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COVID-19 is a world pandemic that has affected and continues to affect the social lives of people. Due to its social and economic
impact, different countries imposed preventive measures that are aimed at reducing the transmission of the disease. Such control
measures include physical distancing, quarantine, hand-washing, travel and boarder restrictions, lockdown, and the use of hand
sanitizers. Quarantine, out of the aforementioned control measures, is considered to be more stressful for people to manage. When
people are stressed, their body immunity becomes weak, which leads to multiplying of coronavirus within the body. Therefore, a
mathematical model consisting of six compartments, Susceptible-Exposed-Quarantine-Infectious-Hospitalized-Recovered
(SEQIHR) was developed, aimed at showing the impact of stress on the transmission of COVID-19 disease. From the model
formulated, the positivity, bounded region, existence, uniqueness of the solution, the model existence of free and endemic
equilibrium points, and local and global stability were theoretically proved. The basic reproduction number (R0) was derived
by using the next-generation matrix method, which shows that, when R0 < 1, the disease-free equilibrium is globally
asymptotically stable whereas when R0 > 1 the endemic equilibrium is globally asymptotically stable. Moreover, the Partial
Rank Correlation Coefficient (PRCC) method was used to study the correlation between model parameters and R0.
Numerically, the SEQIHR model was solved by using the Rung-Kutta fourth-order method, while the least square method was
used for parameter identifiability. Furthermore, graphical presentation revealed that when the mental health of an individual is
good, the body immunity becomes strong and hence minimizes the infection. Conclusively, the control parameters have a
significant impact in reducing the transmission of COVID-19.

1. Introduction

Coronavirus disease-2019 (COVID-19) is an infectious dis-
ease caused by a newly discovered coronavirus named
severe acute respiratory syndrome coronavirus-2 (SARS-
COV-2). This pandemic originated in Wuhan, China, with
the first case reported in December 2019, and has spread
to other parts of the world in early 2020 as discussed in
[1, 2]. When the total confirmed cases globally were
125,260 and 4613 deaths in 24 hours, the World Health
Organization (WHO), on 12th March 2020, announced
COVID-19 disease as the World pandemic as presented in
[3]. The global leaders were greatly bothered by this disease

due to its fast spread from one person to another and its
social and economic impact on their respective countries.
The WHO and country leaders focused on finding ways to
reduce the transmission of the disease by introducing some
measures such as lockdown, quarantine, closing borders,
travel bans, and isolation centers [4–7].

Mathematical models are essential tools in evaluating
various transmission and control intervention programs
for infectious diseases. There are a number of mathematical
models on COVID-19 pandemic developed from the start of
this human disturbing disease [8]. The author discusses
social isolation measures taken by the government in Brazil
to fight COVID-19 disease, and also, the protection of health
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workers was discussed by Masandawa et al. [9]. In their
study, Khan et al. [10] discussed on isolation and quarantine
as the best ways of fighting COVID-19 disease. At the begin-
ning of the pandemic, many ways to fight the disease were
introduced by many scientists. Ullah and Khan [11]
explored several ways such as social distancing, self-isola-
tion, quarantine, and hospitalization and concluded that
these are the best ways to curb COVID-19. Dos Santos
[12], in his review, studied on the effects of social distancing
and social isolation measures as good ways to fight against
the disease, although they lead to social stress which influ-
ences the spread of the disease. Early 2020, some mathemat-
ical models for COVID-19 were developed and published.
Dhanwant and Ramanathan [13] explored how the social dis-
tancing in India during the pandemic helped to reduce the
transmission of COVID-19 disease because the spread of the
disease is by social contact. Khan and Atangana [14] discussed
the interaction of bats and unknown hosts and then the inter-
action of people in the seafood market where there is enough
source of infection. They presented their results graphically
to show how they can minimize the infections.

Ashcroft et al. [15] discussed the impact of quarantine
on the transmission of COVID-19 disease showing that
many countries impose quarantine to ensure the exposed
people and those from abroad are isolated for a specific
period of time to prevent the spread of the disease. However,
these measures took a larger economical toll and affected the
health of the isolated individuals. Prati [16], from Italy, dis-
cussed the national impacts of quarantine psychologically. In
their online survey of 1569 people living in Italy, they found
that there are psychosocial factors that influence the disease,
such as media exposure to COVID-19 outbreak, financial
loss, higher worry, and negative attitude towards quarantine
leading to psychological impacts. The mental health of pub-
lic and healthcare professionals is affected by the pandemic,
especially during quarantine time where hypervigilance
arises because of fear and anxiety [17, 18].

Stress affects many quarantined people whereby their
immune system is disturbed by the COVID-19, and this is
most likely because during quarantine, people are isolated
from their families and community members, so they
develop fear, and later, the body becomes stressed which
affects their immune system. When the immune system is
disturbed, it fails to fight against the intruders, which leads
to the fast spread of COVID-19 throughout the body. There-
fore, this research is aimed at formulating a deterministic
model to explore the impact of stress in quarantine to the
human population. The model has six compartmental clas-
ses (Susceptible, Exposed, Quarantine, Infectious, Hospital-
ized, and Recovered). The model is extended from the
model given in [19] by incorporating the hospitalized class
and introducing a stress parameter in a quarantined and
infected class.

The introduction of this work presented in Section 1.
Model formulation, discussion of its compartments, and
parameters are presented in Section 2. Section 3 contains
the discussion of the model analysis theoretically, which
includes positivity and bounded regions, the existence,
uniqueness of the model, reproduction number, and local

and global stability of the COVID-19 disease. Section 4 deals
with a discussion of numerical simulation for the model,
including sensitivity analysis, numerical solutions, PRCC
results, parameter identifiability, and model fitting by the
least square method are presented. Section 5 concludes this
work and contains the possible extension of this model.

2. Model Formulation

In this study, a mathematical model for COVID-19 was for-
mulated based on realistic assumptions. The total population
model NðtÞ is divided into six human subclasses, namely,
susceptible SðtÞ (those who are at risk to contact COVID-
19 infection), exposed EðtÞ (the population which is infected
but not infectious), quarantined QðtÞ (those who contacted a
COVID-19-infected individual but did not develop any
symptom), infectious IðtÞ (those who have COVID-19
symptoms and are capable of spreading the disease), hospi-
talized HðtÞ (infectious individuals admitted to a healthcare
facility (active cases)), and recovered RðtÞ (those recovered
from the COVID-19).

