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Abstract: In the present review we summarize the relationship between the amino acid, tryptophan, the neurotransmitter, 
serotonin, and the indole, melatonin, with the rhythms of sleep/wake and the immune response along with the possible 
connections between the alterations in these rhythms due to aging and the so-called “serotonin and melatonin defi ciency 
state.” The decrease associated with aging of the brain and circulating levels of serotonin and melatonin seemingly contributes 
to the alterations of both the sleep/wake cycle and the immune response that typically accompany old age. The supplemental 
administration of tryptophan, e.g. the inclusion of tryptophan-enriched food in the diet, might help to remediate these age-
related alterations due to its capacity of raise the serotonin and melatonin levels in the brain and blood. Herein, we also 
summarize a set of studies related to the potential role that tryptophan, and its derived product melatonin, may play in the 
restoration of the aged circadian rhythms of sleep/wake and immune response, taking the ringdove (Streptopelia risoria) as 
a suitable model.
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Introduction
Tryptophan is a polar, hydrophobic amino acid indispensable for protein synthesis. It is classifi ed as an 
“essential” amino acid, i.e. it cannot be synthesized by the human organism and must therefore be 
ingested in the diet. Once tryptophan is consumed, it is readily absorbed into the capillaries in the 
intestinal wall. A small amount of the amino acid remains free while the majority of it (roughly 80%–90%) 
is transported bound to albumin through the blood and into the brain. This transport may be altered by 
the competition exerted by other free, neutral amino acids of high molecular weight, branched-chain 
amino acids, including valine, leucine and isoleucine, as well as phenylalanine and tyrosine, which bind 
to the same transporters.1,2

The metabolism of tryptophan is complex. It is involved in a variety of metabolic pathways and 
requires a suitable quantity of biopterin, magnesium or vitamin B6, which is involved in the conversion 
of the amino acid into serotonin and in the metabolism of other by-products, such as kynurenine. The 
main precursor of tryptophan is the anthralinic acid or anthranilate, a compound that after a series of 
chemical reactions is transformed into indole-3-glycerolphosphate. The enzyme tryptophan synthase 
converts this latter compound into glyceraldehyde 3-phosphate in a two-step reaction with the interme-
diary indole bound to the active site of the enzyme and with the intervention of serine (Fig. 1). The 
contribution of tryptophan to energetic metabolism is double since on one hand it is ketogenic, i.e. it 
forms acetyl coenzyme A, and on the other it is glucogenic, as it produces alanine.3

Tryptophan is transported to the liver where it is metabolized. Thereafter, in consecutive reactions 
it is transformed into nicotinic acid and other subproducts that either are stored or serve as a basis for 
important substances including quinolinate, picolinate or glutarate.4

The amino acid tryptophan is the precursor of several important products including serotonin or 
melatonin (Fig. 2). These molecules are biogenic amines of low molecular weight that belong to the 
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indole group. It has been observed that the synthesis 
of melatonin in the pineal gland diminishes with 
aging.5–7 This is believed to be due to degenerative 
changes in the neural structures (postganglionic 
neurons) innervating the pineal gland and central 
nervous system, rather than to the degeneration of 
the pineal tissue per se,8 as well as to a reduction 
in the quantity of the necessary precursor, 
serotonin.7,9,10 However, the number or sensitivity 
of melatonin receptors throughout the organism 
may decline with age as a result of the usual degen-
erative processes.11 The result is the development 
of the so-called “serotonin and melatonin defi -
ciency state.”12–14 This age-related state seemingly 
contributes to the alterations of both the sleep-wake 
cycle and the immune responsivity that character-
izes aging. Thus, the consumption of tryptophan 
as a pharmacological agent or as part of a diet rich 
in this amino acid may attenuate age-related 
changes in circadian organization, the immune 
system, sleep, and other disorders, due to its abil-
ity to elevate circulating levels of serotonin and 
melatonin.15–18

This review is constructed to provide a concise 
view of the effects of tryptophan, serotonin and 
melatonin on the sleep-wake cycle and the immune 
system responses, to identify possible links between 
the impairment of these rhythms and the reduction 
in serotonin and melatonin levels in the aging 
organism, and to illustrate the potential restorative 
role that tryptophan may play against the age-related 
afore-mentioned circadian alterations. Finally, we 
present the ring dove (Streptopelia risoria) as a 
suitable model for the study of the aged sleep-wake 
or activity-rest rhythms and immunosenescence 
and summarize the results obtained in this animal 
species in the circadian rhythm research fi eld over 
the last decade.

