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Abstract: Quantitative structure–property relationship (QSPR) models for predicting primary biodegradation of petroleum
hydrocarbons have been previously developed. These models use experimental data generated under widely varied con-
ditions, the effects of which are not captured adequately within model formalisms. As a result, they exhibit variable predictive
performance and are unable to incorporate the role of study design and test conditions on the assessment of environmental
persistence. To address these limitations, a novel machine‐learning System‐Integrated Model (HC‐BioSIM) is presented,
which integrates chemical structure and test system variability, leading to improved prediction of primary disappearance
time (DT50) values for petroleum hydrocarbons in fresh and marine water. An expanded, highly curated database of 728
experimental DT50 values (181 unique hydrocarbon structures compiled from 13 primary sources) was used to develop and
validate a supervised model tree machine‐learning model. Using relatively few parameters (6 system and 25 structural
parameters), the model demonstrated significant improvement in predictive performance (root mean square error= 0.26,
R2= 0.67) over existing QSPR models. The model also demonstrated improved accuracy of persistence (P) categorization
(i.e., “Not P/P/vP”), with an accuracy of 96.8%, and false‐positive and ‐negative categorization rates of 0.4% and 2.7%,
respectively. This significant improvement in DT50 prediction, and subsequent persistence categorization, validates the
need for models that integrate experimental design and environmental system parameters into biodegradation and per-
sistence assessment. Environ Toxicol Chem 2022;41:1359–1369. © 2022 ExxonMobil Biomedical Sciences, Inc. Environ-
mental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Evaluation of chemical degradation processes, particularly

biodegradation, is a key element of chemical regulatory man-
agement around the globe (Leonards, 2017). Experimental
data and predictive models for biodegradation are used
extensively in prioritization and evaluation of persistent, bio-
accumulative, and toxic chemicals (European Commission,
2008), in regulatory risk evaluation of new and existing

chemicals (Canada, 2005; Davies, 1988; Mo, 2017; US Envi-
ronmental Protection Agency [USEPA], 2012, 2013), in re-
mediation of contaminated sites (Essaid et al., 2003; Ossai
et al., 2020; Ren et al., 2018), and in oil spill response modeling
(Atlas, 1995; North et al., 2015; Socolofsky et al., 2019;
Spaulding, 2017). Regulatory evaluations and associated per-
sistence criteria typically focus on primary biodegradation rates
in environmental media (e.g., water, soil, and sediment; Euro-
pean Chemicals Agency [ECHA], 2017). These values are most
often reported as disappearance times (DT50) when kinetics
are unknown or biphasic (e.g., presence of a lag phase), or half‐
lives (th) when first‐order kinetics are observed. The technical
complexity, analytical challenges, and costs associated with
environmental biodegradation testing (Shrestha et al., 2020;
Whale et al., 2021), particularly the development of reliable
primary degradation rates (see Organisation for Economic Co‐
operation and Development [OECD] test guidelines 307
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[2002a], 308 [2002b], and 309 [2004]) in multiple environmental
media, have led to the advancement of nontesting methods,
including the development of quantitative structure–property
relationships (QSPRs) to estimate these properties. Over the
last several decades, models have been developed to predict
the biodegradation of chemicals under laboratory (e.g.,
BIOWIN, CATABOL, CATALOGIC; Aronson et al., 2006;
Boethling et al., 1994; Dimitrov et al., 2007; Howard et al.,
1992, 2005; Jaworska et al., 2002; Meylan et al., 2007) as
well as environmental conditions (Pizzo et al., 2016), including
the development of a model specifically for petroleum
hydrocarbons, BioHCWin (Howard et al., 2005).

The BioHCWin model, developed by Howard et al.
(2005), utilizes chemical structural fragments to predict first‐
order primary biodegradation half‐lives (th ) for petroleum
hydrocarbons in aquatic (freshwater and marine) systems.
The model was trained (n= 121) and validated (n= 54) for
petroleum hydrocarbon structures encompassing a range of
molecular sizes, structural moieties, and physical chemical
properties. Experimental degradation data were collected
and evaluated from multiple literature sources, representing
a diverse set of test conditions (inoculum source, loading
rates, temperature, and environmental media). However, in
the development and calibration of the model, single rec-
ommended th values were derived for each hydrocarbon,
obfuscating the contributions of test conditions and ex-
perimental design on observed variability in biodegradation
rates. Consequently, the resulting model predictions are
challenging to interpret and cannot be easily compared with
experimental data (Prosser et al., 2016).

