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Introduction 

Malaria remains a well-known and life-threatening disease in many tropical and subtropi-
cal countries. Currently, there are near 100 countries and territories where the risk of ma-
laria transmission is present [1]. These countries are visited by more than 125 million in-
ternational travelers every year [2]. Moreover, Africa has faced 94% of all malaria cases in 
2019. There were almost 229 million estimated malaria cases worldwide in the same year. 
And the number of deaths from malaria stood at more than 400,000. Malaria is known to 
be caused by Plasmodium parasites. These parasites can infect female Anopheles mosqui-
toes and spread to people through the biting from these mosquitoes. Among the five par-
asite species that cause malaria in humans, two species—Plasmodium falciparum and P. vi-
vax bear the highest threat. P. falciparum also accounted for almost 99.7% of malaria cases 
in the African region and nearly half of World Health Organization South-East Asia Re-
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regions despite years of policy to limit infection and transmission rates. Further, studies 
into the variable efficacy of the vaccine are needed to provide a better understanding of 
protective immunity. Thus, the current study is designed to delineate the effect of each 
dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and un-
derstand the molecular mechanisms underlying the protection this vaccine provides. Here, 
we used gene expression profiles of pre and post-vaccination patients after various doses 
of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subse-
quently, differential gene expression analysis using edgeR revealed the significantly (false 
discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. 
controlled human malaria infection samples. Further, enrichment analysis of significant 
genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, 
IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregu-
lated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cyto-
kine genes whose expression significantly varied during three doses. Eventually, these find-
ings give insight into the dual role of cytokine responses in malaria pathogenesis. The vari-
ations in their expression patterns after various doses of vaccination are linked to the pro-
tection as it decreases the severe inflammatory effects in malaria patients. This study will 
be helpful in designing a better vaccine against malaria and understanding the functions 
of cytokine response as well. 
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gion cases [3].  
Most malaria deaths occur in children, and they are dominated 

by three syndromes: severe anemia, cerebral malaria, and respira-
tory distress. These syndromes can occur separately, or in combi-
nation [1]. One of the elementary features of P. falciparum is the 
induction of host inflammatory responses that contribute to dis-
ease severity and are associated with lethal outcomes [4]. Specifi-
cally, systemic levels of some pro-inflammatory cytokines are cor-
related with severity and death from malaria [5]. 

Even though the disease appears in documented reports as early 
as 2700 B.C., malaria vaccine development entered a new mile-
stone only in 2015 [6,7]. The European Medicines Agency posi-
tively reviewed the pre-erythrocytic P. falciparum candidate RTS,S 
vaccine and marked the first human anti-parasite vaccine to pass 
the regulatory examination [6]. This vaccine provided protection 
against infection in controlled human malaria infection (CHMI) 
studies [8-10]. It can also prevent life-threatening malaria and re-
duce the need for transfusion of blood [11]. 

Although malaria has been studied in detail, insufficient atten-
tion has been paid to how malaria vaccination is associated with 
several gene expression changes, contributing to increased protec-
tion. The efficacy of the malaria vaccine is still not at a desirable 
level and needs improvement if we want to eradicate malaria [12]. 
In the current study, we focused on how the various doses of ma-
laria RTS,S/AS01 vaccine facilitate protection and gene expression 
changes. Though we discussed multiple doses, we were primarily 

focused on a dataset from the 3rd dose. It could give us a better 
overview of gene expression changes as delayed doses are found to 
increase the chance of protection against malaria [13]. RTS,S/
AS01 vaccination has been significantly associated with upregula-
tion and downregulation in several gene expressions [14]. Our 
study would help us conclude how several gene upregulation and 
downregulation after the vaccination is different from dose to dose 
and how cytokine's dual role in protection and pathogenicity in 
malaria is crucial to investigate. Moreover, it will investigate how 
the absence of negative feedback control in pathophysiologic situ-
ations is responsible for impairing cytokine network homeostasis 
and contribute to local pathogenesis [15]. Overall, this will result 
in designing a better-performing vaccine against malaria. 

