilitated better cell membrane penetration. 

Figure 2. Sequence-specifi c recognition of A-site RNA by rings I and II (2-DOS) of six aminoglycosides of different sizes and substitution 
patterns. Highly conserved hydrogen-bonding ( ) and electrostatic interactions (----) are indicated with dashed lines.
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Recently, van Delft and coworkers reported a 
carbohydrate mimic of the 2-DOS that can be 
used to prepare conformationally constrained 
aminoglycosides.38

Aminoglycosides like neomycin show binding 
affi nity to various RNA targets such as the 16S 
ribosome,39 HIV TAR,40 and HIV RRE,20 but do 
not typically bind to RNA hairpin loops, which are 
a major RNA secondary structural motif. However, 
when Hergenrother and coworkers prepared simple 
dimers of 2-DOS (5) by connecting two 2-DOS 
molecules with various aliphatic and aromatic 
linkers of different sizes, they were found to bind 
tightly to RNA hairpin loops of various sizes from 
4 to 8 nucleotides, most of which contain 5’-GU-3’ 
sequence.41 The dimers with the aromatic linkers 

exhibited slightly tighter binding over their 
aliphatic counterparts.

These examples show that novel RNA binding 
molecules may be built solely based on 2-DOS 
without the assistance of conjugated aminosugar(s), 
and the intrinsic RNA binding affi nity of the 2-DOS 
may be useful targeting not only helical RNAs 
whose base pairing is disrupted, but also RNAs of 
other types of secondary structure such as loops 
that conventional aminoglycosides do not bind.

Many other 2-DOS mimics were prepared based 
on the neamine backbone. To have a better 
understanding of the effect of stereospecifi city of 
aminoglycosides, Rando and co-workers synthe-
sized and compared the activity of (+)-neamine 6, 
(−)-neamine ent-6, its 5-positional isomers 7, ent-7 
as well as 6-positional isomers 8, ent-8.42 The 
enantiomeric series ent-8 was found to be the most 
effective inhibitor among this series, which allows 
1-NH2 and 3-NH2 to face the active site. The isomer 
ent-6 with both amino groups pointing away from 
the active site exhibited the least potent activity, 
while 7 and ent-7 with only one of the amino 
groups away from active site exhibited less binding 
affi nity.

In an effort to mimic the unique spatial 
arrangement of the two amino functional groups 
in 2-DOS, the Hermann group prepared two series 
of compounds by replacing the 2-DOS in neamine 

Figure 4. The 2-DOS mimics without or with an aminosugar subunit. The 2-DOS mimics with an aminosugar subunit use mostly neamine 
as the structural platform for modifi cation.
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with azepane- and piperidine-based structures. 
Azepane-glycosides 9 and 10 exhibited moderate 
antibacterial activity against Gram-positive Staph-
ylococcus aureus and retained this activity against 
aminoglycoside-resistant strains.43 This result sub-
stantiates the importance of the bacterial decoding 
site as a valuable target for future development of 
novel antibiotics. Compounds 11 and 12, designed 
based on 3-(aminomethyl)-piperidine,44,45 demon-
strated higher activity and specifi city towards the 
bacterial targets than eukaryotic RNAs.

While conformationally-restricted azepane- and 
3-(aminomethyl)-piperidine-based compounds 
9–12 showed moderate antibacterial activities, the 
acyclic 2-DOS mimics 13 that have increased fl ex-
ibility have a detrimental effect on their RNA 
binding effi cacy.46

