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Hypertension is a chronic disease and major risk factor for cardiovascular and
cerebrovascular diseases that often leads to damage to target organs. The prevention
and treatment of hypertension is crucially important for human health. In this paper, a novel
ensemble method based on a flexible neural tree (FNT) is proposed to identify
hypertension-related active compounds. In the ensemble method, the base classifiers
are Multi-Grained Cascade Forest (gcForest), support vector machines (SVM), random
forest (RF), AdaBoost, decision tree (DT), Gradient Boosting Decision Tree (GBDT), KNN,
logical regression, and naïve Bayes (NB). The classification results of nine classifiers are
utilized as the input vector of FNT, which is utilized as a nonlinear ensemble method to
identify hypertension-related drug compounds. The experiment data are extracted from
hypertension-unrelated and hypertension-related compounds collected from the up-to-
date literature. The results reveal that our proposed ensemble method performs better
than other single classifiers in terms of ROC curve, AUC, TPR, FRP, Precision, Specificity,
and F1. Our proposed method is also compared with the averaged and voting ensemble
methods. The results reveal that our method could identify hypertension-related
compounds more accurately than two classical ensemble methods.
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INTRODUCTION

Hypertensive disease is a frequent cardiovascular disease characterized by elevated arterial blood
pressure and accompanied by the target organ injury or clinical diseases (Essiarab et al., 2011; Owlia
and Bangalore, 2016). It is a risk factor leading to many serious complications such as stroke,
hypertensive heart disease, renal failure, atherosclerosis, and so on (Sakai and Sigmund, 2005; Brinks
and Eckhart, 2010). Due to the increasing pressure of work and life, many people do not develop
good eating and living habits, and often stay up late. The age of hypertensive patients tends to be
younger. Therefore, the prevention and treatment of hypertension has become very important for
human health.

Network pharmacology (NP) could construct a multi-dimensional network based on “traditional
Chinese medicine prescription-chemical component-targets-disease targets” to analyze the
relationships between traditional Chinese medicine multi-components and activity, which could
provide a theoretical basis for further experimental research on a pharmacodynamic material basis
and action mechanism (Wang et al., 2018; Xu et al., 2018). In recent years, network pharmacology
has revealed therapeutic targets for hypertension and become a research hotspot, as it has been
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clinically verified to be an effective method of drug screening
(Chen et al., 2020). Chen et al. screened out the key compounds
and targets of JiaWeiSiWu granule to reveal the mechanism of
JiaWeiSiWu granule in treating hypertension by NP method
(Chen et al., 2021a). By NP and molecular docking (MD)
methods, Zhai et al. investigated the mechanism of Pinellia
ternate in treating hypertension (Zhai et al., 2021). Chen et al.
analyzed the network based on Guizhi decoction, active
compounds, and targets, and found hypertension-related
targets and key pathways (Chen et al., 2021b). Chen et al.
utilized NP and MD to analyzed the genistein for treating
pulmonary hypertension (PH) and provided new guidance for
further PH-related research (Chen et al., 2019). Liu et al.
explained the pharmacological mechanism of TaohongSiwu
decoction in the treatment of essential hypertension (EH) by
the NP method (Liu et al., 2020). Wang et al. utilized NP to
analyze the mechanism of Yeju Jiangya decoction against
hypertension (Wang et al., 2021).

In recent decades, many data mining methods have been
applied to reveal the disease mechanism and medication law
of many complex diseases, especially hypertension (Ji and Wang,
2014; Ji et al., 2015; Hwang et al., 2016; Hu et al., 2018; Liang et al.,
2018; Amaratunga et al., 2020; Liu et al., 2021; Zhao et al., 2021).
Zhang et al. utilized SPSS21.0 and Apriori algorithm to analyze
the symptom/sign information of EH patients collected and gave
their distribution law and correlation (Zhang et al., 2019a). Yuan
and Chen proposed niche technology and an artificial bee colony
algorithm to mine association rules from Traditional Chinese
Medicine (TCM) cases for treating hypertension (Yuan and
Chen, 2011). Ma et al. collected the new literature about
hypertension and constructed the gene network by analysis
(Ma et al., 2018). Ramezankhani et al. utilized a decision tree
to predict the risk factors of hypertension incidence in data
collected from Iranian adults (Ramezankhani et al., 2016).
Aljumah et al. utilized a data mining method to predict the
treatment of hypertension patients with different age groups
(Aljumah et al., 2011). Fang et al. proposed a new model-
based KNN and LightGBM to predict the risk of hypertension
(Fang et al., 2021).