Methods 

Fig. 1 illustrates the workflow of the research and the methods we 
used to obtain the results. 

Dataset and experimental design 
Two datasets were obtained from Gene Expression Omnibus with 
accession numbers GSE102288 and GSE89292. These datasets 
were published as a BioProject on the National Center for Biotech-
nology Information with the accession number PRJNA397222 
and PRJNA351258. The total number of samples was 275 in 
GSE102288 and 583 in GSE89292 [16,17]. 

Fig. 1. Workflow of the research process.
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GSE102288 dataset is obtained from a study at the Center for 
Infectious Disease Research in the United States. The original re-
search paper by Du et al. [17] demonstrates how the transcript ra-
tio MX2/GPR183, measured 1 day after the 3rd immunization, 
can differentiate between protected and non-protected individu-
als. This ratiometric signature can help identify RTS,S/AS01 im-
munized people with protective immunity suggesting a role for in-
terferon in the RTS,S mode of action. 

GSE89292 dataset is obtained from a study at The Jackson Lab-
oratory for Genomic Medicine. The original paper by Kazmin et 
al. [16] is an analysis of protective immune responses to RTS,S 
malaria vaccination in humans. The study demonstrated that sev-
eral peripheral blood mononuclear cells (PBMC) and the circum-
sporozoite protein (CSP)‒specific antibody titers were highly cor-
related to protection after vaccination. 

Both datasets were necessary for the analysis because GSE102288 
did not provide first and second-dose vaccination information but fo-
cused on the changes after the 3rd dose and CHMI. On the other 
hand, GSE89292 dataset provided.  

An overview of the datasets is given in Table 1.  

Datasets for the identification of differentially expressed 
genes 
We partitioned datasets for two comparative analyses: The 
GSE102288 dataset was analyzed to compare control vs. CHMI 
samples, and GSE89292 was analyzed to identify gene expression 
patterns after the first two doses. Illumina HiSeq 2000 was the 
used platform (Illumina, San Diego, CA, USA) for GSE102288, 
and Affymetrix Human Genome U133 Plus 2.0 Array (Affymet-
rix, Santa Clara, CA, USA) was used in GSE89292. All datasets 
were curated so that only human tissue samples remained in the 
dataset. Furthermore, Probe ID mapped to gene symbols in the 
GSE89292 dataset was extracted from the respective platform file. 
Finally, dataset matrices were prepared for various analyses. 

For GSE89292, participants were vaccinated at 28-day intervals. 
They were subjected to controlled malaria infection 21 days after 
the final immunization. The CHMI challenge was then adminis-
tered through five bites by mimicking a natural infection. Parasite-
mia was monitored for 28 days, and overall monitoring continued 
for 159 days following the challenge. 

For GSE102288, volunteers received either three full doses of 
RTS,S/AS01 vaccines, or two full doses followed by a delayed frac-
tional third dose. After 3 weeks of the last dose, all the volunteers 
underwent CHMI. Later on, PBMC samples were collected and 
analyzed on the day of the 1st vaccination, day of the 3rd vaccina-
tion, day 1, 3, 14 post-the 3rd vaccination and day of challenge 
(CHMI). 

Pre-processing of datasets 
The GSE102288 dataset contains the FPKM (fragments per ki-
lobase million) value for 15,680 genes. On the other hand, 
GSE89292 is a microarray data containing RMA normalized value. 
In the case of the Illumina dataset (GSE102288), FPKM values 
are converted into log2 values using the T-Bioinfo Server pipeline 
(Supplementary Fig. 1). In the case of Affymetrix datasets (GSE 
89292), the average of multiple probes was computed that corre-
spond to a single gene using the average function in Excel. Ensem-
bl transcript IDs were mapped to the gene symbols using the 
T-Bioinfo Server's annotation pipeline. 

Exploratory analysis 
In order to explore the patterns of the data, principal component 
analysis (PCA) was performed using the T-Bioinfo Server 
(https://server.t-bio.info/) on all the 275 samples based on the 
gene expression profiles of the samples. Besides, PCA and Hierar-
chical Clustering (distance: Euclidean, linkage: ward.D2) were 
also performed with only significant genes to assess their discrimi-
nant potential using the T-Bioinfo Server [18]. 

