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Introduction
Hepatitis E is an important public health disease [1]. Although the mortality rate is less than
1% in the general population, it can reach up to 25% in infected pregnant women. According
to the World Health Organization, each year an estimated 20 million infections occur world-
wide resulting in>3 million symptomatic cases and 56,600 hepatitis E-related deaths (http://
www.who.int/mediacentre/factsheets/fs280/en/). Large explosive waterborne outbreaks of hep-
atitis E are generally seen in developing countries with poor sanitation conditions, whereas in
industrialized countries, sporadic and cluster cases of hepatitis E have been reported. Hepatitis
E is a self-limiting acute disease that normally does not go into chronicity. However, recently,
chronic hepatitis E has become a significant clinical problem in immunocompromised individ-
uals such as organ transplant recipients [2]. The discovery of animal strains of hepatitis E virus
(HEV) [3] that infect across species barriers revolutionizes the way we used to think about this
important disease. Hepatitis E is now recognized as a zoonotic disease, and animal reservoirs
exist [4]. Herein, I briefly discuss the ever-expanding host ranges, cross-species infection, zoo-
notic risk, and food safety of HEV.

What Is Hepatitis E Virus (HEV)?
HEV is currently classified in the family Hepeviridae [5]. Virions of HEV are non-enveloped,
spherical particles of approximately 27–34 nm in size. The genome is a single-strand positive-
sense RNA molecule of approximately 7.2 kb and contains three open reading frames (ORFs).
ORF1 encodes the non-structural polyprotein, and ORF2 encodes the capsid protein that binds
to cell surface heparan sulfate proteoglycans in liver cells. ORF3 encodes a small phosphopro-
tein with a multifunctional C-terminal region [6]. ORF2 overlaps ORF3, but neither overlaps
ORF1 (Fig 1). A cap structure has been identified in the 50 end of the viral genome and may
play a role in the initiation of viral genome replication and protein translation (Fig 1).

Identification of genetically distinct strains of HEV from a number of animal species led to
the recent division of the family Hepeviridae into two genera by the International Committee
on Taxonomy of Viruses (ICTV): genus Orthohepevirus (all mammalian and avian HEV iso-
lates) and genus Piscihepevirus (cutthroat trout virus) [5]. There are four species within the
genus Orthohepevirus: Orthohepevirus A (HEV isolates from human, pig, wild boar, deer, mon-
goose, rabbit, moose, and camel), Orthohepevirus B (isolates from chicken), Orthohepevirus C
(isolates from rat, greater bandicoot, Asian musk shrew, ferret, and mink), and Orthohepevirus
D (isolates from bat) (Table 1). Within the proposed species Orthohepevirus A, at least four
genotypes are known to infect humans. Genotype 1 causes large outbreaks in humans in Asia.
Genotype 2 includes a Mexican and several African strains and causes large outbreaks.
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Fig 1. A schematic diagram of comparative genomic organization of mammalian, avian, and fish HEV. The three open reading frames
(ORFs) are labeled and shown as boxes. ORF2 overlaps ORF3, but neither overlaps ORF1. ORF1 encodes nonstructural proteins with the
putative functional domains within ORF1 indicated inside the box. ORF2 encodes the capsid protein, and ORF3 encodes a small protein that is
involved in virus replication. The genome is capped (m7G Cap) at the 50 end and contains a poly A tail at the 30 end. There are noncoding regions
(NCR) at the 50 and 30 ends of the viral genome. There is a junction region between ORF1 and ORF3 for mammalian and avian HEV, which
contains a stem-loop structure and a cis-reactive element (CRE). The avian HEV genome is approximately 600 bp smaller than the mammalian
and fish HEV. Hel, helicase; HVR, hypervariable region; MT, methytransferase; NCR, noncoding region; P, a papain-like cysteine protease;
RdRp, RNA-dependent RNA polymerase; X, macro domain.

doi:10.1371/journal.ppat.1005695.g001

Table 1. Host range of hepatitis E virus infection and zoonotic risk.

Natural animal
host

Classification (genus/species,
genotypes [gt])

Experimental hosts for cross-species infection Zoonotic infection in
humans

Orthohepevirus A
Human gt 1, 2, 3, 4 Non-human primates, pigs (gt 3, 4), rabbits (gt 1, 4), lambs (gt

1), Wistar rats (gt 1)

Domestic swine gt 3, 4 Non-human primates, rabbits, Mongolian gerbils (gt 4), Balb/C
mice (gt 4)

Yes

Wild boar gt 3, 4, 5, 6 Yes (gt 3, 4), likely (gt 5,
6)

Deer gt 3 Yes

Rabbit gt 3 Pigs Likely

Mongoose gt 3 Likely

Camel gt 7 Yes

Moose unknown Not known

Orthohepevirus B
Chicken Avian HEV gt 1, 2, 3 Turkeys No

Orthohepevirus C
Rat Unlikely

Ferret Unlikely

Greater bandicoot unlikely

Asian musk
shrew

unlikely

Mink unlikely

Bat Orthohepevirus D No

Cutthroat trout Piscihepevirus No

doi:10.1371/journal.ppat.1005695.t001
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Genotype 3 is associated with sporadic, cluster, and chronic cases of hepatitis E in humans.
Genotype 4 is also associated with sporadic cases of hepatitis E in humans.