Few studies have involved the use of data mining methods to
improve network pharmacology. In this paper, a novel ensemble
method based on a flexible neural tree (FNT) is proposed to
identify hypertension-related active compounds. In the ensemble
method, the used base classifiers are Multi-Grained Cascade
Forest, support vector machines, random forest, AdaBoost,
decision tree, Gradient Boosting Decision Tree, KNN, logical
regression, and naïve Bayes. The classification results of nine
classifiers are input to the FNT model, which is trained to predict
hypertension-related compounds. The data used in the
experiment are from up-to-date literature collected about
hypertension and network pharmacology. By analysis of the
literature, hypertension-related compounds were collected as
positive samples and the generated decoys were utilized as
negative samples. The molecular descriptor of each compound
is extracted as the feature vector.

METHODS

Classifiers
Assume that the training data is T �
(x1, y1), (x2, y2), . . . , (xn, yn)}{ containing n sample points.
Sample point xi � x1

i , x
2
i , . . .x

m
i }{ contains m features and

category label yi � c1, c2}{ contains two cases. The nine
classifiers used are introduced in the following sections of the article.

Multi-Grained Cascade Forest
Multi-Grained Cascade Forest (gcForest) is a novel ensemble
machine learning method, which utilizes the cascade forest
(ensemble of decision trees) to learn and generate models
(Zhou and Feng, 2017). The core of gcForest mainly includes
two modules: multi-grained scanning and cascade forest. The
flowchart of gcForest is depicted in Figure 1.

1) Multi-grained scanning

Multi granularity scanning is a technical means to enhance
cascade forest and do more processing on features. Firstly, a
complete m- dimensional sample is input, and then sliding
sampling is carried out through the k1-dimensional and
k2-dimensional sampling windows in order to obtain s1 �
(m − k1) + 1 and s2 � (m − k2) + 1 feature subsample vectors,
respectively. Each sub-sample is used for the training of
completely random forest (A) and random forest (B). A
probability vector with 2-dimension is obtained in each forest,
so that two kinds of forests can produce 2s1 and 2s2
representation vectors, respectively. Finally, the results of all
forests are spliced together to obtain the sample output.

2) Cascade forest

Cascade forest includes several layers, each layer is composed
of many forests, and each forest is composed of many decision
trees. Completely random forest (A) and random forest (B) in
each layer ensure the diversity of the model. For a completely
random forest, each tree in the forest randomly selects a feature as
the splitting node of the splitting tree, which grows until each leaf
node is subdivided into only one class. For random forest, each
tree randomly selects

��
m

√
candidate features, and the splitting

nodes are filtered through the Gini coefficient. Each forest could
generate a two-dimensional class vector. The two-dimensional
class vectors of all forests are averaged to obtain the final two-
dimensional class vector. Finally, the category with the maximum
value in the final two-dimensional class vector is taken as the final
classification result.

Support Vector Machines
Support vector machines (SVM) is a supervised learning
algorithm based on statistical learning theory (Suykens and
Vandewalle, 1999; Furey et al., 2000). With the sample set
containing positive and negative samples, SVM could search a
hyperplane that could segment the samples according to positive
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and negative classes. The classification hyperplane can be given as
follows.

wTx + b � 0. (1)

Where x is the data point on the classification hyperplane, w is a
vector perpendicular to the classification hyperplane, and b is the
displacement.

Linear separated data can be distinguished by the optimal
classification hyperplane. For non-linear separated data, SVM
can be transformed into solving the following optimization
problem by the soft interval optimization and kernel techniques.⎧⎪⎪⎨⎪⎪⎩minϕ(w, ς) � ‖w‖2 + 1

2
C∑n

i�1
ςis.t.yi[(w · xi + b)]≥ 1 − ςi.