Differential gene expression analysis 
We performed differential gene expression analysis using the Edg-
eR [19] tool integrated on the T-Bioinfo Server to select genes that 
were significantly differentially expressed in pre-vaccination (con-
trol) vs. day of challenge (CHMI) samples (Fig. 2A). The T-Bioin-
fo Server was used for this purpose. Furthermore, p-value and log2 
fold change values obtained from edgeR results were used to gen-
erate a volcano plot (Fig. 3) for control vs. CHMI samples. Even-
tually, a heatmap was generated for the top 50 protein-coding up-
regulated and downregulated genes [20]. Only those genes were 
considered as significant genes with the false discovery rate (FDR) 

Table 1. Original Dataset source, design, analysis method and sample number

Dataset Organism Experiment type Sample source Analysis method Sample no.
GSE102288 Homo sapiens Expression profiling by high throughput sequencing PBMC samples RNA-seq analysis 275
GSE89292 Homo sapiens Expression profiling by array PBMC samples RNA-seq analysis 583

PBMC, peripheral blood mononuclear cell; RNA-seq, RNA-sequencing.
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Fig. 2. (A) Principal component analysis (PCA) plot for all sample groups in the complete dataset. (B) PCA plot for control vs. controlled 
human malaria infection samples. PC1, principal component 1; PC2, Principal component 2; Ch, day of challenge; PV, pre-vaccination.

< 0.005 and log2 fold change at > ±1. We applied this threshold for 
both datasets. 

Factor regression analysis 
Next, we conducted a factor analysis to interpret the relationship 
between multiple variables and the malaria vaccine efficacy (Sup-
plementary Fig. 2). Correlation between sex status, protection sta-
tus, and gene expression was investigated. Our study also helped 

us determine how other factors are involved in protection status 
and which genes are significantly expressed in protected samples 
[21]. 

Gene enrichment analysis 
To understand how the significant genes are related to protection, 
we assessed the biological and molecular functions of the signifi-
cant genes with the help of annotation. We used Database for An-
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Fig. 3. Enhanced volcano plot for control and controlled human malaria infection (CHMI) samples for all annotated genes in R. FC, fold 
change.

notation, Visualization, and Integrated Discovery (DAVID) for 
annotation [22]. Additionally, we used the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Bioplanet for pathway analysis 
[23,24]. Literature search was done for the top significant genes, 
and cytokine or inflammation-associated genes provided a better 
understanding. 

Results 

Detection and visualization of variation in data 
The exploratory data analysis based on the PCA plot revealed the 
separate clusters for various sample groups. Principal component 1 
(PC1) represents 28.9% variance and PC2 represents 15.0% vari-
ance of the data (Fig. 2A). The figure illustrates how various sam-
ples fall in different clusters and overlaps as well. Interestingly, here, 
we observed day 14 samples forming a distinct cluster. Day 1 and 
day 3 post 3rd vaccination samples remain together in a cluster as 
they indicate the early expression of genes after the dose. The 
CHMI (day of the challenge) and control (pre-vaccination) sam-
ples also form distinct clusters. So, it is most likely that the gene ex-
pression pattern after malaria vaccine doses can indicate how the 
patient responds to the vaccine. However, the CHMI and pre-vac-
cination samples do not form distinct clusters like others. While 

two-thirds of the pre-vaccination samples were taken more than 7 
months before CHMI samples, the other one-third was taken 2 
months prior. This long gap between samples for these two groups, 
unlike other groups, might be the reason for not forming distinct 
clusters. Furthermore, as CHMI occurs more than two months af-
ter the first vaccination, the body's immune system was already 
stronger. It might have contributed to not forming distinct clusters 
too [25]. Finally, PC1 represents 35.38% variance, and PC2 rep-
resents 13.73% variance of the data in control vs. CHMI samples 
only and falls into different clusters (Fig. 2B). 