Since Wong and coworkers found that the 
5-position is sensitive for aminoglycoside-RNA 
recognition, small libraries of neamine mimetics 
were reported with various substituents at 
the 5’-OH position. Polyamine and 6-aminoquinoline 
analogs 14 demonstrated a high affi nity for the 
oncogenic Bcr-Abl and PAX3-FKHR single-
stranded mRNA breakpoint and a capability to 
regulate gene expression.47 This provides evidence 
that aminoglycosides can be used to target not only 
bacterial and viral but also oncogenic mRNAs. 
Short semi-peptidic moieties were also introduced 
on the 5’-OH position of the neamine scaffold by 
combinatorial synthesis to form analogs like 15 in 
an attempt to inhibit interactions between HIV-1 
RRE and Rev protein. But, the inhibition activity 
was only slightly better than neomycin B.48 Other 
neamine analogs including 16 were reported with 
modifi cations at 6’-OH and 1-NH2 positions.49 The 
substituent on 1-NH2 was adopted from another 
aminoglycoside butirosin. This compound 16 was 
found to be especially interesting because it 
appears to be uncompromised by aminoglycoside-
resistant enzymes and show a considerable 

increase in antibacterial activity. The crystal struc-
ture of the complex between 16 and A-site of the 
ribosome suggested that existence the AHB sub-
stituent on the 1-NH2 hinders proper complex 
formation with key aminoglycoside-modifying 
enzymes.

Aminosugar and Aminoglycoside 
Mimics
A number of synthetic aminosugars and aminogly-
cosides have been prepared in an effort to accom-
plish several goals including: mimicking the core 
aminosugar rings for enhanced antibacterial 
activity, limiting the overall structural fl exibility 
of the aminoglycosides, and addressing recognition 
of the conventional aminoglycosides by the 
aminoglycoside-modifying enzymes in resistant 
strains (Fig. 5). Below are relevant examples of 
aminosugar and aminoglycoside modifi cations.

One of the aminosugar mimics was achieved 
by –NH2 and –OH functional groups at various 
positions of ring I, II and IV of aminoglycosides 
to fi nd optimal substitution patterns for aminosug-
ars. Wong and coworkers prepared a series of 
compounds by placing –NH2 and –OH functional 
groups at various positions of the ring I in neamine 
and found that 2’,6’-diamino substitutions on ring 
I to be the most effective A-site binder.50 The 
mono-amino derivative 17 showed activity against 
E. coli, P. aeruginosa, as well as S. aureus. How-
ever, its MIC was less than that of neamine, which 
can be explained by the loss of the highly 
conserved hydrogen bonds and electrostatic inter-
actions observed in crystal structures. This sug-
gests that neamine is the most promising 
pseudodisaccharide core that should be kept for 
further development.

Similar approaches have been performed on the 
ring III of tobramycin by replacing the ring with 
various mono- or diaminosugars.51 The tobramycin 
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derivatives were tested for binding affi nity with 
several conserved RNA sequences from bacterial 
and viral sources. Surprisingly, no direct correla-
tion was observed between the dissociation con-
stants and the number of charges on the derivatives, 
considering that the binding of aminoglycosides 
to RNA targets is driven by electrostatic interac-
tions to a large extent. Chang and coworkers 
replaced the ring III of pyranmycin with various 
L-aminosugars and L-pyranoses.52

Some aminosugar mimetics did not include 
the 2-DOS core in its modifi ed structures. A library 

of compounds such as 18 have been developed 
for the discovery of small molecules using a 
1,3-hydroxyamine motif.53–55 Wong and cowork-
ers prepared a library of compounds 18a by 
substituting R1- and R2-positions with highly 
basic amino acids and amine-containing linear 
chains, repectively.54 This library of compounds 
recognized both wild type 16 S rRNA and several 
related mutant sequences, which proved that the 
hydroxylamine core motif is ideal for the design 
of high affi nity RNA binders. However, when 
Wengel and coworkers introduced substituents 
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on R2- or R3-positions to make compounds like 
18b, they were only minimally active against 
various target RNAs.53 Sugar diamino acids 
(SDAs) with unprotected amino groups represent 
a new class of potential aminoglycoside 
mimetics.56 The synthesis of the fi rst examples of 
oligosaccharide mimetics such as 19 suggest that 
a high degree of diversity can be achieved by 
conjugating only a small set of different SDAs 
through amide bond.

Carlomagno and coworkers reported a neooli-
goaminodeoxysaccharide 20 as a novel aminolgy-
coside analogue by connecting four aminosugar 
rings using linear alkyl linker.57 Unlike other ami-
noglycosides, this compound was able to make 
simultaneous contacts with the bulge residues 
required for Tat binding and A35 residue of the 
hexanucleotide loop of HIV-2 TAR RNA.