2.1. Model Assumptions. By presenting an infectious disease
with a mathematical model, the following assumptions for
the SEQIHR model are considered based on the characteris-
tics of COVID-19 disease in this work.

(i) All members of the population can have an equal
chance of getting a COVID-19 disease

(ii) Stress in a quarantined class is higher than that in
an infectious class

(iii) Population from outside the country were taken
directly to quarantine class

(iv) All compartments have an equal natural death rate

(v) The death due to the disease may be only in two
variables (infectious and hospitalized)

(vi) Recruitment rates (Newborns) are assumed to be
susceptible

(vii) Individuals are equally likely to be infectious to the
infected individuals when coming into contact

(viii) Infected individuals are identified early and iso-
lated (hospitalized) immediately for treatment

(ix) There are only two options, a patient will either
recover or die, which means no treatment failure

(x) The population differs within a given time step
where recruitment and leaving rates differ

2.2. Model Compartments and Dynamics. From Section 2.1,
the variable and parameter descriptions are to be presented
by the following SEQIHR model compartmental diagram:

Let N be the total population divided; the transmission
dynamics of COVID-19 disease in a population are shown
in Figure 1. Consider Table 1, showing the variables and
their descriptions:
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The total population NðtÞ is given by the mathematical
equation:

N tð Þ = S tð Þ +Q tð Þ + E tð Þ + I tð Þ +H tð Þ + R tð Þ, ð1Þ

where t ∈ ½0, t� and t > 0.
Table 2 shows the model parameters and their

descriptions:
The model parameters found in Equation (2) are

described in Table 2. By considering the SEQIHRmodel with
six compartments in Figure 1, the following are the trans-
mission phases:

The Susceptible class, SðtÞ, increases by the addition of a
recruitment rate, μ. It also decreases by infection, if con-
tacted with an infected individual at the rate of β and natural
death at the rate of b.

An individual enters the Exposed class, EðtÞ, after direct
contact with an infected person, with an infection rate β. Fur-
thermore, taking to hospital decreases the rate of ω and q for
individuals with multiple symptoms. Individuals with clear
(direct) symptoms are presented by (1-ω), and those with no
symptoms are represented by θ, and then, the population in
EðtÞ class is diminished by a leaving rate of natural death b.

The Quarantined class, QðtÞ, was formed by individuals’
progress from exposed, θ, and population rate from outside
the country, ϕ, also decreased by individuals with no symp-
toms after being tested. Then, the individuals with no infec-
tions going back to the susceptible class are presented by α
and those infected individuals after being tested, going to
the infectious class at the rate of η1 and diminishing by leav-
ing a natural death rate of b.

The Infectious class, IðtÞ, are individuals who progress
from exposed at the rate of (1-ω) and then quarantine at
the rate of η1. Additionally, this class decreases with hospi-
talized individuals at the rate of η2 and recovered at the rate
of ν. Not only that but also it diminished by leaving the rate
of natural death, b, and death due to the disease, δ.

The Hospitalized class, HðtÞ, are individuals who prog-
ress from the exposed class at the rate of ω and q, then from
the infectious compartment at the rate of η2. Individuals

recovered from hospitalized class at the rate of λ and dimin-
ished by leaving the rate of natural death, b, and death due to
COVID-19 disease, δ.

The Recovered class, RðtÞ, are individuals who progress
from a hospitalized compartment at the rate of λ and infec-
tious rate ν and decrease by recovered individuals who are
going back to the susceptible population ρ and then dimin-
ished by the leaving rate of b.

2.3. Model Equations. Based on the assumptions made and
the relationship that exists between the variables shown in
Figure 1, the system of six ordinary differential equations is
formed as in

dS
dt

= μ + αQ + ρR − βIS − bS, ð2Þ

dE
dt

= βIS − θE − qE − bE, ð3Þ

dQ
dt

= ϕ + θE − αQ − η1Q − bQ, ð4Þ

dI
dt

= 1 − ωð ÞqE + η1Q − η2I − νI − δI − bI, ð5Þ

dH
dt

= ωqE + η2I − λH − δH − bH, ð6Þ
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Figure 1: Schematic flow diagram showing dynamics of COVID-19.

Table 1: Model variable description.

Variables Description

S tð Þ Number of susceptible population at time t

Q tð Þ Number of quarantined population at time t

E tð Þ Number of exposed population at time t

I tð Þ Number of infectious population at time t

H tð Þ Number of hospitalized population at time t

R tð Þ Number of recovered population at time t
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dR
dt

= λH + νI − ρR − bR: ð7Þ

3. Model Analysis

In this section, positivity, boundedness, derived equilibrium
states, basic reproduction number, and stability analysis are
discussed.

3.1. Positivity of the Model. For the model equations to be
epidemiologically, we need to prove that the state variables
are nonnegative ∀t ≥ 0.

Theorem 1. Let the initial data set be ðS, E,Q, I,H, RÞð0Þ > 0
. The solution set of the model system 2 is positive ∀t > 0.

Proof. From the system of model Equation (2), consider the
first equation:

dS
dt

= μ + αQ + ρR − βI + bð ÞS: ð8Þ

By considering the negative term, by ignoring the rest,
Equation (8) is reduced to

dS
dt

≥ − βI + bð ÞS: ð9Þ

This is the first-order linear differential inequality which
can be solved by a separable method y′ = f ðxÞgðyÞ (where
S ≥ 0) resulting in

ðS tð Þ

S 0ð Þ

dS
S

≥ −
ðt
0
βI + bð Þdt, S tð Þ ≥ S 0ð Þe− βI+bð Þt , ð10Þ

in the absence of COVID-19 disease,

S tð Þ ≥ S 0ð Þe−bt , S 0ð Þ ≥ 0,∀t > 0: ð11Þ

By applying the same procedure to the remaining equa-
tions, the results are Eð0Þ ≥ 0, Qð0Þ ≥ 0, Ið0Þ ≥ 0, Hð0Þ ≥ 0,
and Rð0Þ ≥ 0. Therefore, the set of solutions SðtÞ, EðtÞ,QðtÞ,
IðtÞ,HðtÞ, and RðtÞ of the model is positive ∀t > 0.