Identification of differentially expressed significant gene 
Since the PCA plot showed clear, distinct clusters for control and 
CHMI samples, we next identified 219 significantly differentially 
expressed genes between control and CHMI samples based on 
EdgeR. Among them, 158 genes were found to be downregulated, 
and 61 genes were found to be upregulated in control vs. CHMI 
samples. Further, we generated a volcano plot that included all the 
genes (Fig. 3). The volcano plot represents significant genes be-
tween control and CHMI groups. Furthermore, to identify a man-
ageable subset of genes, we selected only the top 50 differentially 
expressed genes, including the top 25 upregulated and top 25 
downregulated in control vs. CHMI samples (Table 2). Notably, 
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here we have selected only protein-coding and excluded the 
non-protein-coding genes. However, non-coding RNA genes have 
been found to help evade human immune attacks by switching ex-
pression between variants of var family genes and increasing the 
severity of malaria infection. but not in inflammation and protec-
tion [26,27]. Since our study primarily focused on the human in-
flammatory gene expression and its association with protection or 
elevated severity of malaria infection; therefore, we excluded the 
non-coding genes.  

PCA plot based on only significant genes  
Next, the PCA plot based on only significant genes between con-
trol and CHMI shows a clear distinction among the samples of 
these groups. PC1 represents 78.74% variance, and PC2 represents 
3.64% variance of the data (Supplementary Fig. 3). 

Hierarchical clustering and Heatmap for top 50 genes show 
clear distinctive pattern 
Among the significantly expressed genes after the 1st and 2nd 
dose of vaccination, we identified the same cytokine and inflam-
mation-related genes that were also significantly expressed after 
the 3rd dose. In order to derive their correlation and visualize the 
expression pattern, we plotted a line chart (Fig. 4A and 4B). After 
giving the first dose, there is upregulation of the inflammatory 
genes and both up and downregulation after the second dose (Fig. 
4A). Interestingly, significant downregulation occurs to those 
same genes after applying the third vaccination dose (Fig. 4B). 
The gene expression pattern changed through various doses of 
vaccination. 

Next, to assess the capability of the top 50 significant genes in 
distinguishing control and CHMI samples, we performed H-Clus-
tering with this set of genes. The dendrogram represents the two 
clear, distinct clusters of control and CHMI samples (Fig. 5B). 

Table 2. Top 50 significantly expressed protein-coding genes (p < 0.05, FDR < 0.005, and log2 FC > ±1)

Downregulated genes Upregulated genes
Gene symbol logFC FDR Gene symbol logFC FDR

IL12B –2.87295 9.85E–45 DRGX 1.798081 1.35E–19
FRMD7 –2.27791 4.06E–27 CHST3 1.743642 4.84E–14
IFNB1 –2.20904 2.05E–22 KIAA1644 1.674141 2.76E–16
IL36G –2.1776 2.89E–18 CACNA1G 1.669566 1.44E–13
CXCL11 –2.13596 1.78E–24 TNFAIP8L3 1.65029 1.80E–13
CCL8 –2.13175 9.23E–20 NECTIN4 1.627141 2.36E–16
RANBP3L –1.86129 6.74E–13 RHBDL3 1.590967 4.04E–14
IL22 –1.80012 1.40E–11 SMAD6 1.567576 2.30E–17
BHLHE22 –1.73922 1.23E–11 A4GALT 1.565569 4.01E–13
ACOD1 –1.67863 1.28E–20 GNG4 1.553002 2.61E–11
CSF3 –1.64862 6.61E–23 HR 1.550488 4.74E–13
CCDC129 –1.59496 7.71E–08 MAFA 1.526466 9.91E–12
UNC5C –1.589 8.93E–10 LMX1B 1.483051 9.46E–10
IFNE –1.58164 3.03E–08 SEMA3F 1.466303 3.83E–16
C1QTNF1 –1.55235 8.45E–12 CBARP 1.452397 6.85E–10
PLA1A –1.539 3.60E–16 HOXB6 1.435488 1.08E–11
GXYLT2 –1.52936 3.14E–10 RASAL1 1.431945 8.37E–15
HSD11B1 –1.52447 2.82E–08 UBE2QL1 1.383004 4.92E–11
CXCL10 –1.51384 2.10E–23 CA12 1.378161 4.43E–08
RHCG –1.48479 2.99E–10 NCMAP 1.351544 3.31E–08
KCNJ2 –1.45138 7.38E–23 FAM124A 1.34904 7.86E–13
SLC6A7 –1.45109 6.99E–08 MMP2 1.333238 2.41E–11
CH25H –1.45018 4.82E–17 GAD1 1.325456 3.36E–10
OR52W1 –1.40885 1.71E–06 TUBB3 1.324794 5.41E–10
IL27 –1.39053 5.41E–10 RGMA 1.307805 2.88E–11