Most aminoglycoside mimics have been 
prepared by adding extra functionality onto the 
original aminoglycoside structures without 

removing aminosugar substituents. A number of 
intercalating agents were included in the extra 
functionality with the anticipation that aromatic 
compounds may have an intercalating capability 
to the RNA targets that aminoglycosides typi-
cally bind. Hamasaki and coworkers conjugated 
acridine, anthracene and other similar aromatic 
structures to the ring I of neamine.58 Pyrene-
conjugated neamine analogs 21 demonstrated up 
to 87 times stronger binding affi nity to HIV RRE 
mRNA than neamine. Neomycin B was also 
conjugated with acridine at its 5”-position on 
the ring III via a short linker. Conjugate 22 was 
one of the strongest competitive inhibitors 
of HIV rev-RRE interaction, which came at 
the expense of losing binding selectivity to 
RRE.59 Quinacridine conjugated with two 
aminoglycosides, used as a potential telomerase 
activity modulator targeting the P6.1 element 
of RNA telomerase, was another example of 
intercalator-conjugates.60
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Guadinylation of multiple amino groups of ami-
noglycosides shows similar effects as intercalating 
agents. Guanidylated neomycin B (23) was reported 
to inhibit the viral replication 100 times more 
potently than neomycin B by targeting HIV RRE.61,62 
A similar result was also observed with tobramycin.60 
It is notable that aminoglycosides generally exhibit 
poor uptake by eukaryotic cell lines but guadinylation 
of the aminoglycosides dramatically enhanced 
cellular uptake of aminoglycosides.63 Lapidot and 
coworkers reported high inhibition activity against 
HIV-1 by conjugating arginine to introduce the 
guanidine functionality to neomycin B.64

Multivalent aminoglycosides have been 
reported to target RNA structures such as HIV-1 
TAR RNA due to their unique structure that allows 
for multiple binding interactions. Four symmetrical 
4’,4’- and 5,5-neamine dimers 24–25 were 
prepared and studied for their affi nity toward TAR 
RNA using fl uorimetric binding assays.65 All these 
dimers inhibited TAR-Tat binding at submicromo-
lar concentrations. Trimeric neamine was also 
prepared but not useful for activity studies as it 
resulted in precipitation of the TAR RNA. Other 
reported dimeric aminoglycosides66 (neomycin-
neomycin, neomycin-tobramycin, and neomycin-
kanamycin A) demonstrated much higher inhibitory 
activity than exhibited by doubling the concentra-
tion of each aminoglycoside due to the favorable 
entropic factors.

The lack of high RNA target selectivity of ami-
noglycosides is partially attributed to their confor-
mational fl exibility that allow adjusting to different 
shapes of RNAs. Tor and coworkers prepared 
conformationally-constrained neomycin and 
paromomycin derivative 26a and 26b by cova-
lently connecting two aminosugars (ring I and ring 
III) to reduce the number of available conforma-
tions, thus changing target selectivity.32 However, 
the conformational constraint did not help in 
discriminating different RNA targets, which sug-
gests that the structure of the target RNA and its 
fl exibility also play an important role in the binding 
event. Mobashery and coworkers reported another 
kind of structurally constrained aminoglycoside 
27 based on neamine.67 However, no biological 
activity was reported for this compound.

Arya and coworkers reported an oligonucleotide-
neomycin conjugate for sequence-specifi c target-
ing of RNA. The nucleotide-neomycin conjugate 
demonstrated enhanced duplex formation for its 
target RNA α-sarcin loop.68

While most aminoglycoside mimetics employed 
single point modifi cation on one of the rings of 
aminoglycosides, Houston and coworkers reported 
multisite modifi cation on the structure of neomycin 
B.69 Three rings (rings II, III, and IV) of the 
neomycin B were modifi ed at the same time using 
Mitsunobu and Click chemistry.