3.2. Invariant (Boundedness) Region. The SEQIHR model is
represented by differential equations in system 2, which is
to be analyzed in a feasible region Ω, and all state variables
and parameters of the model are assumed to be positive ∀t
≥ 0. The bounded region is obtained through the following
theorem.

Theorem 2. The set Ω is positively invariant and attracts all
solutions in ℝ6

+.

Proof. Since NðtÞ = SðtÞ +QðtÞ + EðtÞ + IðtÞ +HðtÞ + RðtÞ,
then the derivative of NðtÞ is given as

dN
dt

= dS
dt

+ dE
dt

+ dQ
dt

+ dI
dt

+ dH
dt

+ dR
dt

: ð12Þ

Substituting model Equation (2) to Equation (12) gives

dN
dt

=
μ + αQ + ρR − βIS − bSð Þ + βIS − θE − qE − bEð Þ
+ ϕ + θE − αQ − η1Q − bQð Þ + 1 − ωð ÞqE + η1Q − η2I − νI − δI − bIð Þ
+ ωqE + η2I − λH − δH − bHð Þ + λH + νI − ρR − bRð Þ:

8>><
>>:

ð13Þ

Table 2: Model parameter description.

Parameters Description

β Contact rate (effective transmission rate)

μ Recruitment rate to the susceptible population

b Human natural death rate

ϕ Quarantined population from infected countries

ρ Recovered population rate back to susceptible class

α Population rate after the quarantined period to susceptible

ν Recovery rate from infected population

λ Recovered rate from hospitalized population

ω Proportion of exposed population with contradicting symptoms

q Progression rate from exposed to hospitalized and infectious classes

θ Proportion of exposed population with no symptoms

η1 Stress to the infected population from quarantine

η2 Stress to the hospitalized population from infectious class

δ Death due to the disease from infectious and hospitalized classes
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Further simplification leads to

dN
dt

= μ + ϕ − S + E +Q + I +H + Rð Þb − δI + δRð Þ, ð14Þ

implying that

dN
dt

= μ + ϕ −Nb − δI + δRð Þ: ð15Þ

For disease-free, δI ⟹ 0 and δR⟹ 0, then ðdN/dtÞ
≤ μ + ϕ −Nb.

This is a first-order linear differential equation, by a sep-
arable method.

ðN tð Þ

N 0ð Þ

dN
μ + ϕ − bNð Þ ≤

ðt
0
dt,⟹N tð Þ ≥ μ + ϕ

b
1 − e−bt
� �

+N 0ð Þe−bt:

ð16Þ

When t = 0, Nð0Þ ≥ 0. When t⟹∞ then, Nð∞Þ ≤ ðμ
+ ϕÞ/b.

The Invariant region is given by Ω = ðS, E,Q, I,H, RÞ ∈
ℝ6

+ : 0 ≤NðtÞ ≤ ðμ + ϕÞ/b. The SEQIHR model is biologically
and epidemiologically meaningful; thus, we can consider the
flow generated by the model for analysis.

3.3. Existence and Uniqueness of the Solution. From the
first-order differential equation given in the form: y′ = f ðt,
yÞ, yðt0Þ = y0. The following questions will be of interest:

(i) Under what conditions can we say that a solution to
the equation y′ exists?

(ii) Under what conditions does a unique solution exist
to the equation y′?

Consider the following equations to answer the question.

f1 = μ + αQ + δR − βIS − bS, ð17Þ

f2 = βIS − θE − qE − bE, ð18Þ
f3 = ϕ + θE − α + η1 + bð ÞQ, ð19Þ
f4 = 1 − ωð ÞqE + η1Q − η2 + ν + δ + bð ÞI, ð20Þ
f5 = ωqE + η2I − λ + δ + bð ÞH, ð21Þ
f6 = λH + νI − ρ + bð ÞR: ð22Þ

3.3.1. Uniqueness of Solution

Theorem 3. Let us use D to denote the domain:

t − t0j j ≤ a, y − y0k k ≤ b, y = y1, y2,⋯, ynð Þ, y0 = y10, y20,⋯, yn0ð Þ:
ð23Þ

Proof. Suppose f ðt, yÞ satisfies the Lipschitz condition;
therefore,

f t, y2ð Þk k − f t, y1ð Þk k ≤ k x2 − x1k k: ð24Þ

Whenever the points ðt, x1Þ and ðt, x2Þ belong to the
domain D and k is used to represent the positive constant,
then, there exist a constant α > 0 and a unique solution yðtÞ
of system 11 in the interval jt − t0j ≤ α. It is essential to note
that condition (24) is satisfied by ð∂f i/∂yjÞ, i, j = 1, 2, 3,⋯, n
to be continuous and bounded in domain D.

If f ðt, yÞ has a continuous partial derivative ð∂f i/∂yjÞ on a
bounded closed convex domain ℝ (i.e., the convex set of real
numbers), where ℝ is used to denote real numbers; then it
satisfies a Lipschitz condition in ℝ. Our interest is in the
domain:

1 ≤ ε ≤ℝ: ð25Þ

Therefore, we look for the bounded solution of the form
0 <ℝ <∞.

3.3.2. Existence of a Solution

Theorem 4. Let the domain be denoted by D, also defined in
Equation (23), such that Equations (24) and (25) hold. Then,
the existing solution of Equation (2) is bounded in the
domain D.

Proof. From Equations (10)–(15), by showing that
ð∂f i/∂yjÞ, i, j = 1, 2, 3, 4, 5, 6,�

then, Equations (1) and (2)
are continuous and bounded. That means the partial deriva-
tives are continuous and bound. Consider the exploration of
the partial derivatives for all model equations.