More recently, machine‐learning QSPR models have been
developed that predict primary half‐lives (th ) in water, soil, and
sediment compartments (Pizzo et al., 2016). Briefly, the models
predict th values, using a combination of 2D molecular pa-
rameters and structural fragment “alerts” (Ferrari et al., 2011;
Lombardo et al., 2014; Mauri et al., 2006; Yap, 2011). The data
used to train the models (Benfenati et al., 2019; Gouin et al.,
2004) consist of a mixture of categorical data (transformed to a
single representative th value) that do not include test system
information, as well as measured th data with limited in-
formation on test system conditions. As such, these models do
not incorporate test system and environmental variability, and
so fail to address the limitations and uncertainties of the pre-
vious generation of QSPR models. Furthermore, although
these models offer quantitative predictions for a wide range of
chemicals, their algorithms are opaque and complicated, with
parameters and workflows that are difficult to interpret and
communicate (Ferrari et al., 2011; Lombardo et al., 2014; Mauri
et al., 2006; Yap, 2011). Although these considerations do not
necessarily impact the utility of a model, ambiguity and lack of
transparency in model algorithm, parameters, and mechanism
are commonly cited as barriers to regulatory acceptance
(OECD, 2019). As a result of these limitations, as well as un-
reliable performance outside their training sets (Supporting
Information, Figures A1 and A2), machine‐learning models
have not gained widespread regulatory acceptance as an al-
ternative to costly and challenging environmental testing.

For petroleum hydrocarbons, multiple experimental DT50
values are often available, with considerable variability ob-
served between studies. For example, reported DT50 values
for pyrene in seawater range from 7 to 257 days (McFarlin et al.,
2018; Ribicic, McFarlin, et al., 2018), with a geometric mean
value of 24.4 days (n= 13, see Excel File in the Supporting
Information). This variability, in part, can be attributed to dif-
ferences in study conditions, including nutrient availability
(Breedveld & Sparrevik, 2000; Delille et al., 1998; McFarlin
et al., 2014; Pelletier et al., 2004; Santas et al., 1999; Xu &
Obbard, 2003, 2004), test substance loading and source (Birch
et al., 2017; Hammershøj et al., 2019; Huesemann et al., 2004;
Ren et al., 2018), use of solubilizing agents (Brakstad, Ribicic,
et al., 2018), temperature (Ribicic, McFarlin, et al., 2018), and
system chemistry (Mormile et al., 1994). This presents a sig-
nificant challenge in understanding and applying a single QSPR
prediction within a regulatory context, because the conditions
for which the predictions are relevant (i.e., high/low loading,
temperature, and even test system—freshwater vs. seawater)
are often not well‐defined. As a result, a critical feature of future
QSPR models is the ability to quantify and contextualize the
relative importance of test system design and environmental
conditions on biodegradation rates.

With this in mind, the aim of the present study was three-
fold: (1) to introduce a novel model (machine‐learning
System‐Integrated Model [HC‐BioSIM]) for predicting the pri-
mary DT50 values of petroleum hydrocarbons that integrates
chemical structure and test system parameters, using an ex-
panded database of high‐quality, curated, biodegradation
data; (2) to compare the HC‐BioSIM model with existing bio-
degradation models; and (3) to identify and understand the key
system and chemical structure parameters that contribute to
variability in hydrocarbon primary biodegradation studies for
use in regulatory assessment and decision‐making.

MATERIALS AND METHODS
To construct and systematically evaluate the performance

and utility of the HC‐BioSIM model, the following workflow
was developed. First, freshwater and marine primary bio-
degradation data were collected from the peer‐reviewed lit-
erature. Screening criteria were proposed to evaluate the
available data, which included consideration of inoculum se-
lection and test design, robustness of study characterization,
data analysis methods, and overall relevance for environmental
persistence assessment. The curated database was then ran-
domly split into training (80%) and validation (20%) sets for
training the HC‐BioSIM model as well as benchmarking against
existing and alternative modeling approaches (discussed in the
Model performance and interpretation section). A k‐fold cross‐
validation of the models was conducted to identify potential
training set bias and evaluate the stability and generalizability
of the models. Performance of the HC‐BioSIM model was
compared with that of the existing BioHCWin model as well
as two alternative models—a system‐integrated BioHCWin
(SI‐BioHCWin) and a biodegradation polyparameter linear free
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energy relationships (bio‐pp‐LFER) model. Comparing the
HC‐BioSIM model with existing and alternative models
using a consistent independent validation dataset (with cross‐
validation) is critical to systematically assess predictive per-
formance among model architectures of varying complexity.