Aminoglycoside Resistance
The increasing bacterial resistance to clinically 
important aminoglycosides catalyzed the search 
for novel aminoglycoside mimics. Among several 
different resistance mechanisms, bacterial 
inactivation of aminoglycosides by intracellular 
aminoglycoside-modifying enzymes is the most 
signifi cant source of resistance development.70 
More than 50 different types of aminoglycoside-
modifying enzymes have been found in resistant 
bacteria. These enzymes modify aminoglycosides 
through acetylation of amino groups (N-
acetyltransferases, AAC), and adenylation (O-
adenyltransferase, ANT) and phosphorylation 
(phosphotransferases, APH) of hydroxyl groups on 
aminoglycosides.

According to recent studies mainly focused on 
tobramycin, kanamycin A and B, amikacin, gen-
tamicin, and geneticin, differences in ring III did 
not seem to alter the interaction of the drug with 
target rRNA, but subtle variations of ring I sig-
nificantly influenced binding. Ring II is also 
affected by the enzymes. The 2’-and 6’-NH2 groups 
of the ring I and 3-NH2 of the ring II are prone 
targets for acetylation.16 These three amino groups 
make highly conserved interactions with A-site 
RNA. The two hydroxyl groups at 2’- and 
4’-positions of ring I are targets for adenylation 
and phosphorylation. When these important func-
tional groups are recognized by the enzymes and 
modifi ed by one of the three reactions, their highly 
conserved interactions, both hydrogen bonding and 
electrostatic interactions, are prevented and 
ultimately cause aminoglycosides not to be able to 
bind to RNA targets.

One way to meet the challenge presented by 
aminoglycoside resistance is to discover new ami-
noglycoside analogs that are less prone to 
enzymatic modification. Following are some 
examples of the aminoglycoside mimics that are 
designed rationally to fi ght against aminoglycoside 
resistance or that are found to be effective against 
resistant bacterial strains (Fig. 6), many of which 
are already discussed above.
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Various azepane mimics of the 2-DOS including 
9 and 10 demonstrated moderate antibacterial 
activity against resistant strains as well as 
S. aureus.43 This experiment indicates that the 
biological activity of the natural antibiotics can be 
maintained while the structural difference of the 
designed scaffold from the natural antibiotics help 
escape some resistance mechanisms.

The ring II mimic of neamine (16) with substi-
tutions at 1-NH2 and 6-OH revealed potential 
structural aspect that may be used to target resistant 
strains.50 Its crystal structure suggests that the 
aminohydroxybutyryl (AHB) substituent on the 
1-NH2 position may cause steric clash with 
the aminoglycoside-binding loop of the aminogly-
coside phosphotransferase APH(3’)-IIIa and 
prohibits proper complex formation.

Dimers of neamine and nebramine were 
reported to be active against several aminoglyco-
side resistant bacterial strains, especially for the 
treatment of P. aeruginosa infection.71,72 Interest-
ingly, the length of the linker of the dimers was 
found to be an important determinant of antibacte-
rial activity of the bivalent aminoglycosides.72

Asensio and coworkers also prepared confor-
mationally-restricted derivatives of neomycin 26a 

and 26c and examined whether they would be 
susceptible to enzyme inactivation.73 The modifi ca-
tion provided an effective protection against ami-
noglycoside inactivation enzymes involved in 
aminoglycoside resistance, which represents a test 
case that a structure-based approach may be used 
to design ligands that maintain binding affi nity to 
desired RNA targets but a poor substrate for 
enzymes that lead to inactivation.

Distinct from all of the above examples that are 
designed to avoid interactions with resistance 
enzymes, Mobashery and coworkers designed an 
aminoglycoside that binds to the resistance enzyme 
APH(3’) but not affected by its enzymatic activity.74 
The versatile aminoglycoside kanamycin A was 
made clinically obsolete by the widespread expres-
sion of resistance enzymes APH(3’)s in pathogens. 
These enzymes phosphorylate the 3’-OH of amino-
glycosides. In the design, the 3’-OH was oxidized 
to ketone 28, which in turn goes through (1) hydra-
tion to give geminal-diol, (2) phosphorylation of the 
hydroxy group by APH(3’), then (3) self regeneration 
of the ketone by dephosphorylation. While the MIC 
of kanamycin A increased 500 to 1000 fold when 
treated with resistant E. coli, the self-regenerating 
analog 28 has shown only 4-fold increase of MIC 
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toward resistant E. coli, which signifi es that the self-
regenerating strategy is a feasible approach in lower-
ing MIC for resistant strains.