FDR, false discovery rate; FC, fold change.
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Fig. 4. Inflammatory or cytokine gene expression pattern in 1st and 2nd dose (A) and 3rd dose (B) distinct upregulation or downregulation. 
Pre/PV, pre-vaccination; D1, day of the first dose; D2/D6/D14/D28/D29/D34, 2/6/14/28/29/34 days after first vaccination where the second 
dose is given on 28th day after the first dose; DV, day of 3rd dose of vaccination; DV+1/DV+3/DV+14, 1/3/14 days after the 3rd dose; CHMI, 
controlled human malaria infection; FC, fold change.
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Fig. 5. Heatmap (A) and dendrogram (B) generated by Hierarchical clustering based on top 50 significantly differentially expressed genes, 
illustrating the distinct clusters of control and controlled human malaria infection day samples.
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Heatmap represents the expression pattern of the top 50 top genes 
between control vs. CHMI samples (Fig. 5A), illustrating variation 
in expression. 

Expression of inflammatory cytokine genes in all doses 
Cytokines are the key players of the immune system. Next, to un-
derstand the expression pattern of the cytokines during different 
doses, we investigated the expression pattern for significantly ex-
pressed genes with cytokine G.O. function in control vs. CHMI 
samples. We identified 13 significantly differentially expressed cy-
tokine genes that were expressed after all three doses. These cyto-
kine genes showed a distinctive expression pattern after different 
doses (Fig. 4A and 4B). 

Correlational with other factors of interests 
Next, we wanted to see whether the gender of the samples is a sig-
nificant factor in gene expression regulation. Here, we identified 
10 protein-coding genes that were indeed significantly associated 
with the gender (males and females) on control vs. CHMI com-
parison (Supplementary Table 1). A PCA plot was also generated 
to visualize the differences (Supplementary Fig. 4). We further 
looked for evidence if gender was correlated with protection. No 
significant genes were found to provide any evidence of gender to 
be related to protection. Subsequently, we identified13 coding 
genes significantly differentially expressed in protected vs. 
non-protected samples on the 3rd vaccination day vs. CHMI sam-
ples (Supplementary Table 2). The exploratory data analysis failed 
to show enough differences between samples while comparing 3rd 
vaccination vs. CHMI samples, but further analysis is necessary 
for identifying the importance of the significantly expressed genes 
after 3rd dose on protected vs. non-protected samples. 

Gene set enrichment analysis 
As malaria severity is often associated with the overexpression of 
inflammatory genes, their expression patterns and changes were a 
major point of interest in our study as we wanted to find out how 
vaccination doses affect them. Gene set enrichment analysis was 
performed for 158 upregulated, 61 downregulated significant 
genes in CHMI vs. control samples of the 3rd dose on DAVID. 
Also, functional annotation and clustering for these significantly 
expressed genes were performed. Top hits with the downregulated 
genes indicate the enrichment in gene ontology terms associated 
with inflammatory response, cellular response to lipopolysaccha-
ride, cytokine, chemokine mediated signaling pathway, cell-cell 
signaling, positive regulation of leukocyte chemotaxis, etc. Func-
tional clustering showed nine clusters with 83 DAVID IDs. The 

top three clusters were all involved in cytokine activity and had en-
richment scores of 4.42, 3.19, and 3.15, respectively.  