Primary biodegradation data
Primary hydrocarbon biodegradation data were obtained

from the academic literature and published reports (Birch
et al., 2018; Brakstad, Ribicic, et al., 2018; Comber et al.,
2012; McFarlin et al., 2018; Prince et al., 2007, 2008, 2013,
2016, 2017; Prosser et al., 2016; Ribicic, McFarlin, et al.,
2018; Ribicic, Netzer, et al., 2018). Screening criteria were
adopted, with minor modifications, from Brown et al. (2020).
Criteria were selected to allow for comprehensive charac-
terization of the experimental design and test system con-
ditions needed for model parameterization as well as to
clearly define the environmental applicability domain of the
model. A detailed description of the screening criteria can
be found in Section A.2 of the Supporting Information.
A summary of studies that meet the indicated screening
criteria is presented in Table 1.

The applied screening criteria (and their associated test
system parameters) have been previously identified as relevant
factors that contribute to the degradation rate of hydrocarbons in
environmental systems (Birch et al., 2018; Brown et al., 2020;
Wang et al., 2018). These parameters are commonly reported
and are available in most published studies. Furthermore, these
include continuous quantitative and discrete categorical param-
eters that can be readily utilized by machine‐learning algorithms.

The final curated database consisted of 728 DT50 values for
181 unique petroleum hydrocarbons. Studies ranged in in-
cubation temperature from 2 to 21°C and included freshwater,
seawater, and activated sludge inoculum. Multiple dosing
methods, as well as a wide range of hydrocarbon source
materials, were included (Table 1). The complete experimental
database was compiled, together with study design and test
system details, in an Excel File in the Supporting Information.
At present, equivalent experimental databases and screening
criteria are not available for petroleum hydrocarbons in soil and
sediment systems. Extension of the model to soil and sediment
systems, including the curation of analogous high‐quality DT50
databases for petroleum hydrocarbons, will be addressed in a
companion manuscript.

Model development
HC‐BioSIM. Several supervised machine‐learning algorithms,
including k‐nearest neighbor, Naïve Bayesian, random forest,
and model tree methods were considered for model devel-
opment. A model framework was desired that balanced im-
proved accuracy of prediction with the need for transparency in
computational methodology, applicability domain, and mech-
anistic interpretation of the model and its output (Gramatica,
2007; OECD, 2019). As a result, algorithms that leverage
boosting (e.g., random forest) or hidden layers (e.g., neural
networks) were screened out, along with classification or cat-
egorical algorithms (e.g., Naïve‐Bayes). Decision tree algo-
rithms offer improved flexibility in model structure over
traditional modeling approaches (e.g., BioHCWin), while re-
maining highly interpretable and easy to communicate.
Ultimately, the Cubist model tree algorithm (Kuhn et al., 2012),

TABLE 1: Summary of studies that met screening criteria, including relevant study information used in model development and number of data
points (No.)

Test media/innoculum
source

Hydrocarbon
source

Test
temperature (°C) Dosing method

Use of
dispersant No. References

Freshwater Gasoline 21 Direct N 110 Prince et al. (2007)
B20 diesel 21 Direct N 72 Prince et al. (2008)

Defined mixture 20 P.D. N 33, 22 Prosser et al. (2016),
Birch et al. (2018)

Seawater Crude oila 2 Direct N 44 McFarlin et al. (2018)
5 Direct Y 80, 14, 32 Brakstad, Ribicic, et al. (2018),

Prince et al. (2016),
Ribicic et al. (2018)

5–13 Direct Y 107 Ribicic et al. (2018)
8 Direct Y 24 Prince et al. (2013)
21 Direct Y 69 Prince et al. (2017)

Defined mixture 20 P.D. N 29, 25 Prosser et al. (2016),
Birch et al. (2018)

20 P.D. N 18 Comber et al. (2012)
Produced waterb 13 P.D. N 10 Lofthus et al. (2018)

Activated sludge Defined mixture 20 P.D. N 39 Birch et al. (2018)
Total: 728

aSeveral crude oil datasets were compiled; a complete characterization of the test substances and the experimental designs is available in the Excel File in the Supporting
Information.
bTest material: Produced water containing oil droplets and oil‐coated particulates collected from offshore drilling operations in the North Sea.
Complete documentation of screening criteria, study designs, test system parameters, and additional notes are provided in Section A2 of the Supporting Information.
P.D. = passively dosed.
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an extension of the M5 algorithm developed by Quinlan
(Quinlan, 1993), was selected.

The Cubist model tree develops a single set of “rules” that
parse training data into subsets using a set of provided
chemical and/or system parameters. The number of rule‐based
subsets, as well as the relevant parameters, are selected by the
algorithm to minimize the entropy of the entire system. This is
accomplished by maximizing the similarity between data points
within each subset. Redundant rules are trimmed or combined
by the model in a postdevelopment “pruning” step to mini-
mize the complexity of the final decision tree model. A unique
multiple linear regression (MLR) is then applied to each subset
to predict the DT50 values. A critical element of the Cubist
algorithm is that both the classification scheme (the rules) and
the resulting MLRs are easily communicated and computa-
tionally transparent. A generalized workflow for the Cubist
decision tree model development is illustrated in Figure 1.