Tryptophan, Serotonin, Melatonin, 
and the Sleep-wake Cycle
The initiation of investigations related to the hyp-
notic effects that tryptophan exerts on the human 
sleep dates back to the 70s and 80s,19,20 when it 
was observed that this amino acid augmented the 
propensity to sleep. During this interval tryptophan 
was used as a successful therapeutic agent to com-
bat chronic insomnia.21 More recently, the con-
solidation properties of tryptophan for the 
sleep-wake rhythm of newborns have been tested. 
It has been shown that being fed with nutritionally 
dissociated milk formulas, i.e. a diurnal formula 
with low content of tryptophan and carbohydrates 
and a high amount of protein, supplemented 
with the nucleotides cytidine 5-monophosphate, 
guanosine 5-monophosphate and inosine 
5-monophosphate, and a nocturnal formula that 
contains high levels of tryptophan and carbohy-
drates, a low level of protein, with the nucleo-
tides adenosine 5-monophosphate and uridine 
5-monophosphate, improved the total hours of 
sleep, the effi ciency of sleep, the minutes of noctur-
nal immobility, and reduced both the number of 
nocturnal awakenings and the sleep latency of 
newborns.22,23 This is of special importance at a 
stage of life where an appropriate rest period is 
directly related to an optimal development of both 
the nervous and immune systems.

The fi rst studies showing a relationship between 
serotonin and sleep appeared in the middle of the 
50s. It was observed that reserpine, an antipsychotic, 
antihypertensive indole alkaloid dimin ished the 
concentration of serotonin in the brain and induced 
a sedative state analogous to sleep.24 It was also 
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reported that the parenteral injection of L-5-
hydroxytryptamine caused cortical synchronization 
and that inhibitors of the enzyme monoamine oxi-
dase selectively suppressed paradoxical sleep or 
REM for long periods of time that could persist for 
days or even weeks.25 Serotonin subsequently 
appeared as a key factor in understanding some of 
the mechanisms involved in the sleep-wake cycle. 
In fact, subsequent investigations documented that 
the destruction of the raphe nuclei, an area with an 
abundance of serotonin-containing neurons, by 
means of coagulation, produced insomnia for 
lengthy periods of time (10–15 days). Thus, a 
relationship among insomnia intensity, the magni-
tude of the injury in the raphe nuclei and the 
amount of brain serotonin that remained in the 
telencephalon after the degeneration of the sero-
toninergic terminals was established. Particularly, 
a correlation between the destruction of the rostral 
raphe and the slow-wake sleep and the telence-
phalic serotonin, which decreased, and between 
paradoxical sleep and damage to the nucleus raphe 
magnus was identifi ed.26,27 It was additionally 
pointed out that p-chlorophenylalanine inhibited 
the enzyme tryptophan hydroxylase, which in turn 
impaired the biosynthesis of serotonin and second-
arily led to states of total insomnia.28

These experiments led to the elaboration of the 
so-called “monoaminergic theory of sleep.” This 
established that serotonin, or somnotonin as it was 
named by Koella,29 was the neurotransmitter or 
“neurohormone” of sleep, since it produced sleep 
by the inhibition of the reticular formation and 
locus ceruleus, the putative centers of wakefulness. 
Conversely, catecholamines were found to be 
responsible for awakening. The demonstration, 
however, that the electric activity of serotoninergic 
neurons as well as the release of serotonin increased 
during wakefulness and decreased with sleep was 
seemingly in clear contradiction with the afore-
mentioned theory. In the late 80s, however, a 
relationship between the sleep/wake cycle and 
serotonin was again considered. More recent 
experiments suggest that during wakefulness, 
serotonin is responsible for initiating a cascade of 
post-synaptic genomic processes in hypnogenic 
neurons located in the pre-optic area.30 Through 
these processes, the release of the neurotransmitter 
during wakefulness leads to a homeostatic regula-
tion of slow wave sleep,30 also acting as a positive 
modulator of melatonin synthesis.31

Among the diverse physiological functions in 
which melatonin has been involved, its role as 
regulator of the sleep/wake rhythms has attracted 
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Figure 2. Pathways of indole metabolism in photosensitive pineal cells. Enzymes: AADA, aromatic L-amino acid decarboxylase; AA-NAT, 
aralkylamine N-acetyltransferase; DeAc, deacetylase; HIOMT, hydroxyindole-O-methyltransferase; MAO, monoamine oxidase; TPH, tryptophan 
hydroxylase. Indoles: N-acetyl-serotonin; 5-HIAA, 5-Hydroxyindoleacetic acid; 5-HTL, 5-hydroxytryptophol; 5-MIAA, 5-methoxyindole-3-acetic. 
Chemical structure of melatonin is shown at the bottom of the fi gure (taken from Paredes, 2007,178 modifi ed).
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the attention of a number of sleep researchers in 
the last decade. The discovery that melatonin was 
mainly secreted at night and the tight relationship 
between the nocturnal increase of endogenous 
melatonin and the existing co-ordination of sleep 
as well as the pro-somnogenic effects that the 
pineal indole seemingly possessed, led many inves-
tigators to suggest that melatonin was likely impli-
cated in the physiological regulation of sleep. With 
regard to this presumption, it was observed that 
the suppression of the production of melatonin 
using β-blockers correlated with insomnia,32–34 
while the increase of the plasma levels of melato-
nin by reducing the activity of the enzymes that 
metabolize the indole in the liver resulted in an 
augmentation of the somnolence state.35