(2)

WhereCis the penalty factor, ςi is the relaxation variable, and xi is
mapped to a high-dimensional space by ϕ. SVM could find a
hyperplane with the largest interval in this high-dimensional
space to classify the data.

Random Forest
Random forest (RF) is a machine learning method based on an
ensemble of decision trees for classification and regression
(Breiman, 2001; Díaz-Uriarte and Alvarez de Andrés, 2006).
Random forest is a combined classification model composed
of many decision tree classification models. Each decision tree
has the right to vote to determine the best classification result. In
random forest, firstly, K sample sets are extracted from the
original training set by bootstrap sampling method, and the
size of each extracted sample set is the same as that of the
original training set. Then, K decision tree models are
established from K sample sets, respectively. And K trees will

createK classification results. The random forest integrates all the
classified results by voting method, and the category with the
most votes is designated as the final classification result.

AdaBoost
AdaBoost is a dynamic ensemble classification algorithm,
which is to reasonably combine multiple weak classifiers
(single-layer decision tree) to make it a strong classifier
(Morra et al., 2009; Cao et al., 2013). The detailed
algorithm is given as follows.

1) Initialize the weight of each sample. Assuming that the dataset
contains n samples, each training sample point is given the
same weight (1n) at the beginning.

2) Train weak classifiers. According to the samples, the weak
classifiers are trained. If a sample has been accurately
classified, its weight will be reduced in constructing the
next training set. On the contrary, if a sample point is not
accurately classified, its weight is increased. At the same time,
according to the classification error of the weak classifier, its
weight is calculated. Then, the sample set with updated
weights is used to train the next classifier, and the whole
training process goes on iteratively. T weak classifiers are
obtained after T iterations.

3) The trained weak classifiers are combined into strong
classifiers. Each weak classifier connects its respective
weights through the classification function to form a
strong classifier. After the training process of each weak
classifier, the weight of the weak classifier with a smaller
classification error rate is larger, which plays a greater
decisive role in the final classification function, while the
weight of the weak classifier with a larger classification error
rate is smaller, which plays a smaller decisive role in the final
classification function.

FIGURE 1 | The process of gcForest.
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Decision Tree
A Decision Tree (DT) learning algorithm is usually a process of
recursively selecting the optimal features and segmenting the
training data according to the features so that each sub dataset has
the best classification. The CART algorithm is one of the most
common decision tree algorithms, which is mainly used for
classification and regression (Breiman et al., 1984; Temkin
et al., 1995). CART introduces the knowledge of probability
theory and statistics into the research of decision tree.
Different from the C4.5 algorithm, the CART algorithm could
make a binary partition of the feature space and can split scalar
attributes and continuous attributes. The specific algorithm is as
follows:

1) Calculate the Gini index of the existing features. The feature
with the smallest Gini index is selected as the splitting
attribute of the root node. According to the optimal feature
and cut point, two sub-nodes are generated from the current
node, and the training dataset is allocated to the two sub-
nodes according to the feature. According to an attribute
value, a node is segmented to make the data in each
descendant subset more “pure” than the data in its parent
subset. Gini coefficient measures the impurity of sample
division, and the smaller the impurity is, the higher the
“purity” of the samples is.

For 2-class problems, the training set S is divided into two
subsets S1 and S2 according to an attributeA. The Gini coefficient
of the given division S is calculated as follows.

GiniA(S) � |S1|
|S| Gini(S1) +

|S2|
|S| Gini(S2). (3)

Where |S| is the number of samples in set S, and Gini(Si) is the
Gini coefficient of sample set Si, which is calculated as follows:

Gini(Si) � 1 −∑2
k�1

(|Ck|
|Si|)2

. (4)

Where |Ck| denotes the number of samples belonging to class k in
the set Si.

2) Step (1) is called recursively for two child nodes, and the
iteration continues until the samples in all child nodes belong
to the same category or no attributes can be selected as
splitting attributes.

4) Prune the CART decision tree generated.