Recently, a set of parameters (ToxPrint) for describing mo-
lecular structures of both organic and inorganic chemistries has
been developed (Yang et al., 2015) and made freely available
by the USEPA within the CompTox Dashboard platform (Wil-
liams et al., 2017). These parameters have been used as a basis
for read‐across assessment, structural similarity calculations,
and predictions of various in vitro toxicological endpoints
(Drwal et al., 2015; Hur et al., 2017; Helman, Shah, & Patlewicz,
2019; Helman, Shah, Williams, et al., 2019). The ToxPrint pa-
rameters were selected for use in model parametrization be-
cause they are clearly defined, easily interpreted, and cover a

broad range of chemical structures. For each unique chemical,
a “fingerprint” can be constructed as a vector of binary values
(0 or 1) indicating the absence or presence of particular struc-
tural fragments. These fingerprints can then be combined with
additional relevant parameters (i.e., test system parameters) for
training the HC‐BioSIM model.

The compiled petroleum hydrocarbon DT50 database in-
cluded 55 unique ToxPrint chemical structural fragment param-
eters. These parameters were further manually curated to
remove redundant fragments, reducing the total number to 45. A
detailed description of this curation is available in Section A3 of
the Supporting Information. Test system parameters were se-
lected on the basis that they were readily available, frequently
reported in literature and regulatory study reports, and are ob-
served to influence observed DT50 values in environmental
systems. The selected test system parameters included the test
temperature (T; °C), the hydrocarbon loading rate (L; mg/L), the
hydrocarbon source material (K; represented by the kinematic
viscosity of the source material [cSt] and described in Section A4
of the Supporting Information), the dispersant treatment rate
(D; kg dispersant/kg test substance), and the inoculum source
(mj , where j= freshwater, marine water, or activated sludge).

Chemical structural fragments and test system parameters
(D, K, T, L, and mj ) were combined to create a pool of 52
potential parameters to be used in the development of the
model rules and MLRs, discussed previously in this section.
Model optimization, cross‐validation, and relevant statistical
analyses were performed using the cubist() package in

FIGURE 1: Schematic diagram of the System‐Integrated Model (HC‐BioSIM) cubist decision tree machine‐learning workflow. User‐defined input
includes experimental disappearance time (DT50) values (labels used to train the model), chemical structure (Ci), and system (Si) parameters. Model‐
defined rules (Ri) for parsing the dataset are indicated by white circles, and the blue box indicates terminal subset “nodes,” where multiple linear
regressions (MLRs) are applied, resulting in a prediction of DT50 values for that subset. Example rules are included for illustrative purpose.
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R (Ver 3.6.1), unless otherwise stated. A detailed summary of
the HC‐BioSIM model output is presented in Section A5 of the
Supporting Information.

Evaluation of alternative QSPR models (SI‐BioHCWin and
bio‐pp‐LFER). Whereas the HC‐BioSIM model represents a
significant step‐change improvement in predicting the envi-
ronmental biodegradation of petroleum hydrocarbons, it also
represents a significant increase in model complexity. Thus it is
prudent that we evaluate the added value of such a model
framework against more traditional modeling approaches. To
this end, two alternative linear models were evaluated to vali-
date the need for, and ultimate selection of, the HC‐BioSIM
model moving forward.

Briefly, the SI‐BioHCWin model modifies the existing Bio-
HCWin ( )th prediction for a given hydrocarbon structure using a
simple linear additive framework (see Supporting Information,
Equation SI‐1) to incorporate the contributions from each of the
system parameters (described previously in the Primary degra-
dation data section). Coefficients for test system model param-
eters are estimated via MLR. This model represents a
mechanistically simple and direct approach to the incorporation
of system parameters, with relatively few estimated parameters
(seven or less). A complete description of the methodology can
be found in Section A4 of the Supporting Information.

