
ADDENDUM

Hypogonadism alters cecal and fecal microbiota in male mice
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ABSTRACT
Low testosterone levels increase the risk for cardiovascular disease in men and lead to shorter life
spans. Our recent study showed that androgen deprivation via castration altered fecal microbiota
and exacerbated risk factors for cardiovascular disease, including obesity, impaired fasting glucose,
excess hepatic triglyceride accumulation, and thigh muscle weight loss only in high-fat diet (HFD)-
fed male mice. However, when mice were administered antibiotics that disrupted the gut
microbiota, castration did not increase cardiovascular risks or decrease the ratio of dried feces to
food intake. Here, we show that changes in cecal microbiota (e.g., an increased Firmicutes/
Bacteroidetes ratio and number of Lactobacillus species) were consistent with changes in feces and
that there was a decreased cecal content secondary to castration in HFD mice. Castration increased
rectal body temperature and plasma adiponectin, irrespective of diet. Changes in the gut
microbiome may provide novel insight into hypogonadism-induced cardiovascular diseases.
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Association of testosterone levels with
cardiovascular disease and mortality

Testosterone is produced in the testis and is the major
androgen (male sex hormone) circulating in the blood.
Testosterone production temporarily increases during
the prenatal and neonatal periods, is highly elevated at
puberty, and then steadily declines with age (»2% per
year) in men.1,2 Low blood testosterone is a criterion
for the diagnosis of late-onset hypogonadism (LOH),
which impairs general physical and mental health sta-
tus in men.3 A meta-analysis showed that blood tes-
tosterone levels are negatively associated with
longevity in men, with an increase in cardiovascular
disease risk accounting for this shortened lifespan.4 In
addition, androgen deprivation therapy for prostate
cancer patients increases cardiovascular events,5 and
testosterone replacement therapy in men with LOH
extends longevity.6 These results suggest the causality
between testosterone deficiency and increased mortal-
ity. Androgen deprivation therapy is a widely accepted

therapeutic approach for the treatment of prostate
cancer, the most diagnosed cancer in Western coun-
tries.5 In addition, LOH is diagnosed in »2% of
elderly men.3 Therefore, it is important to clarify how
hypogonadism affects cardiovascular disease and
overall survival in males.

Sex hormones and gut microbiota

The gut microbiota consists of > 1014 microorganisms
that contain more than 100-fold the number of genes
than in humans,7 and is considered a hidden meta-
bolic organ because of its profound effect on the host,
such as its role in promoting inflammatory and meta-
bolic diseases such as obesity and type 2 diabetes mel-
litus (T2DM).8-11 The gut microbiota is estimated to
be composed of »1000 bacterial species,7 80–90% of
which belong to the Firmicutes or Bacteroidetes phyla.9

Alterations in the composition and/or function of gut
microbiota, which can occur in pathological states, is
called dysbiosis. For example, lower bacterial diversity
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in the gut has been associated with obesity.12 An
increased Firmicutes/Bacteroidetes phyla ratio had
also been linked to obesity in mice, although this rela-
tionship is still controversial in humans.9,13

Sex differences in the gut microbiota are associated
with sex-biased disorders such as female-biased auto-
immune disease.14 Although sex differences are also
observed in the prevalence of metabolic diseases,15 the
involvement of sex hormones in the gut microbiota in
sex-biased metabolic changes remains poorly under-
stood. Our recent study showed that androgen depri-
vation by castration changes the composition of fecal
microbiota in a high-fat diet (HFD)-dependent
manner.16 In addition, castrated male mice fed an
HFD also exhibited obesity, impaired fasting glucose,
excess accumulation of liver triglyceride, and thigh
muscle loss. Notably, when mice were administered
antibiotics, which disrupt the gut microbiota, these
undesirable effects were not induced by castration in
HFD-fed mice.

In the present paper, we assessed the effects of cas-
tration on cecal microbiota because few studies have
examined the consistency of bacterial components
between the feces and cecum. In accordance with our
recent paper,16 C57BL/6J mice were castrated at 8-
weeks-old and fed the AIN93G-based standard-diet
(SD, containing 7% corn oil), or the HFD (containing
14% beef tallow, 14% lard, and 2% corn oil substituted
for cornstarch). Castrated mice (sacrificed at 13-
weeks-old) exhibited smaller cecal content weight
than sham-operated mice in the HFD-dependent

manner (Fig. 1A). In addition, castration increased
the ratio of the Firmicutes/Bacteroidetes phyla and
Lactobacillus species when mice were fed with the
HFD (Fig. 1B). These results were consistent with the
changes in fecal microbiota.16

Obesity

Obesity is strongly associated with an increased risk of
cardiovascular disease.17 Unlike in humans, dogs, cats,
or pigs, androgen deprivation (e.g., castration or
luteinizing hormone-releasing hormone analog)
had not been reported to induce obesity in mice or
rats.18-20 However, our recent study showed that
castration-induced obesity in C57BL/6J mice occurred
in a diet-dependent manner, despite decreased food
intake.16 In general, decreased body temperature sec-
ondary to lower heat production is considered a risk
for the development of obesity because of the
decreased energy expenditure. However, the body
temperature of obese castrated mice was higher than
that in sham-operated mice (Fig. 2A). Therefore, a
castration-induced alteration of body temperature
counters the induction of obesity, and thus is not a
suitable explanation of castration-induced obesity.