It was reported that during the wake period 
immediately prior to sleep, known as the wake-
maintenance zone or “forbidden zone” for sleep,36 
the propensity for sleep is reduced to a minimum 
and, at the same time, the activity of the neurons 
of the central nervous system is elevated.37,38 Thus, 
the transition from the wake stage to a period of 
high propensity for sleep coincides with the noc-
turnal elevation of the endogenous rhythm of 
melatonin.39 This increase seems to be temporally 
related to the opening of the so-called sleep 
gate.40,41

Taking into account the relationship between 
the endogenous secretion of melatonin and the 
opening of the entry into nocturnal sleep, it has 
been proposed that the role of the pineal indole 
does not involve an active induction of sleep, rather 
it consists of the inhibition of the mechanisms 
that generate the circadian period of wakefulness,42 
presumably through the MT1 melatonin receptor43,44 
and GABAergic activation45,46 at the central 
nervous system level.

Regarding the effects of the exogenous admin-
istration of melatonin on sleep and the circadian 
clock, there are a number of studies reporting that 
diurnal treatment with the indole produces drowsi-
ness,47–51 as well as raising the circulating levels of 
melatonin to values normally observed at night.52

For these reasons, melatonin, through its actions 
in the central nervous system, is seemingly a cru-
cial substance for the co-ordination of the circadian 
mechanism of sleep. However, the recent discovery 
of melatonin receptors in other brain areas such 
as the hippocampus53 makes necessary further 
investigation to elucidate the exact role of melato-
nin on sleep in the different brain structures. 

Moreover, considering the rather high levels of 
melatonin in certain plant foodstuffs (Table 1),54 the 
consumption of melatonin through the diet may have 
signifi cant benefi ts to human and animal health.

Tryptophan, Serotonin, Melatonin, 
and the Immune System
The concentration of the amino acid tryptophan is 
lower in psychologically depressed patients with 
respect to control individuals.55 This consequently 
produces a decrease in the levels of serotonin, a 
neurotransmitter that has frequently been impli-
cated in depressive syndromes.56 Moreover, it has 
been observed that when depressive disorders 
appear, they are accompanied by an infl ammatory 
response involving the immune system, which is 
inversely proportional to the concentration of 
tryptophan in plasma.57 This is also negatively 
correlated to the number of leukocytes and other 
components of the immune system including inter-
leukin 6 (IL-6) and IL-8.58 It has been reported that 
individuals with sleep disturbances experience the 
same symptoms as patients suffering from depres-
sion, i.e. a diminution of the tryptophan levels in 
plasma and an augmentation of both IL-6 and IL-8, 
compared to healthy individuals.56,57 They also 
experience a decrease in the levels of IL-2.59 On 
the other hand, when interruption of sleep for 
5 hours during the nocturnal period occurs, the 
levels of IL-1 and IL-2 are elevated. When som-
nolence is produced in excess, IL-6 and tumor 
necrosis factor α (TNF-α) are elevated,60 with a 
subsequent rise in the number of monocytes and 
neutorphils.61

Regarding the effect that the amino acid exerts 
on the phagocytic function, recent studies suggest 
an enhancement of phagocytosis after the oral 
administration of tryptophan. Particularly, it has 
been observed that administering the amino acid 
to rats causes incremental changes in circulating 
levels of melatonin as well as stimulating the 
antigenic capacity of ingestion of peritoneal mac-
rophages obtained during the nocturnal period.15,62 
An elevation of the phagocytic capacity at night 
has also been observed in otherwise untreated rats 
and mice.63–66 This suggests that the activation of 
the innate immune response after tryptophan con-
sumption may be due to its conversion into the 
pineal indole. In fact, it has been shown that mac-
rophages obtained from the peritoneal cavity of 
normal rats when incubated with tryptophan show 
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Table 1. Levels of melatonin in representative common vegetables and fruits measured using different methods 
by Dubbels et al.175 (1), Hattori et al.176 (2), and Badria177 (3).