From Equation (17), we obtain the following system of
equations:

∂f1
∂S

= −βI − b, ∂f1
∂S

����
���� = −βI − bj j <∞,

∂f1
∂E

= 0, ∂f1
∂E

����
���� = 0j j <∞,

∂f1
∂Q

= α, ∂f1
∂Q

����
���� = αj j <∞,

∂f1
∂I

= −βS, ∂f1
∂I

����
���� = −βSj j <∞,

∂f1
∂H

= 0, ∂f1
∂H

����
���� = 0j j <∞,

∂f1
∂R

= ρ, ∂f1
∂R

����
���� = ρj j <∞:

ð26Þ

Similarly, from Equation (18), we obtain the following
system of equations:
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∂f2
∂S

= βI, ∂f2
∂S

����
���� = βIj j<∞,

∂f2
∂E

= − θ + q + bð Þ, ∂f2
∂E

����
���� = − θ + q + bð Þj j<∞,

∂f2
∂Q

= 0, δf2
∂Q

����
���� = 0j j<∞,

∂f2
∂I

= βS, ∂f2
∂I

����
���� = βSj j<∞,

∂f2
∂H

= 0, ∂f2
∂H

����
���� = 0j j<∞,

∂f2
∂R

= 0, ∂f2
∂R

����
���� = 0j j<∞:

ð27Þ

The same procedures are taken for Equations (19), (20),
(21), and (22). Therefore, all partial derivatives are continu-
ous and bounded; hence, from Theorem 4, it is concluded
that there exists a unique solution of the model in Equation
(2) in the domain region D.

3.4. Existence of Disease-Free Equilibrium Point (DFE). The
disease-free equilibrium point, obtained when the infected
components are zero, can be done by setting the right-
hand side of the equation equal to zero, as in

dS
dt

= dE
dt

= dQ
dt

= dI
dt

= dH
dt

= dR
dt

= 0: ð28Þ

When there is no disease, then, E=0, Q=0, I=0, H=0,
and R=0.

By considering each model equation from Equation (2),

μ + αQ + ρR − βIS − bS = 0 gives μ − bS = 0, then, S = μ

b
:

ð29Þ

In addition to the second model equation,

βIS = θ + q + bð ÞE = 0 givesE = βIS
θ + q + b

, but β = 0, then, E = 0:

ð30Þ

Similarly, for the third model equation,

ϕ + θE − αQ − η1Q − bQ = 0 givesQ = ϕ + θE
α + η1 + b

, but, E = 0,

ð31Þ

then,

Q = ϕ

α + η1 + b
: ð32Þ

By considering the same procedures for the fourth, fifth,
and sixth model equations, the following is obtained:

I = 0,H = 0, R = 0: ð33Þ

Therefore,

E0 = S0, E0,Q0, I0,H0, R0� �
= μ

b
, 0, ϕ

α + η1 + b
, 0, 0, 0

� 	T

:

ð34Þ

Equation (34) represents the state in which there is no
infection and is known as the disease-free equilibrium point.

3.5. Basic Reproduction Number (R0). The basic reproduc-
tion number R0 is the midpoint number of infections caused
by an infectious individual during the entire period of infec-
tiousness [20]. In an epidemiology study, the basic repro-
duction number is a nondimensional quantity that sets the
threshold during the study, both for predicting the outbreak
and for evaluating the control strategies. Additionally, R0
analyzes the equilibrium stability, R0 < 1, which means that
infectious individuals will cause less than one secondary
infection and die out. Every infectious individual infects
more than one secondary infection when R0 > 1, and the dis-
ease spreads to the population. In the SEQIHR model, the
basic reproduction number is computed by using the next-
generation matrix approach [21] and then obtained by tak-
ing the dominant eigenvalues (Spectral radius). Let FiðxÞ
be the rate of new infection in compartment i and Vi be
the rate of transfer of individuals into compartment i by all
means other than the epidemic. The important thing is to
obtain the disease-free equilibrium point E0. Thus, the com-
puted matrices F and V which are n × n matrices, where n
represents the infected classes, defined by: F = ðð∂Fi/∂xjÞð
E0ÞÞ and V = ðð∂Vi/∂xjÞðE0ÞÞ, where 1 ≤ i, j ≤ n, F are non-
negative, and V is a nonsingular n-matrix (the matrix with
inverse belongs to the class of positive matrices). Since F is
nonnegative and V is a nonsingular matrix, then V−1 and
FV−1 are nonnegative. Therefore, the next-generation
matrix FV−1 is computed as defined by [22].

Note that the basic reproduction number is defined as
the spectral radius (dominant eigenvalue) of the matrix F
V−1 [23], that is,

R0 = ρ FV−1� �
,

FV−1 = ∂Fi

∂xj
E0ð Þ

" #
∂Vi

∂xj
E0ð Þ

" #−1
:

ð35Þ

where F is the rate of new infection in compartment I. The
new forces of infection are
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dE
dt

= βIS − θ + q + bð ÞE,
dQ
dt

= ϕ + θE − α + η1 + bð ÞQ,
dI
dt

= 1 − ωð ÞqE + η1Q − η2 + ν + δ + bð ÞI,
dH
dt

= ωqE + η2I − λ + δ + bð ÞH:

ð36Þ

From Equation (36), when I and S meet, we obtain the
following:

Fi =

f1

f2

f3

f4

0
BBBBB@

1
CCCCCA =

βIS

0
0
0

0
BBBBB@

1
CCCCCA, ð37Þ

From Equation (37), the Jacobian matrix of disease-free
equilibrium (DFE) is given by

FJ =

0 0 βS 0
0 0 0 0
0 0 0 0
0 0 0 0

0
BBBBB@

1
CCCCCA: ð38Þ

The partial derivative of Equation (38) with respect to
E,Q, I, and H is given as

V =

b + θ + q 0 0 0
−θ α + b + η1 0 0

ω − 1ð Þq −η1 b + δ + η2 + v 0
−ω 0 −η2 b + δ + λ

0
BBBBBB@

1
CCCCCCA
,

ð39Þ

Given that A1 = b + α + η1 and A2 = b + δ+η2 + ν. The
inverse of V is

The product matrix FV−1 is given by:

V−1 =

1
b + θ + q

0 0 0

θ

A1 b + θ + qð Þ
1
A1

0 0

−αω + α + b −ωð Þ + b + η1θ − η1ω + η1
A1A2 b + θ + qð Þ

η1
A1A2

1
A2

0

A1A2ω + η2 −αω + α + b −ωð Þ + b + η1θ − η1ω + η1ð Þ
A1A2 b + δ + λð Þ b + θ + qð Þ