An alternative approach is to directly estimate the con-
tributions of chemical structure and system parameters simul-
taneously. Briefly, the bio‐pp‐LFER model utilizes molecular
parameters previously described by Abraham and Acree (2010)
as well as computed HOMO‐LUMO energies (as a surrogate for
potential chemical reactivity in biological systems (Abraham &
Acree, 2010; Mekenyan & Veith, 1994; Siraki et al., 2005; Veith
et al., 1995; Voutchkova et al., 2011) to describe the chemical
contributions to the observed DT50 values. System parameters
are described using the same additive framework as described
for the SI‐BioHCwin model just described (see Equation SI‐4 in
the Supporting Information). In this case, chemical and system
coefficients are estimated simultaneously via MLR. This ap-
proach is similar to those previously applied to environmental
partitioning systems (Endo & Goss, 2014) as well as more re-
cently for biotransformation processes (Kuo & Di Toro, 2013) of
neutral organic chemicals. This approach introduces additional
estimated parameters (12 or less), but is similarly simple with
respect to the use of a single MLR model. A complete de-
scription of the methodology can be found in Section A4 of the
Supporting Information.

Model calibration and data analysis. All three models were
trained and validated using the expanded biodegradation
DT50 database. The data were split randomly into training
(80%) and validation (20%) sets. A random seed was utilized to
ensure identical training/validation sets for the three models as
well as reproducibility of the results from the R code (see
Section A.6 of the Supporting Information) This was done to
ensure identical representation of limited datasets (e.g., acti-
vated sludge DT50 data) and minimize any potential bias in the
training and validation sets when comparing the models. All

model development, calibration, analysis, and visualization was
performed in R Ver 3.6.1.

Model performance was evaluated using the root mean
square error (RMSE) as well as the Pearson correlation co-
efficient (R2). The RMSE values were computed as follows:

= ∑ ( ( ) − ( ))=N
RMSE

1
log DT50 log DT50i

N
1 pred exp

2 (1)

where N is the total number of observations, DT50pred is the
predicted DT50 (days), and DT50exp is the experimental DT50
(days). A logarithmic transformation was applied to ensure
equal weighting of predictive errors across the large range of
DT50 values as well as to provide additional clarity with respect
to communicating uncertainties in the predicted values. For
example, logarithmic RMSE (Equation 1) values of 0.3 and 0.5
represent two‐ and threefold average errors in the predicted
DT50, respectively.

Finally, to assess the generalizability of the models and to
evaluate any potential training set bias, a k‐fold cross‐validation
(k= 5) was performed on all three models. Mean and standard
deviation of RMSE and R2 values for the five validation folds
were used to compare the different models. Mean and
standard deviations of the rule and end‐node parameter
usage (%; HC‐BioSIM model) and estimated coefficients
(SI‐BioHCWin and bio‐pp‐LFER models) were computed to
assess parameter importance. A complete description of the
cross‐validation methodology and results is presented in
Section A7 of the Supporting Information.

RESULTS AND DISCUSSION
Model performance and interpretation

Performance of the HC‐BioSIM model was benchmarked
against BioHCWin as well as the alternative models for both the
training and validation datasets. Figure 2 shows a comparison
of predicted and experimental DT50 (day) values for the HC‐
BioSIM and the original BioHCWin model, using the expanded
aquatic biodegradation database. Data were separated and
visualized by hydrocarbon class, to identify potential outliers or
systematic bias that might impact the overall model perform-
ance. Model statistics including RMSE, R2, and cross‐validation
results for the HC‐BioSIM and BioHCWin models are sum-
marized in Table 2. Model results and associated discussions of
the SI‐BioHCWin and the bio‐pp‐LFER model are included in
Section A4 of the Supporting Information.

The ability of the BioHCWin model to reproduce the ex-
perimental DT50 data for the varied test conditions repre-
sented in the expanded database was poor (Figure 2A).
Significant overprediction of DT50 values for naphthenic pol-
yaromatics (NPAH), polyaromatics (PAH), and naphthenic di‐
aromatics (NDAH) compounds were observed, with a number
of significant outliers (i.e., overpredicted by more than 100‐
fold). These results are consistent with a previous evaluation of
BioHCWin by Prosser et al. (2016). The HC‐BioSIM model sig-
nificantly outperformed the BioHCWin model (Table 2 and
Figure 2B), as well as both the SI‐BioHCWin and the
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bio‐pp‐LFER models (Supporting Information, Figure A3) for
both the training and validation datasets. The average pre-
dicted DT50 error for the HC‐BioSIM model (~1.8×) represents
a 3‐fold improvement over that of the BioHCWin model
(~5.6×). Furthermore, bias as a function of hydrocarbon class or
carbon number was not observed (Figure 3E–F). There were far
fewer significant outliers for the HC‐BioSIM model (four DT50
predictions with errors greater than 10×). These four outliers
represent a wide range of study conditions, further supporting
a lack of systematic bias in the model (Figure 3A–D).