Common name Scientifi c name Melatonin (1)a Melatonin (2)b Melatonin (3)c

Apple Malus domestica – 47.6 ± 3.1 16.1
Asparagus Asparagus offi cinalis – 9.5 ± 3.2 –
Banana Musa ensete – – 65.5
Banana Musa sapientum 46.6 – –
Beetroot Beta vulgaris 0.2 – –
Cabbage Brassica oleracea var. capitata – 107.4 ± 7.3 30.9
Carrot Daucus carota – 55.3 ± 11.9 49.4
Corn Zea mays – 1366.1 ± 465.1 187.8
Cucumber Cucumis sativus 8.6 24.6 ± 3.5 59.2
Garlic Allium sativum – – 58.7
Ginger Zingiber offi cinale – 583.7 ± 50.3 142.3
Kiwi fruit Actinidia chinensis – 24.4 ± 1.7 –
Onion Allium cepa – 31.5 ± 4.8 29.9
Pineapple Ananas comosus – 36.2 ± 8.4 27.8
Pomegranate Punica granatum – – 16.8
Radish Raphanus sativus – – 75.8
Rice Oryza sativa – 1006.0 ± 58.5 149.8
Strawberry Fragaria magna – 12.4 ± 3.1 13.6
Tomato Lycopersicon esculentum 50.6 32.2 ± 2.4 –
Tomato Lycopersicon pimpinellifolium 11.2 – 30.2
ang/100 g edible plant material (without peel). Levels measured by RIA and HPLC-MS. bpg/g tissue. Levels quantifi ed by RIA. cng/100 g. 
Levels measured by GC/MS analysis.

an increase in arylalkylamine N-acetyltransferase 
activity which corresponds to a rise in melatonin 
production.67 Nevertheless, tryptophan is also the 
precursor of serotonin, a compound that may also 
play a role in the function of the innate immune 
system. Owing to the fact that receptors for 
serotonin exist in leukocytes and a transporter for 
this amine has been found in macrophages, mono-
nuclear leukocytes, and B cells, this neurotransmit-
ter may be a critical element for the connection 
between the nervous and immune systems.68,69 
Some studies have shown that serotonin may also 
possess an antioxidative role.70–72 Serotonin has 
also been reported to inhibit leukocyte phagocy-
tosis,73,74 especially when the concentrations of 
neurotransmitter used are in the pharmacological 
range.71 Since circadian variations of serotonin in 
plasma and different brain regions have been 
observed,75 this may somehow influence the 
circadian daily variations of the immune system.

A substantial body of research has defined 
melatonin as a remarkable molecule with pleiotropic 
effects both of an endocrine and a non-endocrine 
nature on the immune system.76–78 The abolition 
of the daily rhythm of melatonin via either surgical 
or functional pinealectomy has been shown to 
directly correlate to weight loss of the thymus as 
well as to the abnormal involution of this immune 
organ; this is also accompanied by a depletion of 
lymphoblasts and an almost total absence of lym-
phocytes.79 A reduction in the size of lymph nodes 
associated with follicular loss in the outer cortex80 
together with an alteration of the activities of thy-
mic polyamine biosynthetic amines have also been 
noted.81–83 Other immune organs such as the spleen 
or the bursa of Fabricius in birds are impaired 
following pinealectomy. In this respect, Brainard 
et al.79showed a lack of evident germinal centers 
and an apparent inactivity of the red pulp in the 
Syrian hamster spleen, while Jankovic et al.84 
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found a delayed development not only in the bursa 
but also in the thymus and spleen of pinealecto-
mized chicks. The absence of the pineal gland has 
also been reported to signifi cantly reduce IL-2 
production and NK activity85,86 and decrease the 
cellular and humoral immune response of both 
mammals and birds.87–90 When melatonin is admin-
istered to pinealectomized animals, the effects on 
immune system are typically reversed.

In vivo models have shown melatonin to be 
considered as a positive regulator of immune 
responses. The administration of melatonin results 
in the enhancement of antigen presentation by 
splenic macrophages in major histocompatibility 
complex II, IL-1 and TNF-α production,91 the 
increase in the generation of thymosin α1 through 
a rise in prothymosin α gene expression 92 as well 
as the production of IL-10.93 In mice, treatment 
with melatonin also upregulates macrophage-
colony stimulating factor, TNF-α, transforming 
growth factor β and stem cell factor gene expression 
in peritoneal macrophages and the levels of IL-1β, 
interferon γ, macrophage-colony stimulating factor, 
TNF-α and stem cell factor in splenocytes.94