η1η2
A1A2 b + δ + λð Þ

η2
A2 b + δ + λð Þ

1
b + δ + λ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: ð40Þ

FV−1 =

βμ η1θ − q ω − 1ð Þ α + b + η1ð Þð Þ
b α + b + η1ð Þ b + θ + qð Þ b + δ + η2 + νð Þ

βη1μ

b α + b + η1ð Þ b + δ + η2 + νð Þ
βμ

b b + δ + η2 + νð Þ 0

0 0 0 0
0 0 0 0
0 0 0 0

0
BBBBBBB@

1
CCCCCCCA
,

Eigenvalues  = 0, 0, 0, βμ −bqω + bq + η1θ − αqω + αq − η1qω + η1qð Þ
b α + b + η1ð Þ b + θ + qð Þ b + δ + η2 + νð Þ


 �
,

λ1 = 0, λ2 = 0, λ3 = 0, λ4 =
βμ η1 θ + q −ωð Þ + qð Þ − q ω − 1ð Þ α + bð Þð Þ
b α + b + η1ð Þ b + θ + qð Þ b + δ + η2 + νð Þ :

ð41Þ

7Computational and Mathematical Methods in Medicine



Thus, the basic reproduction number becomes

R0 =
βμ η1 θ − ωq + qð Þ + q 1 − ωð Þ α + bð Þð Þ
b α + b + η1ð Þ b + θ + qð Þ b + δ + η2 + νð Þ : ð42Þ

3.6. Existence of Endemic Equilibrium Point. Endemic equi-
librium points are the steady-state solutions whereby the
disease persists in the population [24]. The stability analysis
of the endemic equilibrium point describes the long-term
dynamics of COVID-19 in the population [25]. By solving
all systems of differential equations from the model Equa-
tion (2), all derivatives are equal to zero (solve for all vari-
ables simultaneously).

Theorem 5. The endemic equilibrium point of model Equa-
tion (2) is locally asymptotically stable in the region Ω if R0
< 1 and unstable if R0 > 1.

Proof. At the endemic equilibrium point S = S∗, E = E∗,Q =
Q∗, I = I∗,H =H∗, and R = R∗. The variables are given as
follows:

S∗ = μ + αQ + ρR
b + βI

E∗ = βIS
b + θ + q

Q∗ = ϕ + θE
b + α + η1

H∗

= Eωq + η2I
b + δ + λ

R∗ = Hλ + νI
b + ρ

,

I∗ = μ ϕη1 + A1A2 R0 − 1ð Þð Þ + R0 αQ∗ + ρR∗ð ÞA1A2
βμ A1A2 − ϕη1ð Þ :

ð43Þ

3.7. Local Stability of the Disease-Free Equilibrium. The
eigenvalues, which are determined by finding the partial

derivatives of the vector-valued function, are used to study
the local stability of the disease-free equilibrium. If the Jaco-
bian matrix evaluated at that point has negative eigenvalues,
the equilibrium point is asymptotically stable. The Routh-
Hurwitz criterion in [26] will be utilized to demonstrate
the local stability in this work.

Theorem 6. The disease-free equilibrium point E0 is locally
asymptotically stable if R0 < 1, and it is unstable when R0 > 1.

Proof. The linearization of the system of model 2 is done
by computing its Jacobian matrix to prove this theorem.
At the disease-free equilibrium point, the partial derivatives
of each equation in the system for state variables S, E,Q,
I,H, R, which are used to generate the Jacobian matrix
JE0

as in 21.

JE0 =

−b 0 α −βS 0 ρ

0 −b − θ − q 0 βS 0 0
0 θ −α − b − η1 0 0 0
0 q 1 − ωð Þ η1 −b − δ − η2 − ν 0 0
0 ωq 0 η2 −b − δ − λ 0
0 0 0 ν λ −b − ρ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

ð44Þ

At a disease-free equilibrium,

S = μ

b
, I = 0: ð45Þ

The disease-free equilibrium will be asymptotically sta-
ble if the eigenvalues of JE0

< 0.

−b 0 α −
βμ

b
0 ρ

0 −b − θ − q 0 βμ

b
0 0

0 θ −α − b − η1 0 0 0
0 q 1 − ωð Þ η1 −b − δ − η2 − ν 0 0
0 ωq 0 η2 −b − δ − λ 0
0 0 0 ν λ −b − ρ

���������������������

���������������������

= 0: ð46Þ
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From matrix (46), it is clear that the first, second, and
third eigenvalues are

λ1 = −b, λ2 = −b − ρ, and λ3 = −b − δ − λ: ð47Þ

Then matrix (46) reduces to a 3 × 3 matrix after the can-
cellation of the respective rows and columns used to obtain
the first, second, and third eigenvalues as shown in

JE0 =

−b − θ − q 0 βμ

b

θ −α − b − η1 0
q 1 − ωð Þ η1 −b − δ − η2 − ν

0
BBBB@

1
CCCCA:

ð48Þ

The characteristic polynomial of matrix (48) is given in
the form

Z λð Þ = λ3 + a1λ
2 + a2λ + a3, ð49Þ

where

a1 = α + 3b + δ + η1 + η2 + θ + ν + q,

a2 = αδ + αη2 + αθ + αν + 3b2 + 2αb + 2bδ + 2bη1 + 2bη2
+ 2bθ + 2bν − βμq

b
+ 2bq + δη1 + δθ + η1θ + η2θ + η1ν

+ η1η2 + θν + αq + δq + η1q + η2q + νq,

a3 = αδθ + αη2θ + αθν + b3 + αb2 + b2δ + b2η1 + b2η2 + b2θ

+ b2ν + b2q + αbδ + αbη2 + αbθ + αbν −
βη1θμ

b
+ bδη1

+ bδθ + bη1θ + bη2θ + bη1ν + bη1η2 + bθν + αβμqω
b

−
αβμq
b

+ αbq + βη1μqω
b

−
βη1μq
b

+ bδq + bη1q

+ bη2q + bνq + δη1θ + η1θν + η1η2θ + αδq + αη2q

+ ανq + βμqω − βμq + δη1q + η1νq + η1η2q:

ð50Þ

However, a1 > 0, a2 > 0, and a3 > 0, condition a1a2 −
a3 > 0.

where

M1 = 2b + δ + θ + ν + q,

M2 = 4b3 + 2b2 2α + δ + θ + ν + qð Þ + b α + δ + νð Þ α + θ + qð Þ,
M3 = bη21 2b + δ + η2 + θ + ν + qð Þ,

M4 = 8b3 + b α + θ + qð Þ α + 2δ + θ + 2ν + qð Þ,

M5 = b2 6α + 4δ + 6θ + 4ν + 6qð Þ + bη2 α + 2b + θ + qð Þ,

M6 = 8b3 + b2 4α + 6 δ + θ + νð Þ + 6qð Þ
+ b δ + θ + ν + qð Þ 2α + δ + θ + ν + qð Þ,

M7 = bη2 2ð α + 3b + δ + θ + ν + qð Þ + η2:

ð52Þ

Hence, the condition a1a2 − a3 > 0 is satisfied. The
Routh-Hurwitz criterion states that all elements of a system’s
characteristic polynomial must be negative in order for the
system to be stable [27]. The disease is asymptotically stable
because the eigenvalues are negative, and the Routh-Hurwitz
requirements are satisfied.

3.8. Global Stability of Disease-Free Equilibrium Point (DFE).
The global stability of the SEQIHR model around the DFE
will be proved. The stability result of DFE in epidemiological
implication is that minimizing the COVID-19 infection
cases will not generate an infection if R0 < 1. Theorem 7 is
considered.

Theorem 7. The DFE is globally asymptotically stable if R0 < 1,
and unstable if R0 > 1.

Proof. Using the technique described in [23, 28], the studies
examine the global stability of the model 1 disease-free equi-
librium point. The format can be used to write the SEQIHR
model as in

dXn

dt
= A Xn − Xdf e

� �
+ A1Xi,

dXi

dt
= A2Xi:

8>><
>>: ð53Þ

By considering Equation (54), Xn is the vector of the
nontransmitting compartment, Xi is the vector of transmit-
ting compartment, and Xdf e

is the vector of disease-free

equilibrium point.

a1a2 − a3 =
−βμqω α + bð Þ +M1 M2 − βμqð Þ +M3 + η2 M4 +M5 − βμqð Þ + η1 M6 +M7 + βμ θ − qωð Þð Þ

b
,

M1M2 +M3 + η2 M4 +M5ð Þ + η1 βθμ +M6 +M7ð Þ
b

> βμqω α + bð Þ + βμη2q + βμM1q + μqωβ
b

,
ð51Þ
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Xn = S, Rð ÞT , Xi = E,Q, I,Hð ÞT , Xdf e
= 1

b
, 0

� 	
, ð54Þ

Xn − Xdf e
= S −

1
b

R

0
@

1
A: ð55Þ

We must show that the matrix A has real negative eigen-
values and A2 is a Metzler matrix in order for DFE to be
globally stable (i.e., the off-diagonal elements of A2 are non-
negative, symbolically denoted by A2ðXijÞ ≥ ∀≠ jÞ. We can
derive equations with and without transmission from model
1, as stated herewith.

μ + αQ + ρR − βIS − bS

λH + νI − ρR − bR

 !
= A

S −
1
b

R

0
@

1
A + A1

E

Q

I

H

0
BBBB@

1
CCCCA,

βIS − θE − qE − bE

ϕ + θE − αQ − η1Q − bQ

1 − ωð ÞqE + η1Q − η2I − νI − δI − bI

ωqE + η2I − λH − δH − bH

0
BBBBB@

1
CCCCCA = A2

E

Q

I

H

0
BBBB@

1
CCCCA,

ð56Þ

then, A =
−b 0
0 −b

 !
: ð57Þ

The eigenvalues of the matrix A are located at the diag-
onal (-b and -b), and these eigenvalues are real, distinct,
and negative. Moreover, matrices A1 and A2 are given by

A1 =
0 α −βS 0

0 0 ν λ

 !
,

A2 =

− θ + q + bð Þ 0 βS 0

θ − α + η1 + bð Þ 0 0

1 − ωð Þq η1 − η2 + ν + δ + bð Þ 0

ωq 0 η2 − λ + δ + bð Þ

0
BBBBBB@

1
CCCCCCA
:

ð58Þ

A2 represents a Metzler matrix where its diagonal ele-
ments are negatives while the off-diagonal elements are
nonnegative.

3.9. Global Stability of Endemic Equilibrium Point. The sta-
bility analysis explains the behavior of epidemic near the equi-
librium points. The logarithmic Lyapunov function was
proposed by Korobeinikov and Wake [29] to prove the global
stability of endemic equilibrium for SIS, SIR, and SIRSmodels.

Theorem 8. The endemic equilibrium point W∗ is asymptot-
ically stable when R0 > 1 and unstable when R0 < 1.

Proof. The logarithmic Lyapunov function is used to analyze
the stability of the endemic equilibrium and is given in the
form

W = 〠
6

i=1
ai Xi − x∗i ln Xið Þð Þ, ð59Þ

where ai represents a positive constant, Xi represents
some free virus in compartment i, and X∗

i denotes the num-
ber of free viruses in compartment i at the equilibrium point.
Then, model system (2) is now written as follows:

Table 3: Parameter values and sensitivity indices.