Finally, it is critical to note that despite poorer performance
relative to the HC‐BioSIM model, the SI‐BioHCWin and bio‐pp‐
LFER models showed improvement over the BioHCWin model.
This finding supports the general principle that predictive
performance and model utility can be improved if detailed
system information and curation of data are integrated into
model development. This can be leveraged to provide insight
and identify opportunities for model improvement for a
broader range of chemistries and processes in which reliable

experimental data and associated system information are
available.

System parameters and residual analyses
System parameters. Although the results of the model tree
algorithm are more complicated to visually interpret, parameter
importance and mechanistic trends can be observed from an
analysis of the rule structure and parameter usage within the
submodels. Model tree algorithms are an example of a “greedy”
algorithm (Cormen et al., 2009)—they sequentially separate data
using the most impactful parameter, maximizing information gain
and minimizing system entropy. Consequently, the use of pa-
rameters in constructing model “rules,” as well as their presence
in the end‐node MLRs, is correlated to their relative importance.
This allows some mechanistic insights to be drawn. The model
rules and summary statistics for the end‐node MLRs are sum-
marized in Table 3. A list of model parameters and their usage
(%), as well as the complete end‐node MLRs, is presented in
Section A5 of Supporting Information.

The HC‐BioSIM model utilizes four of the seven available
system‐specific parameters (D, L, T, K) as well as a single
structural parameter (a nonlinear three‐ring PAH fragment,
PAHNL) to develop the rules to subset the experimental DT50
training database. Furthermore, six of the seven available
system parameters and 25 of the 45 structural parameters are
used in the MLRs across the subsets to predict DT50 values.
Although the number of model parameters (31) is significantly
larger than the SI‐BioHCWin (6) and bio‐pp‐LFER (10) models, it
is comparable to the number of fragment values utilized within
the BioHCWin model (32).

It is interesting to note that the average model errors (E) for
the individual data subsets (Table 3) are comparable, with the
exception of subsets #4 and #9. These subsets are unique in
that they contain all passively dosed data. Larger predictive

FIGURE 2: Predicted versus observed experimental disappearance time (DT50; in days) for the (A) BioHCwin and (B) System‐Integrated Model
(HC‐BioSIM) models. Solid line represents 1:1 agreement, and semidashed and dashed lines represent 3× and 10× errors in predictions, re-
spectively. Colors correspond to hydrocarbon classes: n‐paraffins (nP), iso‐paraffins (iP), mono‐naphthenics (MN), di‐naphthenics (DN), poly-
naphthenics (PN), mono‐aromatics (MAr), naphthenic mono‐aromatics (NMAH), di‐aromatics (DAH), polyaromatics (PAH), naphthenic di‐aromatic
(NDAH), and naphthenic polyaromatics (NPAH).

TABLE 2: Comparison of HC‐BioSIM and BioHCWin model perform-
ance for training and validation sets (including k‐fold cross‐validation)

HC‐BioSIM BioHCWin

Dataset No. RMSE R2 RMSE R2

Training 582 0.23 0.71 0.76 0.16
Validation 146 0.34 0.52 0.72 0.18
All 728 0.26 0.67 0.75 0.17
CV test folda 146 0.30± 0.01 0.51± 0.08 0.75± 0.05 0.16± 0.03

(3.2%) (16%) (6.0%) (18%)

aMean± standard deviation (SD) RMSE and R2 values for the individual test folds
(k= 5). Coefficients of variation (%) are included in parentheses.
RMSE and R2 values are reported for both models. A complete description of the
cross‐validation technique, individual fold statistics, and parameters is presented
in Section A7 of the Supporting Information.
CV = cross validation; RMSE = root mean square error.
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errors for these subsets may be attributed to uncertainty in the
appropriate parameterization for passively dosed studies. Al-
though all studies within these subsets are nondispersed
(D= 0), lower loadings in the passively dosed studies may result
in significantly different biodegradation behavior compared
with studies conducted at higher loadings (e.g., crude oil at
2–15mg/L; Hammershøj et al., 2019, 2020). Further inves-
tigation is needed to evaluate whether additional system pa-
rameters (i.e., a specific system parameter for passively dosed
studies) would improve model predictions for these studies. At
present, passively dosed DT50 data are limited, and additional

datasets may be required to adequately incorporate any ad-
ditional parameterization.