The pineal indole also possesses potential 
positive effects on several immune system pathol-
ogies including acute and chronic infl ammation95,96 
and syndromes provoked by certain viruses such 
as the encephalomyocarditis virus,97 lethal Semliki 
Forest virus and the attenuated non-invasive West 
Nile virus98 as well as the Venezuelan equine 
encephalomyelitis virus.99–101

The Serotonin and Melatonin
Defi ciency State Due to Ageing: 
Effects and Consequences
on the Sleep/wake Cycle
and the Immune System
Aging is associated with a reduction in the size of 
the brain. These changes are generally attributed 
to a loss of neurons in specifi c layers and regions 
of the brain, although there exists considerable 
interindividual variation.102 The loss of neurons 
has been shown to occur in the locus ceruleus, the 
main source of catecholaminergic neurons, and in 
the substantia nigra, where dopaminergic neurons 
are most abundant. This may contribute to age-
related changes in homeostasis, sleep alterations, 
stability, movement, and cognitive function.103 
Alterations tend to affect the myelinated axons (the 
white matter) at a much greater degree when 

compared to the neuron cell bodies in the grey 
matter.104 Aging has also been proposed to modify 
the permeability of the blood-brain barrier, which 
may have consequences in terms of porosity of this 
structure to different drugs or molecules and to 
cause a decline in the brain metabolism and blood 
fl ow.105

Neurotransmitter functions of serotonin are 
widely distributed in the central nervous system 
and are related to the regulation of a variety of 
behaviors. Serotonin is seemingly involved in the 
regulation of humor, anxiety, sleep, appetite, 
sexual function, brain blood fl ow and many other 
functions. The serotoninergic neurons are located 
in the raphe nuclei of the brain stem and their axons 
project to all brain areas, including the cerebral 
cortex, thalamus, the limbic system and the hypo-
thalamus. In regard to this, any change in the 
number of serotonin receptors or in the endogenous 
levels of the neurotransmitter due to aging may 
have consequences on behaviour or cognitive func-
tion. Diverse studies have shown that alterations 
in serotinergic neurotransmission cause age-related 
alterations. Particularly, a reduction in the density 
of the serotonin type 2 receptor (5HT2A) has been 
described.106

The injection of altanserin, a high affi nity ligand 
to 5HT2A receptor union sites, to young and old 
subjects showed that the specifi c union for this 
receptor was signifi cantly reduced in old individu-
als compared to the young, as well as the number 
of receptors, whose loss was marked in certain 
brain regions.106 Since many antidepressant drugs 
typically relieve the symptoms of depression by 
blocking serotonin reuptake in order to facilitate 
an increase in serotonin activity, it is speculated 
that the high incidence of depression in the elderly 
may be attributed to the reduction in serotonin 
receptors. Moreover, it has been reported that 
serotonin receptors and transporters are less sensi-
tive to hormone regulation, which responds to the 
defi ciency associated to aging of the regulation of 
the hippocampal serotoningeric system exerted by 
corticosterone.107 This suggests that the age-related 
changes in the neurochemistry of serotonin may 
be a cause of the increased rates of depression and 
hypercortisolemia observed in the aged popula-
tions. In parallel, serotonin is known to increase 
the quality of slow wave sleep,30 as well as being 
a waking neurotransmitter.108 In addition, the close 
relationship between serotonergic activity and the 
adjustments of circadian phase has suggested that 



29

Tryptophan, sleep-wake cycle, and immune function

International Journal of  Tryptophan Research 2009:2 

serotonin also plays a role in the endogenous 
regulation of the circadian clock.109 These fi ndings 
point to the participation of serotonin neurotrans-
mission in the behavioral alterations commonly 
observed in aged individuals and may have poten-
tial therapeutic implications.

Blood melatonin levels show a clear circadian 
rhythm, with low levels during the day and high 
values at night, with these values being 10/15-fold 
greater that those measured in the diurnal 
period.110,111 In humans, the indole has been shown 
to gradually decrease during the increased life 
span, with the day/night rhythm being practically 
absent in individuals over 65-yr old (Fig. 3).112 
This observation has also been reported when 
melatonin levels in young and old rats, gerbils, 
hamsters or ringdoves are compared.113,114 It is 
believed that the amplitude of the nocturnal mela-
tonin rhythm is genetically determined as it shows 
important interindividual differences,115 even 
though in a given individual it exhibits a high 
degree of fi delity over time.116 Hence, some sub-
jects produce signifi cantly less melatonin in their 
life than others, which may be of importance for 
aging.13