The ratio of total dried fecal weight to food intake
was significantly decreased in castrated mice fed the
HFD.16 The amount of food consumption was used to
normalize dried fecal weight because it affects fecal
weight.21 Feces are composed of »75% water and
residual solid materials, the majority of which are

Figure 1. Effects of castration and diet on cecal weight and cecal microbiota. Mice were castrated or sham operated at 8-weeks-old and
grown to 13 weeks with either a standard diet (SD) or high-fat diet (HFD), as described previously 16 (A) Cecal content was weighed. (B)
DNA was extracted from cecal microbiota and analyzed by real-time PCR using specific primers.16 Data were analyzed by Student’s t-
test using JMP statistical software version 8.0.1 (SAS Institute, Cary, NC, USA). Data were expressed as means § SEM, and the threshold
for a statistically significant difference between groups was set at p < 0.05 and was denoted by an asterisk (SD sham, n D 8; SD castra-
tion, n D 7; HFD sham, n D 8; HFD castration, n D 6).
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organic materials.21 The organic matter consists of
unabsorbed food, cellular debris, and bacteria, with
the bacterial biomass making up to half of these con-
tents.21 On the other hand, a large part of dried cecal
content is attributed to indigestible food such as
fiber,22 and thus, cecal content is greatly increased in
germ-free or antibiotic-treated mice. Turnbaugh
et al.9 indicate that the increased ratio of the Firmi-
cutes/Bacteroidetes phyla decreases the bomb calorim-
etry of the fecal gross energy content, and thus results
in an enhancement of the energy harvest from food.
The increase in the Firmicutes/Bacteroidetes phyla
ratio observed in the gut microbiota of the HFD-fed
castrated mice may enhance the energy harvest from
the HFD, which is associated with obesity or decreased
cecal contents. Although dried fecal weight is highly
associated with the fiber content in the diet,21 the
change in dried fecal weight may partly reflect the
energy harvest from food whenever the same diet is
fed. In addition, our results suggest that the
calculation of dried fecal weight per food intake is
valuable for the speculation of changes in the gut
microbiota.16

Unlike our recent study,16 previous models in
which castrated C57BL/6 mice were fed with an HFD
did not develop obesity.18,20 These inconsistent results
suggest that feeding an HFD is insufficient for

castrated mice to exhibit the obese phenotype second-
ary to androgen deficiency. We propose that diet con-
tents such as the fat source and/or fiber may be
important for castration-induced obesity because
these dietary factors strongly affect the gut micro-
biota.23,24 The gut microbiota is generally considered
to be involved in the response of the host to dietary
components that affect metabolisms; the underlying
mechanisms of this response have been discussed in a
recent review.24

Non-alcoholic fatty liver disease (NAFLD)

The liver plays a central role in glucose and lipid
metabolism, and NAFLD is associated with an
increased risk of cardiovascular disease.25 NAFLD
develops in »20% of adults and progresses to non-
alcoholic steatohepatitis (NASH), cirrhosis, and
hepatocellular carcinoma.26 NAFLD is increasing with
the prevalence of obesity and T2DM, and in fact, 50–
90% of obese individuals are diagnosed with
NAFLD.25,27 In our previous study, the castrated mice
accumulated excessive triglycerides in the liver in the
HFD-dependent manner.16 Histopathological analysis
demonstrated the development of hepatic steatosis in
HFD-fed castrated mice (Fig. 2B). Our results are
consistent with previous studies that showed that

Figure 2. Effects of castration and diet on the development of fatty liver, plasma adiponectin levels, and rectal body temperature. Mice
were castrated or sham operated at 8-weeks-old and grown to 24 weeks with either a standard diet (SD) or high-fat diet (HFD).16 (A)
Rectal body temperature was measured with a digital thermometer (KN-91, Natsume Seisakusho, Tokyo, Japan) at 17 weeks of age (SD
sham, n D 6; SD castration, n D 6; HFD sham, n D 7; HFD castration, n D 7). (B) The liver sections were stained with hematoxylin and
eosin. Representative images of each group are shown (scale bar D 100 mm). (C) Plasma adiponectin levels were determined by west-
ern-blotting using anti-adiponectin rabbit polyclonal antibody (GTX23455, GeneTex, San Antonio, TX, USA), and the immunoreactive
bands were developed as described previously.60 The band intensity was quantified using Image J software (ver. 1.48, National Institutes
of Health, Bethesda, MD, USA) (SD sham, n D 5; SD castration, n D 5; HFD sham, n D 7; HFD castration, n D 7). Data were analyzed by
Student’s t-test using JMP statistical software version 8.0.1. Data were expressed means § SEM, and the threshold for a statistically sig-
nificant difference between groups was set at p < 0.05 and was denoted by an asterisk.
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androgen deprivation enhances (and androgen
replacement suppresses) the development of hepatic
steatosis and NAFLD in HFD-fed rodents.28,29