Parameter Values Sources Sensitivity index value

β 0.015 Assumed 1.0000

μ 8.94 Assumed 1.0000

ω 0.083 Assumed -0.0388

b 0.0104 [31] -0.9483

α 0.85 Assumed 0.7100

ν 0.07 [32] 0.090

θ 0.2435 [33] 1.2614

η1 0.85 Assumed 1.2813

η2 0.65 Assumed 0.8448

δ 0.039 [34] 0.0507

q 0.099 Assumed 0.7092
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W S, E,Q, I,H, Rð Þ
= A1 S − S∗ ln Sð Þð Þ + A2 E − E∗ ln Eð Þð Þf

+ A3 Q −Q∗ ln Qð Þð Þ + A4 I − I∗ln� Ið Þð Þ
+ A5 H −H∗ ln Hð Þð Þ + A6 R − R∗ ln Rð Þð Þ

ð60Þ

The constants A1, A2, A3, A4, A5, and A6 are nonnega-
tive constants and the function W which is continuous
and differentiable. Consider the derivative with respect to
each compartment

At the endemic equilibrium point,

dW
dt

=
A1 1 − S∗

S

� 	
dS
dt

+ A2 1 − E∗

E

� 	
dE
dt

+ A3 1 − Q∗

Q

� 	
dQ
dt

+ A4 1 − I∗

I

� 	
dI
dt

+A5 1 − H∗

H

� 	
dH
dt

+ A6 1 − R∗

R

� 	
dR
dt

:

8>>><
>>>:

dW
dt

=

A1 1 − S∗

S

� 	
μ + αQ + ρR − βIS − bSð Þ + A2 1 − E∗

E

� 	
βIS − θ + q + bð ÞEð Þ

+A3 1 − Q∗

Q

� 	
ϕ + θE − α + η1 + bð ÞQð Þ

+A4 1 − I∗

I

� 	
1 − ωð ÞqE + η2I − η2 + ν + δ + bð ÞIð Þ

+A5 1 − H∗

H

� 	
ωqE + η2I − λ + δ + bð ÞHð Þ

+A6 1 − R∗

R

� 	
λH + νI − ρ + bð ÞRð Þ:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð61Þ

μ = βIS + bS − αQ − ρR,
βIS = θ + q + bð ÞE∗,

ϕ + θE = α + η1 + bð ÞQ∗,
1 − ωð ÞqE + η1Q = η1 + ν + δ + bð ÞI∗,

ωqE + η2I = λ + δ + bð ÞH∗,
λH + νI = ρ + bð ÞR∗:

ð62Þ

dW
dt

=

A1
S − S∗

S

� 	
bS∗ − bSð Þ + A2

E − E∗

E

� 	
θ + q + bð Þ E∗ − Eð Þ

+A3
Q −Q∗

Q

� 	
α + η1 + bð Þ Q∗ −Qð Þ + A4

I − I∗

I

� 	
η1 + ν + δ + bð Þ I∗ − Ið Þ

+A5
H −H∗

H

� 	
λ + δ + bð Þ H∗ −Hð Þ + A6

R − R∗

R

� 	
ρ + bð Þ R∗ − Rð Þ,

8>>>>>>>><
>>>>>>>>:

ð63Þ
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where Equation (63) gives

dW
dt

= −bA1
S − S∗ð Þ2

S
− θ + q + bð ÞA2

E − E∗ð Þ2
E

− α + η1 + bð ÞA3
Q −Q∗ð Þ2

Q
− η1 + ν + δ + bð ÞA4

I − I∗ð Þ2
I

− λ + δ + bð ÞA5
H −H∗ð Þ2

H
− ρ + bð ÞA6

R − R∗ð Þ2
R

:

ð64Þ

When S⟶ S∗, E⟶ E∗, Q⟶Q∗, I ⟶ I∗, H ⟶H∗

, and R⟶ R∗. Therefore, ðdW/dtÞ ≤ 0 or zero and the
function W is negative when WðS, E,Q, I,H, RÞ ≥ 0.

By following the approach of [29], the largest invariant
set in Δ is a singleton set W which is the endemic equilib-
rium point, and using LaSalle [30] invariant principle, W∗

is globally asymptotically stable when R0 > 1 in Δ.

4. Numerical Simulation

A series of numerical results for system (2) of the model
equations are presented. The explicit Runge-Kutta fourth-
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Figure 4: Effect of stress η1 and natural death b on R0.
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order method is considered for solving the first-order ordi-
nary differential equations of SEQIHR model numerically
with a given initial condition. Partial Rank Correlation Coef-
ficient (PRCC) was used to show the sensitivity analysis of
the parameters and basic reproduction number. Parameter
values from the literature reviews were used, and some were

assumed as shown in Table 3. The data is simulated by
substituting them in R0. The sensitivity index of each partial
basic reproduction number R0 for its parameters.

4.1. Sensitivity Analysis and Uncertainty. The sensitivity
analysis for the endemic threshold tells us the importance
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Figure 5: Global stability of endemic equilibrium for susceptible and exposed human population.
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of each parameter for the transmission of COVID-19 dis-
ease. The information is crucial for the analysis of complex
systems. We used the sensitivity analysis of the parameters
to determine the strongness of the SEQIHR model predic-
tions for the parameter values. There are usually errors in
the data collected and in the initial values assumed for the
parameters [35]. The standard equation of a sensitivity index
for R0 is given by

ΓR0
L = ∂R0

∂L
× L
R0

, ð65Þ

.
From Table 3, it is observed that the η1 parameter is

more sensitive since it increases the basic reproductive num-
ber by Γ

R0
L = 1:2813. The increase of this parameter means
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Figure 6: Global stability of endemic equilibrium for quarantined and infected human population.
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that in quarantine, people are more stressed such that the
immune system decreases in its efficiency, so the virus
spreads within the body. The virus causes blood clotting
because the virus fights the respiratory system and enters
the bloodstream through lung capillaries that are adjacent
to the alveolus [36]. The PRCC supported graphically in
Figure 2 shows that η1 has impact on the transmission of

COVID-19 disease. SEQIHR model shows that hospitalized
patients from the infected class are less stressed than those
in quarantine, although it also increases the basic reproduc-
tion number by (ΓR0

L = 0:8448); then η1>η2. Other sensitive
parameters are θ with Γ

R0
L = 1:2614, β and μ which both have

Γ
R0
L = 1. Parameters, ω and b, have the least values which are
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Figure 7: Global stability of endemic equilibrium for hospitalized and recovered human population.
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Figure 9: Variation of η1 in susceptible and infected human population.
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-0.0717 and -0.9566, respectively, meaning that decreasing ω
and b by a certain percentage always decreases R0 by the
same percentage and the same thing happens if we increase
R0. It shows that if most of the patients are hospitalized, the
disease will decrease, and subsequently, there will be no
more transmission within the community. Despite the fact
that the other parameters have small values, they still
increase R0 by their respective percentages.