Aging is a crucial factor in terms of sleep char-
acteristics. The structure, depth, and continuity of 
sleep tend to change over the life span.117 Some 
reports have shown that more than a third of the 
elderly experience recurrent diffi culty to maintain 
sleep118 due to impairment in both the quality and 

the quantity of sleep.119 Sleep onset latency usually 
increases together with the number and duration of 
awakenings, while sleep stability declines, and sleep 
consolidation is altered.117 It is therefore not surpris-
ing that the information provided by epidemiologic 
studies reveals that up to 40% of individuals over 
65-yr old complain about sleep problems and 
12%–25% suffer from persistent insomnia.120 The 
number of elderly people that have been prescribed 
sleep drugs or that use aids to facilitate nocturnal 
rest is estimated to be around 14%.121

Aging also causes alterations in the amplitude 
of the sleep/wake circadian rhythm.122 The tempo-
ral organization of sleep is impaired and the regu-
latory mechanisms of the sleep processes are 
attenuated.123 Several reasons suggested for these 
age-related changes are a reduction in the number 
of pinealocytes, changes in retina and in the supra-
chiasmatic nuclei or alterations in melatonin secre-
tion.124

The effectiveness of the immune system 
decreases during aging. The lymphoid tissues of 
the spleen, bone marrow and thymus are progres-
sively lost; this increases the incidence of infec-
tions, autoimmune diseases and cancer.125 With 
advancing age, the number and proliferative 
capacity in response to mitogen-stimulation of the 
diverse subpopulations of T-lymphocytes is 
reduced126,127 while apoptosis is elevated.128 More-
over, the synthesis and secretion of immunoglobu-
lins is delayed, presumably due to a lack of 
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appropriate levels of cytokines;129 this decreases 
the competence of antibodies in immunization 
against infectious agents.130 Antigen-presenting 
cells or accessory cells and phagocytes experience 
an age-related rise in the oxidative state,131 result-
ing in a reduced capability to adapt to environmen-
tal stress and in a reduction of the phagocytic 
parameters.114

It is known that the pineal gland infl uences the 
function of the neuroendocrine system and the 
effi cacy of the immune system to recognize and 
react to any endogenous or exogenous factor.132 For 
this reason, it has been suggested that aging is a 
result of the deterioration of this key factor of the 
pineal gland due to a defi cient melatonin secretion 
and a decline in the melatonin/serotonin ratio. This 
may impair several aspects of an individual’s neu-
rophysiology.48 It has been observed that early 
extirpation of the pineal gland produces substantial 
accumulations of lipid peroxidation products, 
oxidized DNA, reduced fl uidity of cell membranes 
and elevated protein damage in many organs.133 
These changes are a consequence of the loss of the 
endogenous melatonin rhythm. Impairment in 
melatonin synthesis is thought to likely play a role 
in the aging process since this indole participates 
in vital defence mechanisms including free radical 
scavenging and indirect antioxidative actions.134,135 
Thus, melatonin is estimated to be responsible for 
the scavenging of ten or more reactive damaging 
agents.136 Furthermore, its initial, secondary, 
tertiary and quaternary derivatives are all potent 
scavengers that, together with melatonin, form a 
remarkable cascade of reactions referred to as 
melatonin’s antioxidative cascade.136,137 The 
detoxifi cation of radical and radical products by 
melatonin and its derivatives are receptor-
independent actions and only require that the scav-
enger be at the site where the radical product is 
generated.138 This is essential since highly reactive 
agents mediate damage in the immediate vicinity 
of where they are produced, i.e. the damage is site 
specifi c.138 Melatonin also has receptor-mediated 
actions which adds to the capability of this molecule 
in eradicating radicals and reducing oxidative 
stress.139,140 Thus, melatonin stimulates a number 
of antioxidative enzymes which metabolize reactive 
products to innocuous agents. The enzymes whose 
activities have been shown to be promoted by 
melatonin include both Cu/Zn and Mn superoxide 
dismutases, glutathione peroxidases and glutathi-
one reductase.139,141,142 The effects of melatonin on 

the activities of the antioxidative enzymes are likely 
receptor-mediated and involve receptors on the 
plasma membrane and also presumably receptors/
binding sites in the nucleus.140

The effi ciency of sleep is also reduced as a result 
of low circulating levels of the pineal indole. These 
phenomena typically accompany advancing age. 
Melatonin may thus protect against the oxidation 
of essential molecules,143,144 which appear 
in signifi cant numbers in aged organisms,145 and 
resist neurodegenerative disorders associated 
with the impairment produced in particular brain 
areas by free radicals.146 In fact, melatonin may 
possess benefits in Parkinson and Alzheimer 
diseases.147,148