These enrichment scores are measured by the geometric mean 
of the EASE Scores (modified Fisher Exact) [28]. Here, a higher 
score for a group is an indication of their more critical (enriched) 
roles [29]. Similarly, gene enrichment analysis with the upregulat-
ed genes for CHMI vs. control showed the gene ontology enriched 
terms were associated with intramembranous ossification, nega-
tive-regulation of calcium ion-dependent exocytosis, epidermis de-
velopment, angiogenesis, chemical synaptic transmission, positive 
regulation of calcium ion-dependent exocytosis, cell-cell signaling, 
etc. Also, functional clustering indicated nine clusters with 68 DA-
VID IDs, where top ones were associated with glycoprotein, glyco-
sylation site: N linked, and pathways in cancer. Enrichment scores 
were 1.88, 1.62, and 1.39 for the top three clusters. We also analyzed 
a dataset from the 1st dose, which showed association with inflam-
matory response, cytokine, and chemotaxis. Interestingly, CCL7, 
CXCL1, CXCL11, etc. cytokine genes were upregulated in this case 
whether they were downregulated after the 3rd dose. 

Besides, gene enrichment analysis of significantly differentially 
expressed genes in protected vs. non-protected showed the enrich-
ment in gene ontology terms, including cell-matrix adhesion and 
association of signal and glycoprotein [30]. 

KEGG pathway analysis 
KEGG pathway analysis revealed genes, such as CCL8, CXCL10, 
CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL36G, 
IL27, etc. were involved in cytokine-cytokine receptor interaction 
(Fig. 6). Moreover, CSFE, IFNB1, IFNE, IL12B, IL22, IL6 genes 
were associated with the JAK-STAT signaling pathway (Supple-
mentary Fig. 5). 

On the other hand, the upregulated genes, such as GNG12, 
GNG4, WNT9A, EDNRB, FGF18, LAMA3, MMP2, etc., were 
found in pathways in cancer (Supplementary Fig. 6). 

Discussion 

There are two main determinants of severe malaria: sequestration 
of parasitized red blood cell and surge of pro-inflammatory re-
sponse [31]. Imbalanced pro and anti-inflammatory immune re-
sponses have been found to trigger immune-induced pathology 
and remain one of the leading causes of cerebral malaria pathogen-
esis, which might be further amplified by sequestration [32]. 
Moreover, systemic cytokine levels are correlated with disease se-
verity in malaria as well as sepsis [33]. Thus, it is necessary to ex-
amine how multiple vaccination doses change the pattern of in-
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flammatory responses and induce protection upon challenge. De-
tailed studies in this regard can help increase the efficacy of the 
vaccine and might be implied to other vaccinations as well. Here, 
anti-CSP titer levels were analyzed to identify RTS,S/AS01 immu-
nized people who developed protective immunity. It also suggest-
ed a role for interferon signaling in the RTS,S mode of action [17]. 

Towards this end, in the current study, we investigated transcrip-
tomics profiles of pre-and post-vaccination patients after the 1st, 
2nd, and 3rd vaccination dose of RTS,S using various bioinformat-
ics techniques, i.e., PCA, differential gene expression analysis, Hi-
erarchical clustering, etc. Exploratory data analysis based on the 
PCA clearly shows distinct clusters of samples of control and 
CHMI. Subsequently, differential gene expression analysis using 
the edgeR scrutinized 219 significantly differentially expressed 
genes (FDR < 0.005). Eventually, the biological role of significant 
genes was delineated using gene enrichment analysis.; which re-
veals the regulation status of chemokines and cytokines in pre-vac-
cinated and post-vaccinated samples at different doses. Gene en-
richment analysis showed that CCL8, CXCL10, CXCL11, XCR1, 