Medicinal Aspects: Mechanisms 
of Antibacterial Activity and Toxicity
In addition to being a useful model in understand-
ing the RNA recognition process by small 
molecules, aminoglycosides have been used as 
versatile antibiotics for almost six decades due to 
their enormous therapeutic value. For instance, 
gentamicins and amikacin are used to treat 
meningitis, pneumonia, and sepsis. Paromomycin 
is used for amoebic dysentery75 and neomycin is 
used for ulcers and dermatitis.76

Aminoglycosides exert their antibacterial 
activities by two different mechanisms. The fi rst 
is by inhibiting the translation of essential proteins 
for bacterial growth. The binding of aminoglyco-
sides to bacterial 16S rRNA, as shown in Figure 2, 
stops the translocation of the peptidyl-tRNA from 
A-site to the P-site resulting in the misreading of 
the mRNA. Thereby, prevention of the production 

of the essential bacterial proteins leads to bacterial 
cell death.77 However, this binding mechanism 
alone does not explain the signifi cant bactericidal 
effect of aminoglycosides because other antibiotics 
like tetracycline that function in a similar manner 
are not as bactericidal. Secondly, aminoglycosides, 
being highly positively charged, interact with 
negatively charged outer membranes of Gram-
negative bacterial cells through electrostatic 
interaction and disrupt membrane integrity by 
displacing Mg2+ and Ca2+ bridges that connect 
neighboring lipopolysaccharides.78 This creates 
temporary openings in the membrane and results 
in leaking of intracellular contents and increased 
antibiotic uptake through the membrane. This 
transport across the cytoplasmic membrane is 
known to be oxygen-dependent, thus aminoglyco-
sides are less effective in anaerobes.79 As a result, 
aminoglycosides are active primarily for aerobic 
Gram-negative bacteria such Pseudomonas, 
Acinetobacter, and Enterobacter and some 
Gram-positive bacteria.

Despite the versatile antibacterial application 
against a broad-spectrum of bacteria, the high 

NH2

NH2

NH3

NH2

NH2

NH3

H2N
H2NH2N

H2N
HO
HO

phosphorylation
center

kanamycin A

HO

HO

HO

HO HO

HO
HO

O
O

O

O
28

1. hydration to gam-dial
2. phosphorylation by the resistance anzyme
2. deposphorylationa and self-regenration

HO

HO
O

O

O

Reversible accumulation
of aminoglycosides in

the renal cortex

Activation of
N-methyI-D-aspartate
(NMDA) receptors in

the cochlea

Formation of free
radicals from

iron complexing

Increased nitric oxide
synthase (NOS) activity

in the vestibular epithelium
Binding to mitochondiral

12S rRNA

Ototoxicity &
nephrotoxicity

Figure 7. Major mechanisms of toxicity of aminoglycosides.



34

Chittapragada et al

Perspectives in Medicinal Chemistry 2009:3

level of ototoxicity and nephrotoxicity of the 
aminoglycosides often limits their use in broader 
applications. While nephrotoxicity is known to 
originate from reversible accumulation of amino-
glycosides in the renal cortex,80 the ototoxicity 
has shown more complex mechanisms such as 
binding of aminoglycosides to mitochondrial 12S 
rRNA,81,82 increase in nitric oxide synthase 
activity in the vestibular epithelium,83 activation 
of N-methyl-D-aspartate (NMDA) receptors in 
cochlea,84 and formation of free radicals from 
complex formation between aminoglycosides and 
iron85 (Fig. 7). In cases of the last two examples, 
it was demonstrated that respective use of antago-
nist for the NMDA receptor86 and free radical 
scavengers87 or iron chelators85 alleviated the 
toxicity.