The model also identified high hydrocarbon loading rates,
regardless of other system parameters, as a unique subset (#2:
L> 15mg/L). Previous studies have demonstrated slower
overall removal of hydrocarbons at high source loading
(Brakstad, Davies, et al., 2018), as well as trends within and
between hydrocarbon classes that differ with hydrocarbon
loading (i.e., 75mg/L direct loading of gasoline vs. low con-
centrations of passively dosed gasoline‐range hydrocarbons;
Prince et al., 2007; Prosser et al., 2016). This observation

(A) (B)

(C) (D)

(E) (F)

FIGURE 3: Boxplots of logarithmic model residuals (predicted—experimental log(DT50)) as a function of test system parameters (A–D),
carbon number (E), and hydrocarbon class (F). Semidashed lines represent a 2‐fold predicted error (0.3 log units), and dashed lines represent a 10‐
fold predicted error (1.0 log unit). Box widths are proportional to the square root of the number of observations. For abbreviations, see Figure 2
legend.
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supports the selection of hydrocarbon loading as an effective
system parameter for describing aquatic DT50 test systems.

Only one structural parameter was identified as significant
to rule development for the model. The three‐ring PAHNL was
used by the model to separate a significant segment of PAH
hydrocarbons from the rest of the aromatic and aliphatic hy-
drocarbon space. This result is not immediately intuitive;
however, model predictive performance for PAHs (and in par-
ticular, those not containing this structural fragment, e.g., an-
thracene) does not appear to be impacted by the use of this
parameter in generating the model rules. It is possible that the
limited aqueous solubility of PAHs necessitates the separation
from smaller aromatics, with the more rapid biodegradability of
PAHs further separating these structures from their equivalent
naphthenic analogs (e.g., polynaphthenics [PN]).

It is important to note that model rule cutoff values (i.e.,
L> 15mg/L) should be interpreted cautiously, because complete
characterization and range of the system variables are likely in-
complete. As such, true “criteria” for these rules may lie some-
where in between values at which data have previously been
obtained. In addition, potential nonlinear interactions between

system parameters (e.g., low temperature and high loading) are
not currently represented within the model framework.

Residual analysis. Residual errors of HC‐BioSIM predicted
DT50 values as a function of test system parameters,
hydrocarbon class, and carbon number are presented in
Figure 3. Similar analyses were performed for the BioHCWin,
SI‐BioHCWin, and bio‐pp‐LFER models and can be found in
Section A4 of the Supporting Information, Figures A4–A6.

No systematic bias was observed in the predicted DT50
values as a function of test system parameters, hydrocarbon
classes, or carbon number (Figure 3). In a similar analysis by
Prosser et al. (2016) the authors observed clear systematic bias
in BioHCWin th predictions as a function of carbon number,
with significant overpredictions at higher carbon numbers
across multiple classes, and the most pronounced bias in the
normal and iso‐paraffin classes. The authors also reported
significant systematic predictive bias across several hydro-
carbon classes, specifically naphthenic hydrocarbons (mono-
naphthenics (MN), dinaphthenics (DN), and PN), for which
experimental DT50 data are limited.

Categorization of P and vP substances
The ability of the HC‐BioSIM model to correctly predict the

persistence of hydrocarbons in freshwater and marine systems
was evaluated (based on DT50 criteria proposed by the ECHA,
2017), similar to a previous assessment by Prosser et al. (2016)
for the BioHCWin model. Outcomes were grouped broadly
into three categories: (1) correct predictions, with identical
categorization of observed and model‐predicted persistence,

TABLE 3: Summary of HC‐BioSIM model subsets (S), rules (R), number
of data points (No.), logarithmic average prediction error (E), and brief
descriptions of data subsets

Subset (S) Rules (R) No.

Average
predictive
error (E)

Description of data
subset

1 D> 0 51 0.12 Dispersed, low
loading, mid‐high
temperature, no

PAHNL

L≤ 15
T> 8

PAHNL= 0

2 L> 15 162 0.14 High loading

3 D> 0 16 0.17 Dispersed, mid‐high
temperature, PAHNLT> 8

PAHNL= 1

4 D= 0 129 0.37 Dispersed, low
loading, high

temperature, no
PAHNL

L≤ 15
T> 13

PAHNL= 0

5 K≤ 14.4 78 0.10 Low‐viscosity HC
substrate, low‐
temperature, no

PAHNL

T≤ 8
PAHNL= 0

6 D= 0 54 0.16 Nondispersed, mid‐
low temperature, no

PAHNL

T≤ 13
PAHNL= 0

7 K> 14.4 51 0.09 High‐viscosity HC
substrate, dispersed,
low temperature, no

PAHNL

D> 0
T≤ 8

PAHNL= 0

8 T≤ 8 36 0.18 Low temperature,
PAHNLPAHNL= 1

9 D= 0 24 0.38 Nondispersed, low
loading, mid‐high

temperature, PAHNL

L≤ 15
T> 8

PAHNL= 1

PAHNL = presence or absence of non‐linear 3‐ring PAH structural fragment. TABLE 4: Prediction matrix of persistence categorization based on
European Chemicals Agency freshwater and marine compartmental
half‐life criteria