What Are the Host Range and Animal Reservoirs for HEV?
Recent genetic identification of HEV strains from various animal species has significantly
broadened the host range and genetic diversity of the virus [4,7]. In addition to humans, HEV
has been genetically identified from numerous other animal species including wild and domes-
tic swine, deer, rabbit, mongoose, chicken, camel, rat, ferret, greater bandicoot, Asian musk
shrew, mink, moose, and fish (Table 1) [8,9]. The well-characterized animal strains of HEV
include genotypes 3 and 4 swine HEV from domestic and wild pigs, genotype 3 rabbit HEV,
and avian HEV from chickens. Beside human and swine, genotype 3 HEV strains have also
been identified from rabbits, deer, and mongooses. Rats and ferrets each carry HEV-related
strains that are genetically distinct from other mammalian and avian HEV (Table 1). The
moose HEV clusters within species Orthohepevirus A form a distinct clade with a common
ancestor to the genotypes 1–6 viruses [9,10]. Cutthroat trout virus resembles mammalian hepe-
viruses in its genomic organization (Fig 1) despite a low nucleotide sequence identity [11] and
represents a separate genus Piscihepevirus. The genetic identification of these diverse animal
strains of HEV provided opportunities for developing novel, naturally occurring animal mod-
els for HEV.

Additionally, serological evidence of HEV infection has also been reported in a number of
other animal species, even though the source of seropositivity in these species has not yet been
genetically identified. Anti-HEV antibodies are reportedly detected in several ruminant species
such as goats, cattle, and sheep, as well as in dogs and cats with no detection of HEV-related
sequences. Definitive genetic identification of the sources for HEV seropositivity in these ani-
mal species will lead to the discovery of new animal strains of HEV and thus further expansion
of HEV host range.

Can HEV Infect across Species Barriers and Cause Zoonotic
Infection?
Genotypes 1 and 2 HEV within the Orthohepevirus A species have a rather limited host range
and are restricted to humans, because attempts to experimentally infect other species including
pigs, rats, and goats with genotypes 1 and 2 human HEV were not successful. Lambs and Wis-
tar rats were reportedly infected by presumably a genotype 1 human HEV, although others
failed to infect goats or rats with genotypes 1 and 2 HEV [12]. In contrast, genotypes 3 and 4
HEV have a much broader host range and can infect across species barriers (Table 1). Under
experimental conditions, genotypes 3 and 4 swine HEV can readily infect non-human primates
and, conversely, genotypes 3 and 4 human HEV infect pigs [13,14]. The avian HEV from a
chicken successfully infected turkeys, but failed to infect rhesus monkeys, suggesting that avian
HEV is likely not zoonotic. Rabbit HEV infected pigs, and genotypes 1 and 4 human HEV also
reportedly infected rabbits [4].

Ample evidences have documented zoonotic infection of genotypes 3 and 4 HEV. The spo-
radic and cluster cases of human hepatitis E from industrialized countries are mostly caused by
the zoonotic genotypes 3 and 4 HEV, and cases of chronic hepatitis E in immunocompromised
individuals are definitively linked to zoonotic infection by the genotype 3 HEV as well [2].
Contact exposure to HEV-infected swine leads to an increased risk of zoonotic HEV infection
in humans [15]. For example, swine veterinarians in the United States were 1.51 times more
likely to be seropositive for HEV antibodies than age- and geography-matched control subjects.
Individuals from traditionally major swine states such as Minnesota and Iowa are more likely
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to be seropositive for anti-HEV antibodies than those from traditionally non-swine states such
as Alabama [16]. Clearly, swine are a major reservoir for HEV, and occupational contact with
infected swine is a risk factor for zoonotic HEV infection in humans.

Swine is a recognized reservoir for zoonotic HEV infection. However, the presence of
numerous other strains of HEV in wildlife and other domestic animal species (Table 1) sug-
gests additional potential mechanisms of zoonotic transmission. For example, deer and rabbits
can serve as potential reservoirs for HEV. Zoonotic transmissions of hepatitis E from deer to
humans were reported [17]. Field workers who had close contact with wildlife animal species
had a significantly higher anti-HEV antibody prevalence than controls [18]. Thus, it is critical
to understand the natural history and ecology of HEV infection in order to devise effective pre-
ventive and control strategies.