Several toxicity elements of aminoglycosides 
were identified in relation to structures of 
aminoglycosides. These were determined based on 
effect of the number of amino groups available in 
aminoglycosides and compared to the toxicity of 
clinically used aminoglycosides and their deriva-
tives, Baasov and coworkers pointed out that 
decreases in the number of amino groups in a given 
aminoglycoside resulted in lower toxicity.88 In 
addition to the number of amino groups, the 
basicity of a given amino group was an important 
factor in toxicity. Introducing an electron-
withdrawing fl uoro group in place of 5-OH of the 
2-DOS ring of amikacin and other aminoglycosides 
effectively decreased toxicity as it decreased the 
basicity of the neighboring amino groups.89 
A similar result was observed with the 2’-NH2 
group located on the ring I of neamine, gentamine, 
and other aminoglycoside analogs.90 Removal of 
the 3’-OH of kanamycin B, which is located next 
to the 2’-NH2, increased the toxicity dramatically, 
while removal of the relative distant 4’-OH had a 
limited effect on toxicity. This is also understood 
by the basicity change of the neighboring amino 
group. Owada reported that N-acetylated amino-
glycosides possess considerably lower toxicity 
than their free aminocompounds.91

Recently, a signifi cant discovery was reported 
regarding the toxicity of gentamicin. Sandoval and 
coworkers isolated each of four congeners (C1, 
C1a, C2, and C2a) of gentamicin using HPLC from 
a native gentamicin sample and found that 
gentamicin C2 does not have nephrotoxicity but 
retains the native antimicrobial effi cacy.92 It is 
notable that different substitution pattern on only 

one ring (ring I) can make the difference in the 
toxicity profi le.

Conclusion
The unique and complex three-dimensional 
structures that RNA forms provide unmet 
opportunities to design novel therapeutics targeting 
various RNAs. However, it has been generally 
believed that the intrinsic flexibility of RNA 
structures makes the structure-based rational drug 
design approach, which resulted tremendous suc-
cess in protein-targeting therapeutic development, 
less suitable unless the target RNA is locked into 
a rigid conformation, which is not the case for 
most mRNAs. Despite the unfavorable view, the 
examples described in this review demonstrate 
that the structure-based drug design approach has 
been instrumental to a great degree in understanding 
the fundamental principles that govern the 
interactions between various RNA targets and 
small organic molecules and to design aminogly-
coside mimics with better target selectivity and/or 
binding affi nity. Thus, structure-based drug design 
will continue to play a signifi cant role in meeting 
the challenges to overcome bacterial resistance to 
natural aminoglycoside antibiotics and design 
novel RNA-binding ligand targeting RNAs other 
than bacterial sources. The highly conserved 
sequence-specifi c recognition pattern of rings I 
and II of neamine, a common component for many 
clinically important aminoglycosides, may be put 
to use through the rational drug design approach 
to help devise small molecules that recognize 
specific sequences or sites of RNA. High 
throughput screening approaches, combined with 
the rational design, may offer fresh insight into 
the design of novel ligands, especially in identifying 
target-specifi c ligands.

In addition to aminoglycosides, riboswitches 
may serve as another important model in 
understanding the principles that govern small 
molecule-RNA recognition. Riboswitches are 
embedded within 5’-untranslated regions (5’-UTR) 
of certain bacterial mRNAs and regulate gene 
expression in response to small cellular metabolites. 
Since their discovery in 2002,93 more than a dozen 
classes of riboswitches have been discovered. 
Recent work suggests that certain antibacterial 
compounds discovered decades ago exert their 
antibacterial activity by targeting riboswitches,94–96 
which establishes the viability of this approach 
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for novel antibiotics. The fact that riboswitches 
form structurally complex and highly selective 
receptors for a given metabolite should allow 
highly active compounds to be designed that target 
riboswitches without interfering with other cellular 
RNAs or proteins,97 which may provide wealth of 
information in RNA targeting using small 
molecules.
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