Model

System Prediction BioHCWin (%) HC‐BioSIM (%)

Freshwatera

(n= 237)
FN (type II) 0.4 1.3
Correct 93.7 97.9

FP (type I) 5.9 0.8

Seawaterb

(n= 452)
FN (type II) 1.1 3.3
Correct 87.6 96.2

FP (type I) 11.3 0.4

Totalc (n= 689) FN (type II) 0.9 2.6
Correct 89.7 96.8

FP (type I) 9.43 0.6

aFor freshwater, the European Union Registration, Evaluation, Authorisation and
Restriction of Chemicals (REACH) P and vP criteria of 40 and 60 days are used,
respectively.
bFor marine water, the European Union REACH singular P and vP criteria of
60 days are used.
cActivated sludge primary disappearance time (DT50) values (n= 39) were
excluded from this evaluation, because their applicability in comparing against
either freshwater or marine DT50 criteria is not clear.
Prediction matrices for the SI‐BioHCWin and bio‐pp‐LFER models are presented
in Section A8 of the Supporting Information.
FN = false negative; FP = false positive.
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(2) underprediction of persistence (false negatives), and (3)
overprediction of persistence (false positives). A comparison of
the HC‐BioSIM and BioHCWin categorization results are sum-
marized in Table 4. Results for the SI‐BioHCWin and bio‐pp‐LFER
models are presented in Section A8 of the Supporting In-
formation.

The HC‐BioSIM model demonstrated improved accuracy of
persistence categorization, with an overall correct identification
rate of 96.8% compared with 89.7% for the BioHCWin model.
False‐positive predictions were significantly reduced with the
HC‐BioSIM model (0.6% vs. 9.4%). However, a slight increase in
“false‐negative” predictions was observed (2.6% vs. 0.9%). After
further investigation, it was seen that half of these data points
were obtained from nondispersed, high‐viscosity crudes, seven
of them at extremely high loading rates (L= 15mg/L). Although
these test conditions may be representative for oil spill sce-
narios, and valuable within a risk assessment context, they
should not be considered representative conditions for evalu-
ating the intrinsic persistence properties of a substance. The
OECD test guidelines for assessing biodegradation of chemicals
in the environment, such as OECD test guideline 309 (2004) for
aquatic simulation studies, recommend test concentrations of
0.001–0.1mg/L. Further exclusion or qualification of these
studies resulted in a revised overall false‐negative categorization
rate of approximately 1.6%. It should be noted that for many of
these hydrocarbons, additional DT50 data, obtained under
more environmentally representative system conditions, dem-
onstrate agreement between predicted and observed persis-
tence categorization.

Despite significant improvement in DT50 prediction and an
enhanced understanding of system effects on biodegradability,
a significant challenge remains in the interpretation of these
data and models within existing regulatory frameworks. At
present, limited guidance is available for developing a single
persistence conclusion using multiple DT50 results, repre-
senting varied system conditions (e.g., loading, dispersed vs.
nondispersed, passively dosed, etc.). One potential strategy for
addressing this challenge is to utilize statistical methods (e.g.,
Monte‐Carlo simulations). These methods can sample a range
of relevant system parameters, producing a probability dis-
tribution of DT50 values and associated “P” categorizations for
a given substance. In addition, guidance on ranges of values
for environmental and test conditions that are most relevant for
persistence assessment could reduce uncertainty and provide
clear direction for persistence assessment of petroleum hy-
drocarbons in complex environmental systems. These consid-
erations would provide a quantitative framework that could be
used to supplement the existing “weight of evidence” ap-
proaches (Hughes et al., 2020) that are currently used to eval-
uate the persistence properties of petroleum hydrocarbons.

CONCLUSIONS
Leveraging a large, highly curated, hydrocarbon DT50

database allowed for system‐ and substance‐specific variability
in environmental biodegradation rates to be systematically

integrated within a predictive model for the first time. Test
system and environmental parameters were shown to be
critical factors in the development of model rules as well as in
the prediction of DT50 values. The HC‐BioSIM model
demonstrated significant improvement in quantitative DT50
prediction, as well as persistence categorization for a wide
range of experimental test conditions and hydrocarbon struc-
tures. These results further reinforce the need to consider
environmental and system conditions when persistence data
for regulatory evaluation and risk assessment are compared.
Finally, the model presented is transparent and easily com-
municated, addressing several key challenges to regulatory
acceptance. It is expected that this approach may be applied
to additional biological and chemical processes (i.e., metabo-
lism, abiotic degradation processes) in various media, lever-
aging existing databases in which sufficient high‐quality test
system and chemical information can be identified and curated
appropriately.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5328.
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