Gradient Boosting Decision Tree
Gradient Boosting Decision Tree (GBDT) is an integrated
learning algorithm (Hu and Min, 2018; Zhang et al., 2019b).
By boosting method, N weak learners are created, which are
combined into a strong learner after many iterations. The
performance of the strong learner is higher than any weak
learner. In GBDT, the used weak learner is the CART
regression tree. During each iteration of GBDT, the residual of
the previous model is reduced, and a new model is trained and
established in the gradient direction of residual reduction, to

improve the performance of the classifier. The specific algorithm
is shown as follows:

1) Initialize the weak learner.

f0(x) � argminκ ∑n
i�1

L(yi, κ). (5)

Where L is the loss function.

2) For t − th iteration (t � 1, 2, . . . , T)

a) For i − th sample, the residual reduction is calculated as
follows.

rti � −[zL(yi, f(xi))
zf(xi) ]

f(x)�ft−1(x)
. (6)

Where ft−1(x) is the classifier during the t − 1 − th iteration.

κtj � argminκ ∑
xi∈Rtj

L(yi, ft−1(xi) + κ). (7)

Where κtj is the value of the leaf node in the regression tree.

b) The calculated residues are used as new sample data, (xi, rti) is
utilized to fit a new CART regression tree and the probability
of each category is calculated. The leaf node region of the
CART regression tree Rtj (j � 1, 2, . . . , J) is obtained. J is the
number of leaf nodes of the regression tree.

c) Calculate the optimal coefficient for the leaf area, which is
given as follows.

d) The strong learner is updated with Eq. 8.

ft(x) � ft−1(xi) +∑J
j�1

κtjI(x ∈ Rtj). (8)

Whenx ∈ Rtj is true, I is equal to 1; otherwise, it is equal to 0.

3) The final strong learner f(x) is obtained with Eq. 9.

f(x) � f0(x) +∑T
t�1

∑J
j�1

ctjI(x ∈ Rtj). (9)

K-Nearest Neighbor
K-Nearest Neighbor (KNN) is a classification algorithm based
on supervised learning, which is to classify the data points
according to the sample set with the known categories (Liao
and Vemuri, 2002). Select the K neighbors with the smallest
distance from the input data in the training set, and take the
category with the most times among the K neighbors as the
category of the classified data point. In the KNN algorithm, the
selected neighbors are objects that have been correctly
classified.

In the KNN method, the most commonly used
measurement of distance is the Euclidean distance. The
Euclidean distance of two variables (xi and xj) is defined as
follows.
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D((xi, xj) � ���∑m
k�1

√√ (xk
i − xk

j)2. (10)

Logistic Regression
Logistic regression (LR) is utilized to deal with the regression
problem, which obtains the minimum result of cost function by
gradient descent method to obtain the better classification
boundary (Maalouf, 2011; Munshi et al., 2014). LR maps the
values of linear regression to the interval [0, 1] by Sigmoid
function, which is defined as follows.

yi � hθ(xi) � 1

1 + e−θTxi
. (11)

Where θTxi � θ0 + θ1x1
i + θ1x2

i + . . . + θmxm
i , θ0 is a deviation

parameter and θi represents the weight.
In order to solve the logistic regression model, the gradient

descent algorithm is generally used to iteratively calculate the
optimal parameters of the model.

Naïve Bayes
Naïve Bayes (NB) is one of the most widely utilized models in
Bayesian classifiers, which is based on the assumption that the
influence of an attribute value on the given class is independent
of the values of other attributes (class conditional
independence) (Rish, 2001; Li and Guo, 2005). The specific
algorithm idea is as follows.

According to the joint probability and the prediction data x,
the prediction category of x is defined as follows.

argmaxp(y � ck
∣∣∣∣x). (12)

According to the Bayesian theorem, p(y � ck|x) is calculated
as follows.

p(y � ck
∣∣∣∣x) � p(x∣∣∣∣y � ck)p(y � ck)

p(x) . (13)

Since the denominator is constant for all categories, just
maximize the numerator, and Eq. 12 could be defined as
follows.

argmaxp(x∣∣∣∣y � ck)p(y � ck). (14)

Because each feature attribute is conditionally independent,
p(x|y � ck) could be calculated as follows.

p(x∣∣∣∣y � ck) � ∏m
i�1

p(xi
∣∣∣∣y � ck) (15)

According to Eq. 15, Eq. 14 can be calculated as follows.

argmaxp(y � ck)∏m
i�1

p(xi
∣∣∣∣y � ck) (16)

Select the category with the largest posteriori probability as
the prediction category.