Pinealectomy is believed to accelerate the aging 
process, causing high blood pressure, elevated 
alkaline phosphatase activity, modifi cation in the 
synthesis of prostaglandins, and induction of  REM. 
These alterations are seemingly counteracted by 
the administration of melatonin.149 Many studies 
support the idea that melatonin may be considered 
as an anti-aging and rejuvenating product. The 
evidence accumulated to date supports the hypoth-
esis that the supplemental treatment with melatonin 
may be of benefi t during aging.150,151

The Potential Restorative Role
of Tryptophan of the Impaired
in the Sleep/wake Cycle
and Immune System that
Accompany Aging: Streptopelia
Risoria as a model
The ringdove (Sterptopelia risoria) is a species 
characterized by being diurnal and monophasic 
with sleep-wake cycles similar to those of human 
beings and, therefore, it represents a good model 
to investigate impairments in the circadian system 
due to age, including immune alterations.

The fi rst study performed in the ringdove that 
showed a relationship between the pineal gland, 
melatonin and the immune system was that of 
Rodríguez and Lea.87 Pinealectomy produced a 
signifi cant increase in the number of total white 
blood cells and total protein concentration in plasma 
in addition to altering different stages of the phago-
cytic process. Also, during an immunization study, 
a reduction in the percentage of leukocytes and 
lymphocytes and an increase in the percentage of 
heterophils accompanied by a rise in the concentra-
tion of serum corticosterone were observed 3 hr 
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following treatment. For the immunological 
parameters, adherence capacity and latex bead 
ingestion were increased 3 hr after normal sleep 
serum injection and the nitroblue tetrazolium reduc-
tion test 3 and 24 hr after normal sleep serum treat-
ment. In addition, the administration of normal sleep 
serum produced a signifi cant increase in serum 
T3 and T4 concentrations 4 days following injec-
tion. These results indicate that the loss of melato-
nin due to pinealectomy has a marked effect on both 
the number and function of immune cells.

In reference to in vivo experiments with mela-
tonin, a correlation between the circadian rhythm 
of the indole, phagocytosis, and superoxide anion 
levels has been reported.152 Thus, the elevated 
melatonin serum levels during the dark period 
coincide with an enhanced phagocytosis of inert 
particles and lower superoxide anion levels derived 
from the immune system. These effects where 
reinforced when the animals received melatonin 
orally, which also elevated circulating levels of the 
indole.153,154 Similar results were observed when 
the phagocytosed particle was a living organism 
(Candida albicans) with the effect being dose-
dependent.153,155 In vitro experiments have reported 
similar results, with the chemoattractant ability for 
heterophils being signifi cantly enhanced by the 
pineal indole156 as well as an augmentation of the 
phagocytic function and a decline in the free radical 
production.65 Melatonin also decreased the super-
oxide dismutase activity (an indicator of the meta-
bolic burst) in heterophils after the ingestion of 
latex beads.157

The concentration of malonaldehyde in cells is 
an index of induced oxidative damage to membrane 
lipids. The co-incubation of a heterophil suspen-
sion with or without inert particles (latex beads), 
as material to be phagocytosed, in combination 
with melatonin has been shown to clearly reduce 
the production of malonaldehyde. The enhance-
ment of malonaldehyde levels produced by latex 
beads was also annulled in the samples incubated 
with melatonin.158

In stressful situations, an alteration in the 
endogenous circadian rhythm of melatonin in the 
ringdove has been described.159 This has also been 
reported in mammals, where a decreased MESOR 
and amplitude of the melatonin rhythm, and a 
signifi cantly elevated MESOR of the corticoste-
rone rhythm have been observed.66,160

Streptopelia risoria also experiences a “sero-
tonin and melatonin deficiency state” during 

aging;7,10 this is associated with increased nocturnal 
activity and depressed immune function.7,154,161,162 
Under these conditions, orally administered mela-
tonin has been reported to improve nocturnal rest 
not only in old ringdoves, but also in young 
birds.161,162 This is likely to be a result of a decrease 
in the core temperature and an increase in the 
peripheral temperature observed after the oral 
administration of the indole in this species.162 Thus, 
melatonin may be used to palliate the reduction in 
the thermoregulatory responses and the capacity 
for thermal comfort reported in the elderly.163 This 
is of importance since sleep disorders are believed 
to be caused, at least partly, by changes in the cir-
cadian rhythms of temperature and melatonin.164