From Figure 2, η1 is positively and highly correlated with
R0 as the absolute value of its PRCC value is higher than the
corresponding value of other parameters. Furthermore, nat-
ural death b is highly negatively correlated with R0.

4.1.1. Dynamic Population Simulation with a SEQIHR
Model. The numerical simulation of the SEQIHR model var-
iables is shown in Figure 3. We observe that the susceptible
class declines to acquire the endemic equilibrium level expo-
nentially as people die naturally or due to the disease. The
exposed, quarantined, and infected populations both assume
a parabolic curve which increases exponentially to a certain
maximum point before they decelerate to an endemic level.
Hospitalized and recovered populations both assumed a par-
abolic shape as it increases exponentially to a certain maxi-
mum point before decelerating to an endemic point.
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Figure 10: Variation of η2 in infected and hospitalized human population.

Table 4: Parameter identifiability.

Parameter Initial values Estimated values

β 0.015 0.0147

μ 8.94 9.8

ω 0.083 0.096

b 0.0104 0.013

α 0.85 1.1

ν 0.07 0.063

θ 0.2435 0.224

η1 0.85 0.72

η2 0.65 0.51

δ 0.039 0.038

q 0.099 0.098

ρ 0.003 0.0032

λ 0.002 0.0018

ϕ 0.001 0.0009
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4.1.2. Relationship between Most Positive and Negative
Parameters with Basic Reproduction Number R0. From
Section 4.1, we observed that the most positive parameter
is η1. The relationship between η1 and R0 is shown in
Figure 4(a), whereby we noticed that the increase of stress
results in a quick rise of R0. This shows that individuals iso-
lated from their families are more stressed, which increases
the disease infection because stress lowers body immunity.
Similarly, the natural death b is the most negative sensitive
parameter shown in Figure 4(b), which means that any
reduction in it will make the basic reproduction number
experience significant exponential retardation.

4.1.3. Simulation of Stability Analysis of SEQIHR Model. The
numerical simulations for the stability analysis are per-
formed to the analytical results of the model. For the equilib-
rium point to be globally asymptomatic stable, the model
trajectories for the state variables should be originated from
different initial values and sometimes converge to a common
point and maintain an endemic equilibrium point. But if the
model trajectories for state variables remain near the equilib-
rium point and move together in the long run, this implies

that the equilibrium point is globally stable. The six trajecto-
ries in each class are represented by different colors as shown
by a legend that converge towards equilibrium point as time
approaches infinity. The model variables S, E,Q, I,H, and R
varied by considering Figures 5(a) and 7(b), respectively, are
illustrated as follows:

4.1.4. Control Parameters. By considering the variation of
some control parameters; from Figure 8(a), when the contact
rate (β) increases, the decaying population rate also
increases, but when the contact rate decreases, the decaying
rate also decreases. From Figure 8(b), when the contact rate
increases, the infections also increase and apply the same
when the contact rate decreases and the infections decreases.
When stress increases in the susceptible class, the rate of
decaying increases, and if the stress decreases, the decaying
rate decreases, as shown in Figure 9(a). From Figure 9(b),
when stress (η1) increases, the rate of infection increases,
and when η1 decreases, then the rate of infected population
decreases. Moreover, when η2 increases, the rate of infected
and hospitalized increases and then decreases when η2
decreases as in Figures 10(a) and 10(b).
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4.1.5. Parameter Identifiability and Model Fitting. The iden-
tifiability of parameters is essential to the proposed SEQIHR
model. Such parameters are β, μ, ω, α, η1, and η2. Parameter
identifiability is implemented by using the least squaremethod
tominimize the sum of squared differences between the obser-
vations and the SEQIHR model [37] and is defined as

SS θð Þ = 〠
n

i=1
yi − f xi, θð Þ½ �2, ð66Þ

where yi are the observed data of all compartments, i is the
number of compartments (i.e., i = 1, 2,⋯, n), and f ðxi, θÞ is
the solution for all compartments of the SEQIHRmodel. With
the initial values of the parameters given as β, μ, ω, α, η1, and
η2, the least squares identifiabilities are obtained as shown in
Table 4 as the initial value and estimated values and used to
fit the simulated data as shown in Figure 11. The relationship
of initial parameter values and the identifiable values from the
least square method is very close.

5. Conclusion

COVID-19 pandemic spread rapidly all over the world,
which led to the severe human and socioeconomic burden
worldwide. In this study, a mathematical model was devel-
oped for the transmission of COVID-19 when a human is
stressed. The model consists of six compartments: Suscepti-
ble (S), Exposed (E), Quarantined (Q), Infectious (I), Hospi-
talized (H), and Recovered (R) human population. Initially,
the model was formulated and some mathematical analyses
were presented, including positivity, invariant region, exis-
tence, uniqueness of the solution, and stability results for
the disease-free equilibrium. The disease-free equilibrium
for both local and global is stable when R0 < 1 was proved.
This exploration suggests that the COVID-19 disease can
enter and spread to the human population if R0 > 1 provided
that the initial human population is close to the infested
region. But also, die out when few initial human populations
are infected and R0 < 1. The basic reproduction number
obtained from this study was 2.1692, which shows that the
disease is endemic and unique. The most sensitivity indices
are summarized in Table 3, and the least positively and neg-
atively sensitive parameters are crucial for the transmission
of COVID-19.

The numerical results in this study showed that stress
affects many quarantined people whereby their immune sys-
tem is disturbed by the COVID-19, and this is most likely
because during quarantine, people are isolated from their
families and community members, so they develop fear,
and later, the body becomes stressed which affects their
immune system. When the immune system is disturbed, it
fails to fight against the intruders, which leads to the fast
spread of COVID-19 throughout the body. Our graphical
presentation illustrated that the control parameters showed
a great success on minimizing the spread of COVID-19 in
the community.

The plan for a future work is to use more detailed and
authentic data when having access to COVID-19 data which

will be employed in the SEQIHR model. Furthermore, we
intend to add a vaccination in our model compartment to
implement optimal control strategies and extend to a sto-
chastic model. The limitations of this work are the assump-
tion on an equal death in all compartment while in real
situation the infected population has a higher death rate
than the susceptible population.

Data Availability

Some data used in our numerical simulation (as shown in
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