Ensemble Methods
To improve the classification performance of a single classifier, a
novel ensemble method based on a flexible neural tree (FNT) is
proposed. An example of our proposed ensemble method is
depicted in Figure 2. From Figure 2, it could be seen that the
used base classifiers are gcForest, SVM, RF, AdaBoost, decision
tree, GBDT, KNN, logical regression, and naïve Baye, which are
introduced in detail in Classifiers. Firstly according to the training
data, these nine classifiers can output their corresponding
confidence level set (c � (c1, c2, . . . , c9)), which is utilized as
the input layer of the FNT model. The other hidden layers of
the FNT model can be created randomly from operator set
(F � (+2,+3, . . . ,+n)) and variable set (T � (c1, c2, . . . , c9))
(Chen et al., 2006). +i denotes a flexible neuron operator,
which can be calculated as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

neti � ∑i

j�1wjxj,

oi � f(ai, bi, neti) � e
−(neti − ai

bi
)2

.

(17)

Where f(·) is an activation function, ai and bi are the parameters
of function, xj is the input variable and wj is the corresponding
weight of the input variable.

FNT is a kind of cross-layer neural network, so each hidden
layer can contain both operator and variable nodes. Because the
structure of the FNT model is not fixed and this model contains
many parameters such as ai, bi, and wj, many swarm algorithms
have been proposed to search the optimal FNT model by
iterations. In this paper, a hybrid evolutionary method based
on genetic programming like structure optimization algorithm
and simulated annealing was utilized for the training dataset. The
detailed algorithms were introduced in another study (Yang et al.,
2013).

Hypertension-Related Activity Drug
Identification
In order to identify hypertension-related active compounds
accurately, an ensemble method based on nine classifiers and
a flexible neural tree is proposed. The process of hypertension-
related active compounds identification is depicted in Figure 3. A
total of 44 important studies were collected by querying the
literature database according to two keywords: hypertension and
network pharmacology. Through analyzing this literature, many
important medicines such as Banxia Baizhu Tianma Tang,
Chaihu Longgu Muli Decoction, compound reserpine and
triamterene tablets, and Huanglian Jiedu Decoction, were
collected and 88 hypertension-related compounds were
searched. These important compounds were verified by
biology experiments or molecular docking, which were used as
positive samples in this paper. To obtain the negative samples,
20% of these compounds were randomly selected and input into
the DUD•E website to generate decoys (Mysinger et al., 2012). In
total, 264 decoys are selected randomly as negative samples.
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FIGURE 2 | The flowchart of our proposed ensemble method.

FIGURE 3 | The flowchart of hypertension-related active compound identification.
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The molecular descriptions of positive and negative
compounds were extracted to constitute the hypertension-
related dataset. With the collected dataset, our proposed
ensemble method was fitted to predict other hypertension-
related compounds.

EXPERIMENT RESULTS

In this part, the hypertension-related dataset collected is utilized,
which contains 88 related compounds and 264 unrelated
compounds. AUC, ROC curve, TPR, FRP, Precision,

FIGURE 4 | Hypertension-related compound identification performances of ten methods with 2-cross validation methods.

FIGURE 5 | Hypertension-related compound identification performances of ten methods with 4-cross validation methods.
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Specificity, and F1 were used to test the performance of our
proposed method. In our method, the parameters of nine
classifiers were set by default. In FNT, the variable set is
defined as T � (c1, c2, . . . , c9) and the operator set is defined
as F � (+2,+3,+4,+5).

Six cross-validation methods were utilized to validate our
proposed method. Nine classifiers were also utilized to identify
hypertension-related compounds with the same dataset. The
ROC curves and AUC performances with the different cross-
validation methods are depicted in Figures 4–9, respectively.

FIGURE 6 | Hypertension-related compound identification performances of ten methods with 6-cross validation methods.