CSF3, IFNB1, IFNE, IL12B, IL22, IL6, and IL27 were involved in 
cytokine-chemokine pathways and upregulated after earlier doses 
but downregulated after the 3rd dose. Analysis of downregulated 
genes in DAVID and KEGG pathway illustrated how significantly 
downregulated genes after 3rd vaccination on CHMI is primarily 
associated with cytokine and inflammation. Overexpression of 
those inflammation and cytokine gene has been one of the driving 
forces of death and contribute to pathogenicity [34]. In fact, che-
moattractant cytokines or chemokines have proven to be regula-
tors of leukocyte trafficking and potentially contribute to severe 
malaria [31,35]. Our analysis suggested repeated doses of malaria 
vaccination help in protection because it is associated with the bal-
anced expression of pro and anti-inflammatory cytokines. SYT4, 
CBARP, NCS1, CACN1G, RHBDL3, CBARP, etc., significant 
genes in our analysis have shown functions for calcium ion recep-
tors, calcium gated ion channels, or calcium ion-dependent exocy-
tosis according to gene ontology studies [36-39]. It has been ob-
served that antibody levels to the voltage-gated calcium channels, 
but not to other ion channels, increase with the severity of malaria 

Fig. 6. Kyoto Encyclopedia of Genes and Genomes cytokine-cytokine receptor interaction pathway involving significant genes in control and 
controlled human malaria infection samples.
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infection [40]. 
Significantly elevated pro-inflammatory IL-6, IL-12 have been 

observed in the severe-malaria group compared to age-matched 
healthy children [41]. Also, IL-12 has been found to induce IFN-γ, 
a key mediator of inflammatory immune responses [42]. IL-12 
has shown evidence to play an essential role in the pathogenesis of 
malaria [42]. Furthermore, levels of IL-6 are elevated in malaria 
disease and contribute to disease severity [43-45]. Moreover, IF-
NB1-regulated genes were observed in severe cerebral malaria 
[46]. IL-12B was the most downregulated gene after the 3rd dose 
in our study. Furthermore, TNF, IL-1, IL-6, etc., inflammatory 
genes are over-expressed in falciparum malaria [43,47]. These 
genes are associated with cardiac insufficiency and myocardial 
dysfunction [48-50]. Additionally, inflammatory/inducible 
chemokines CXCL10, CXCL11, and CCL8 suggest involvement 
in response to the malaria infection [51]. Relative involvement of 
CXCL10 and CXCL11 has been found to recruit inflammatory 
leukocytes of malaria-infected mice [31]. Again, studies have indi-
cated that the concentration of CXCL11 was greater in symptom-
atic than asymptomatic malaria and was upregulated among the 
fever-positive groups, which identified CXCL11 as a possible bio-
marker for malarial fever [52]. The activity and capacity of cyto-
kines through directing sequestration and driving anemia restrict 
oxygen supply to mitochondria and make falciparum malaria pri-
marily a cytokine-driven inflammatory disease [34,52]. 

Surprisingly, one of the pathways involved with the significant 
genes in control vs. CHMI samples was the cancer pathway. In Af-
rica, malaria is known to influence genetic variation at several loci 
in the human genome [53], which might be involved in cancer 
and impact the biology and epidemiology of both diseases [54]. 
Moreover, recent evidence suggested that inflammatory cytokines 
might implicate several cancers [55]. Additionally, cancer–malaria 
interactions have been reported in the human liver, where malaria 
parasites attack its life cycle [54]. p53 protein has been observed 
to play a crucial role in hepatocyte infection by malaria parasite 
sporozoites. p53 is also the most highly mutated gene in several 
cancers [55]. This area needs further investigation for better un-
derstanding as there is an excellent potential for new novel an-
ti-cancer therapies using anti-malarial drugs [56]. Malaria vaccina-
tion can bring new scopes for cancer research and control pro-
to-oncogenes' abnormal expression, thus reducing the risk of can-
cers [57]. 