The gut microbiome and mesenteric fat both
strongly influence the development of NAFLD.27,30,31

The gut-visceral fat (i.e., mesenteric and omental)-
liver axis is central to this association.32 The liver
receives »70% of its blood supply from the intestine,33

and the venous blood stream from the mesenteric and
omental fat directly flows into the liver.32 Our cas-
trated mice with NAFLD also exhibited excess mesen-
teric fat deposition.16 Therefore, the development of
NAFLD by castration could be affected by changes in
the gut microbiome and the accumulation of mesen-
teric fat.

Type 2 diabetes mellitus (T2DM)

T2DM is strongly associated with NAFLD and obe-
sity,34,35 as well as increases the risk of cardiovascular dis-
ease.36 A meta-analysis showed that higher testosterone
levels are associated with lower and higher T2DM risks in
men and women, respectively.37 In addition, androgen
deprivation therapy for prostate cancer patients leads to a
worsening of T2DM.38 In our recent study with HFD-fed
mice, fasting glucose levels increased after castration,
whereas castration did not affect insulin resistance.16 On
the other hand, plasma adiponectin levels increased with
castration, irrespective of diet (Fig. 2C). Increased blood
adiponectin levels may ameliorate insulin sensitivity and
suppress the development of insulin resistance.

Adiponectin levels are lower in men than in
women,39-42 whereas the relationship between adipo-
nectin levels and androgen status remains controver-
sial in men and male mice. Several studies, including

our results, showed that testosterone levels are nega-
tively associated with adiponectin levels in males,40,43

whereas several studies indicated a positive associa-
tion.20,41,42 A similar discordance was also observed in
androgen receptor knockout male mice.20,44,45 On the
other hand, adiponectin levels are higher in subjects
with gut bacterial richness (i.e., abundant in the num-
ber of gut microbial genes) than in subjects with low
bacterial richness,46 and some Lactobacillus strains
increased adiponectin levels in HFD-fed mice.47,48

The gut microbiota affects adiponectin levels, and sex
difference and sex hormone affect gut microbiota
composition; 49 however, it remains unclear whether
the gut microbiota is associated with changes in adipo-
nectin levels by androgen status in males.

The gut microbiota is associated with T2DM preva-
lence.50 The pancreatic b-cell is a direct target of
androgen,51 and the loss of its function is one of the
causal factors in androgen-deprivation induced
T2DM.52 The gut-vagus-brain-pancreas axis with its
glucagon-like peptide-1 affects b-cell function.53 Gut
microbe-derived metabolites may also link between
changes in the gut and prevention of T2DM through
the enhancement of b-cell function. For example,
S-equol, which is produced from the soy isoflavone
daidzein by gut bacteria, enhances pancreatic b-cell
function.54 Further studies are needed to clarify the
association between androgen deprivation caused
changes in the gut microbiota and the occurrence of
T2DM.

Thigh muscle mass

Thigh muscle mass is inversely related to the risk of
cardiovascular disease.55 Our recent study showed

Figure 3. Schematic presentation of the effects of interactive effects between castration and high-fat diet intake in male mice. Castra-
tion influenced the gut microbiota and caused obesity, hepatic steatosis, thigh muscle loss, and impaired fasting glucose in male mice
in the high-fat diet (HFD)-dependent manner.16 These observations were not induced by castration when antibiotics were provided.16
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that castration decreases thigh muscle (i.e., quadriceps
and hamstring) mass only when the mice were fed the
HFD, and this phenotype was not induced by castra-
tion when mice were administered antibiotics.16

Although the gut microbiota is involved in muscle
wasting,56 the gut-muscle axis remains poorly under-
stood.

Conclusion

Androgen deprivation poses a risk for cardiovascular
disease in men. Our studies showed that androgen
deprivation via castration altered cecal and fecal
microbiota and exacerbated risk factors for cardiovas-
cular disease, including obesity, impaired fasting glu-
cose, excess hepatic triglyceride accumulation, and
thigh muscle weight loss in HFD-fed mice (Fig. 3).
Androgen–androgen receptor action directly affects
the tissue physiology that plays a pivotal role in carbo-
hydrate and lipid metabolism in the liver,57 fat tis-
sue,58 muscle,59 and pancreatic b-cells.51,52 On the
other hand, these direct androgen actions could not
explain its effects on lipid and carbohydrate metabo-
lism fully, suggesting the existence of indirect effects.
Our recent results indicate that androgen deficiency
can alter the gut microbiota in a diet-dependent man-
ner.16 The change may, at least in part, explain the
indirect action of androgen.
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