FIGURE 7 | Hypertension-related compound identification performances of ten methods with 8-cross validation methods.
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From these results, it can be seen that gcForest has the best ROC
curves and AUC values among the nine single classifiers. Our
proposed ensemble method could perform better than gcForest in

terms of ROC and AUC. With 2-cross, 4-cross, 6-cross, 8-cross,
10-cross, and 15-cross validation methods, in terms of AUC, our
method is 0.1, 0.3, 0.3, 0.7, 0.3, and 0.4% higher than gcForest,

FIGURE 8 | Hypertension-related compound identification performances of ten methods with 10-cross validation methods.

FIGURE 9 | Hypertension-related compound identification performances of ten methods with 15-cross validation methods.
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which reveals that our proposed method performs better than
nine single classifiers for hypertension-related compound
identification.

The TPR, FRP, Precision, Specificity, and F1 performances of
the ten methods with the different cross-validation methods are
listed in Tables 1–6, respectively. With 2-cross validation and 4-
cross validation methods, LR could obtain the highest TPR
performances, which shows that LR could identify more true
hypertension-related compounds. For Table 1, RF and SVM
have the best FPR performance, which shows that these two
methods could identify less non-related compounds as related
ones. SVM also has the highest Precision and Specificity

performances among the ten methods. For Table 2, RF has
the best FPR, Precision, and Specificity performances. Our
method performed best in terms of F1, which reveals that it
could identify hypertension-related compounds more
accurately overall. With 6-cross validation, 8-cross validation,
10-cross validation, and 15-cross validation methods, our
methods perform best among ten methods in terms of TPR,
FRP, Precision, Specificity, and F1, except that RF has the lowest
performance with 4-cross validation methods. The results show
that our proposed ensemble method could identify more true
hypertension-related and hypertension-unrelated compounds
than the other nine single classifiers.

TABLE 1 | Classification performances of ten methods with 2-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.880597 0.019900 0.936508 0.980100 0.907692
gcForest 0.940299 0.054726 0.851351 0.945274 0.893617
AdaBoost 0.791045 0.014925 0.946429 0.985075 0.861789
Decision Tree 0.671642 0.114428 0.661765 0.885572 0.666667
GBDT 0.61194 0.104478 0.66129 0.895522 0.635659
KNN 0.701493 0.039801 0.854545 0.960199 0.770492
LR 0.985075 0.199005 0.622642 0.800995 0.763006
Naive Bayes 0.791045 0.074627 0.779412 0.925373 0.785185
RF 0.671642 0.00995 0.957447 0.99005 0.789474
SVM 0.850746 0.00995 0.966102 0.99005 0.904762

TABLE 2 | Classification performances of ten methods with 4-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.895522 0.014925 0.952381 0.985075 0.923077
gcForest 0.925373 0.039801 0.885714 0.960199 0.905109
AdaBoost 0.835821 0.0199 0.933333 0.9801 0.88189
Decision Tree 0.686567 0.039801 0.851852 0.960199 0.760331
GBDT 0.671642 0.00995 0.957447 0.99005 0.789474
KNN 0.850746 0.034826 0.890625 0.965174 0.870229
LR 0.940299 0.074627 0.807692 0.925373 0.868966
Naive Bayes 0.80597 0.094527 0.739726 0.905473 0.771429
RF 0.791045 0.00995 0.963636 0.99005 0.868852
SVM 0.776119 0.024876 0.912281 0.975124 0.83871

TABLE 3 | Classification performances of ten methods with 6-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.955224 0.004975 0.984615 0.995025 0.969697
gcForest 0.925373 0.024876 0.925373 0.975124 0.925373
AdaBoost 0.835821 0.0199 0.933333 0.9801 0.88189
Decision Tree 0.656716 0.054726 0.8 0.945274 0.721311
GBDT 0.791045 0.00995 0.963636 0.99005 0.868852
KNN 0.865672 0.049751 0.852941 0.950249 0.859259
LR 0.940299 0.049751 0.863014 0.950249 0.9
Naive Bayes 0.80597 0.094527 0.739726 0.905473 0.771429
RF 0.820896 0.014925 0.948276 0.985075 0.88
SVM 0.791045 0.014925 0.946429 0.985075 0.861789