Further, many critical events in the Plasmodium life cycle are reg-
ulated by changes in the cellular levels of Ca2+ [58]. Moreover, lev-
els of antibodies to the voltage-gated calcium channels correlate 
with the increased severity of malaria infection [40]. SYT4, CBARP, 

NCS1, CACN1G, RHBDL3, CBARP, etc., significant genes in our 
analysis have shown functions for calcium ion receptors, calcium 
gated ion channels, or calcium ion-dependent exocytosis according 
to literature study or gene ontology [36-39]. It has been observed 
that antibody levels to the voltage-gated calcium channels, but not 
to other ion channels, increase with the severity of malaria infection 
[40]. Moreover, P. falciparum protein PfRH1is found to trigger the 
release of calcium ions. Extensive involvement of calcium signaling 
has been observed in various crucial pathways of the parasite. 
Therefore, any interruption would be deleterious for invasion and, 
ultimately, the growth of the malaria parasite. So, components of 
calcium signaling are considered for therapeutic interventions [59]. 

The malaria RTS,S/AS01 vaccine uses the CSP protein as a tar-
get antigen against malaria [60]. In earlier stages of vaccine devel-
opment, higher concentrations of antibodies against CSP were ob-
served on the day of the challenge [61]. Moreover, the control 
group without vaccination developed malaria earlier than the test 
group with three doses of vaccination, in which a strong humoral 
response against CSP was shown [62]. After the initial dose, there 
are low titers of antibodies against CSP protein. But after later dos-
es, high antibody titers are present, and antibody feedback can fur-
ther block immunodominant response [56]. Although inflamma-
tory mediators have been repeatedly found to be implicated in the 
severity of the disease, this evidence gave rise to the widely held 
belief that severe malaria might be an immune-mediated disease 
[5,63]. Also, parallels between sepsis and malaria are associated 
with functionally crucial inflammatory cytokines present in both 
conditions [34]. Malaria-induced sepsis is related to an intense 
pro-inflammatory cytokinemia, though the mechanisms behind it 
are poorly understood [64]. Additionally, a critical illness associat-
ed with an inflammatory response is a cause of multifactorial ane-
mia [65]. Anemia could contribute to poor oxygenation of tissues 
in malaria patients [66]. 

One of the adverse side effects of this is the overexpression of in-
flammatory genes, which often have the role of a double-edged 
sword [67]. As our study suggested, cell-mediated cytokines are 
less expressed after the 3rd dose, which was not the case after the 
1st or 2nd dose, confirming that multiple doses of malaria RTS,S 
vaccination are crucial in gene expression and control of inflamma-
tion in malaria infection. Downregulation of cytokine and inflam-
mation-related genes helps decrease the negative side effects of cy-
tokine storms in malaria as excessive pro-inflammation increases 
the severity of malaria [34]. Therefore, cytokine overexpression as 
a part of humoral immunity was reduced after repeated vaccina-
tion doses, resulting in protection by reducing the complexities of 
malaria infection. Additionally, a fractional booster dose initiates 

11 / 15https://doi.org/10.5808/gi.22049

Genomics & Informatics 2022;20(3):e32

https://doi.org/10.5808/gi.22049


high protection upon challenge by increasing antibody somatic 
hypermutation [13]. Moreover, exploratory data analysis showed 
evidence that protected-day 14 samples were distinct from other 
groups, which needs further investigation for early detection of 
malaria vaccination efficacy before the challenge (Supplementary 
Fig. 7). Our study also suggests the necessity to further explore 
passive immunization with monoclonal antibodies as a new ap-
proach to prevent and eliminate malaria [47]. As cytokines are as-
sociated with various inflammatory diseases, the study of malaria 
vaccination's control over inflammatory cytokine gene expression 
might become helpful in other diseases too, where they play a sig-
nificant role in pathogenesis [68]. 

This study was able to identify 13 inflammatory genes whose ex-
pression in malaria vaccination played a significant role in the cyto-
kine-cytokine receptor interaction pathway, JAK-STAT signaling 
pathway, and pathways in cancer. Furthermore, we demonstrated a 
comparatively less focused protection mechanism after vaccination 
and discussed the gene expression pattern of various vaccination 
doses. We analyzed the dual role of protection and pathogenicity of 
cytokines in malaria infection and how multiple doses of vaccina-
tion increase protection by influencing these cytokine levels and 
producing antibodies against the malaria CSP antigen. 
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