What Is the Viral Determinant(s) for HEV Cross-Species Infection?
The viral genetic determinant(s) of HEV cross-species infection remains largely unknown. The
capsid encoded by ORF2 is the only structural protein and thus is presumed to bind to an
unknown cellular receptor and determine host tropism. However, intergenotypic chimeric
viruses containing the ORF2 of the zoonotic genotypes 3 or 4 HEV (infecting both humans
and pigs) in the genomic backbone of a genotype 1 human HEV (only infecting humans) failed
to infect pigs [19]. Similarly, none of the four intergenotypic chimeric viruses with various
swapped genomic regions between genotypes 1 and 4 and between genotypes 1 and 3 was able
to establish a robust infection in pigs [20]. Therefore, the ORF2 capsid gene does not seem to
be important for HEV cross-species infection, and, thus, other genomic regions such as ORF1
are likely involved in the HEV host range. Recently, the adaptation of a unique genotype 3
HEV (Kernow C-1) recovered from a chronically infected patient to propagate in HepG2C3A
human hepatoma cells has selected for a rare virus recombinant that contains an insertion of a
171-nucleotide sequence of human ribosomal protein S17 (RPS17) within the hypervariable
region of HEV ORF1. When a genotype 1 HEV (only infecting humans) was engineered to
contain the RPS17 insertion in its ORF1, the recombinant virus expanded the host range and
was able to infect cell lines derived from cows, dogs, cats, chickens, and hamsters [21]. Subse-
quent studies found that the RPS17 insertion in HEV ORF1 bestows novel nuclear/nucleolar
trafficking capabilities to the ORF1 protein of Kernow C-1 HEV and that the lysine residues
within the RPS17 insertion, but not nuclear localization of the HEV ORF1 protein, correlate
with the enhanced virus replication [22]. More recently, it was demonstrated that a chimeric
virus containing the ORF1 gene from a genotype 4 HEV in the backbone of a genotype 1 HEV
alters its host cell tropism and infects pig kidney cell line [23], further suggesting a potential
role of ORF1 in HEV cross-species infection.

Is There Any Food Safety Concern about HEV-Contaminated
Animal Meat Products?
Food safety associated with HEV contamination in animal meat products is an important pub-
lic health concern as increasing numbers of food-borne hepatitis E have been reported [24].
Approximately 2% of the commercial pig livers from local grocery stores in Japan, 4% in Ger-
many, 6.5% in the Netherlands, and 11% in the United States tested positive for the zoonotic
genotype 3 HEV RNA. Importantly, the contaminating virus in the commercial pig livers
remains fully infectious, and cooking the contaminated meat at a temperature similar to a
medium-to-rare cooking condition in restaurants did not completely inactivate the virus.
Approximately 6% of the sausages sampled at processing and at the point of sale in Spain were
also positive for the zoonotic genotype 3 HEV RNA. Sporadic and cluster cases of acute
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hepatitis E have been linked to the consumption of contaminated raw or undercooked animal
meats. In Japan, consumption of wild boar meat, grilled pig entrails, and raw deer meats has
been definitively linked to cases of hepatitis E [25]. In France, consumption of pig liver sau-
sages (Figatelli) has been definitively linked to cases of hepatitis E as well [26], and approxi-
mately 30% of Figatelli in France tested positive for genotype 3 HEV RNA [27]. Consumption
of camel-derived food products (meat and milk) was incriminated for post-transplantation
hepatitis E as a camel HEV was identified from the patient [28]. The dissemination of HEV
through pork production chains and its associated risk of food-borne transmission are of sig-
nificant concern. The fact that cases of chronic hepatitis E in immunocompromised individuals
are exclusively caused by the zoonotic genotypes 3 and 4, presumably acquired from contami-
nated meat, underscores the importance of food-borne HEV transmission.

Perspectives
HEV is an extremely understudied but important human pathogen. Significant progress in
HEV research has been made in the past decade, but many important questions remain. The
life cycle of HEV is still largely unknown. Identification of a specific cellular receptor for HEV
will potentially help establish a more efficient cell culture system for HEV propagation. The
ever-expanding host range and identification of new animal reservoirs pose a significant con-
cern for zoonotic HEV infection but also offer new opportunities for developing useful animal
models for HEV. The biology, ecology, natural history, and zoonotic potential of these novel
animal strains of HEV are still poorly understood. Food-borne cases of hepatitis E in humans
are increasingly reported and are likely underestimated in the medical community due to the
lack of FDA-approved standardized serological and molecular diagnostic assays for HEV.
Chronic hepatitis E associated with genotype 3 or 4 HEV infections has recently become an
important clinical problem in organ transplant recipients and other immunocompromised
individuals, thus prompting a need for developing effective anti-HEV drugs and vaccines. The
recombinant HEV commercial vaccine recently approved for use only in China appears to be
promising, but the efficacy of this vaccine and other experimental vaccines against the emerg-
ing genetically diversified zoonotic animal strains of HEV is unknown. Development of a vac-
cine against the zoonotic genotypes 3 and 4 swine HEV, which are highly prevalent in pigs
worldwide, would reduce cases of food-borne and zoonotic HEV infections in humans, even
though such a vaccine is not a priority for the global pork industry because swine HEV does
not cause an economically important pig disease. Such a vaccine would also be useful for high-
risk populations such as organ transplant recipients because the vast majority of the chronic
hepatitis E cases are caused by the zoonotic genotype 3.
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