TABLE 4 | Classification performances of ten methods with 8-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.970149 0.004975 0.984848 0.995025 0.977444
gcForest 0.940299 0.0199 0.940299 0.9801 0.940299
AdaBoost 0.850746 0.014925 0.95 0.985075 0.897638
Decision Tree 0.835821 0.029851 0.903226 0.970149 0.868217
GBDT 0.80597 0.004975 0.981818 0.995025 0.885246
KNN 0.865672 0.044776 0.865672 0.955224 0.865672
LR 0.940299 0.044776 0.875 0.955224 0.906475
Naive Bayes 0.835821 0.089552 0.756757 0.910448 0.794326
RF 0.835821 0.00995 0.965517 0.99005 0.896
SVM 0.791045 0.014925 0.946429 0.985075 0.861789

TABLE 5 | Classification performances of ten methods with 10-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.955224 0.014925 0.955224 0.985075 0.955224
gcForest 0.925373 0.0199 0.939394 0.9801 0.932331
AdaBoost 0.850746 0.014925 0.95 0.985075 0.897638
Decision Tree 0.850746 0.0199 0.934426 0.9801 0.890625
GBDT 0.776119 0.014925 0.945455 0.985075 0.852459
KNN 0.850746 0.049751 0.850746 0.950249 0.850746
LR 0.940299 0.044776 0.875 0.955224 0.906475
Naive Bayes 0.850746 0.089552 0.76 0.910448 0.802817
RF 0.820896 0.004975 0.982143 0.995025 0.894309
SVM 0.880597 0.014925 0.951613 0.985075 0.914729

TABLE 6 | Classification performances of ten methods with 15-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.955224 0 1 1 0.977099
gcForest 0.940299 0.0199 0.940299 0.9801 0.940299
AdaBoost 0.880597 0.0199 0.936508 0.9801 0.907692
Decision Tree 0.850746 0.049751 0.850746 0.950249 0.850746
GBDT 0.835821 0.00995 0.965517 0.99005 0.896
KNN 0.895522 0.039801 0.882353 0.960199 0.888889
LR 0.940299 0.034826 0.9 0.965174 0.919708
Naive Bayes 0.955224 0.089552 0.780488 0.910448 0.85906
RF 0.850746 0.00995 0.966102 0.99005 0.904762
SVM 0.880597 0.014925 0.951613 0.985075 0.914729
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DISCUSSION

To investigate the performance of our proposed ensemble further, two
classical ensemble methods (averaged ensemble and voting ensemble)
were also utilized to infer hypertension-related compounds. The F1
and AUC performances of the hypertension-related compounds by
three ensemble methods are depicted in Figure 10 and Figure 11,
respectively. From Figures 10, 11, it can be seen that our proposed
ensemble method obtained better F1 and AUC performances than
averaged and voting ensemble methods, which also shows that our
method could identify hypertension-related compounds more
accurately than the other two classical ensemble methods.

CONCLUSION

To identify hypertension-related closely active compounds, this
paper proposed a novel ensemble method based on a flexible

neural tree and nine classifiers. In our method, the classification
results of nine single classifiers was utilized as the input vector of
the flexible neural tree. An FNT model was utilized as a nonlinear
ensemble method to identify hypertension-related drug activity. A
hybrid evolutionary method based on genetic programming like
structure optimization algorithm and simulated annealing is
proposed to evolve the FNT model. In order to test the
performance of our proposed ensemble method, data were
extracted from hypertension-unrelated and hypertension-related
compounds collected from up-to-date literature. By the different
cross-validation methods, our proposed method obtained better
ROC curves and AUC values than nine other single classifiers. Our
proposed method also performs better than other single classifiers
in terms of TPR, FRP, Precision, Specificity, and F1 in most cases.
We also compare our proposed ensemble method with the
averaged and voting ensemble methods. The results reveal that
our method could identify hypertension-related compounds more
accurately than the two classical ensemble methods.

FIGURE 10 | F1 performances of hypertension-related compound by three ensemble methods.

FIGURE 11 | AUC performances of hypertension-related compound by three ensemble methods.
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