The oral administration of the indole restores 
some of the changes that aging produces in the 
innate immune response, with an enhancement in 
the phagocytic processes and a decrease in the 
production of free radicals, refl ecting the scavenging 
properties of melatonin; this is most probably due 
to the restoration of the nocturnal rise of circulating 
melatonin due to its administration.153,154,161,165 
This hypothesis is corroborated by previous fi nd-
ings showing that the incubation of ringdove het-
erophils obtained from old animals with the 
physiological concentrations of serum melatonin 
typical of young and mature birds induced a dose-
dependent rise in both the phagocytic index and 
the candidicide capacity, together with a decline 
in superoxide anion levels.166 Furthermore, the 
incubation of old heterophils with the physiologi-
cal concentrations of melatonin characteristic of 
young animals (50 and 300 pg/ml, diurnal and 
nocturnal, respectively) counteracted the enhance-
ment of malonaldehyde levels caused by latex 
beads, with the effect being greater at the longer 
incubation time tested.167

Once the potential role of the pineal indole to 
reverse the age-related alteration in the activity/rest 
rhythms and immune impairment in the ringdove 
was documented, the next step was to test whether 
tryptophan, the precursor of melatonin and also of 
the neurotransmitter serotonin would have similar 
effects. Tryptophan administered in the diet is known 
to increase the availability of serotonin in the brain, 
improve the EEG delta potential, and elevate the 
amount of NREM.168 It has also been observed in 
mammals that orally ingested tryptophan increases 
brain levels of serotonin during the day and the 
circulating levels of melatonin during the immedi-
ately subsequent night.62 Likewise, tryptophan 
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administration raised the circulating levels of both 
serotonin and melatonin in rats.15,18 In sexually 
immature ringdoves, the administration of the 
amino acid increased nocturnal rest, which seem-
ingly correlated with the augmented circulating 
levels of melatonin caused by tryptophan treat-
ment.169 Tryptophan signifi cantly increases the 
hippocampal, striatal, and hypothalamic serotonin 
contents,10 and reduces the expression of c-fos in 
the suprachiasmatic nucleus.170 C-fos levels are 
high in several cerebral regions during spontaneous 
waking or sleep deprivation and fall after a few 
hours of sleep.171

In old ringdoves, the treatment with 300 mg of 
tryptophan per kg b.w. reduces nocturnal activity 
without affecting their diurnal activity, an effect 
accompanied by a general increase of serum sero-
tonin levels16 This increase of serum serotonin 
indicates a higher availability of tryptophan which, 
after passing the blood–brain barrier, would be 
converted into serotonin.10,15,18,31,62 The elevated 
serotonin in the pineal gland serves as a substrate 
for melatonin synthesis, and increases in the levels 
of this molecule would reduce nocturnal activity 
of old ringdoves,16 improving their aging-impaired 
nocturnal rest.7 Tryptophan administered at the 
same dose and time also provoked an improvement 
of the circadian rhythm of temperature in this 
species.162

Regarding the innate immune response in old 
birds, treatment with tryptophan produced a sig-
nifi cant diurnal and nocturnal augmentation in 
phagocytic parameters; the values reached during 
the night were signifi cantly higher that those mea-
sured during the day.17 This is consistent with 
earlier findings demonstrating that giving the 
amino acid to mammals15,62 or birds,172 or melato-
nin itself to these species14,154,165,173,174 has a general 
immuno-enhancing effect. Moreover, a reduced 
production of superoxide anion radicals in old 
ringdoves was observed after tryptophan treat-
ment.17 This change was presumably due to the 
rise of the circulating serum levels of melatonin 
produced by the exogenous administration of its 
precursor.16,17 This indicates that rising serum 
levels of melatonin are accompanied by a decline 
in the levels of superoxide anion radicals produced 
by heterophils, as reported previously. Also, tryp-
tophan signifi cantly limits the reduction in cell 
viability of heterophils exposed to hydrogen per-
oxide.17 A similar effect was obtained when the 
cells are incubated with melatonin.154 Furthermore, 

both the oral administration of the amino acid and 
the indole lowered cytokine levels in aged 
birds.162

Concluding Remarks
A variety of studies on serotonin neurotransmission 
indicate that, as a consequence of aging, a reduc-
tion in the density of serotonin receptors and 
marked disturbance in the 5-hydroxindole acetic/
serotonin turnover and in the responses of the 
receptors/transporters to the hormonal regulation 
occur.106,107 Many of these alterations result in a 
decreased serotonin binding. Furthermore, the 
production of melatonin suffers a dramatic decline 
with age.13 These neurochemical changes may 
have etiologic implications in the altered behavior 
observed in old individuals and an underlying 
cause of several geriatric conditions, including the 
impaired sleep/wake cycle and immunosenes-
cence. The evidence obtained in the ringdove and 
other animal models suggests that the supplemen-
tal administration of tryptophan, e.g. the inclusion 
of tryptophan-enriched food in the diet, might help 
to remediate the reduction in serotonin and mela-
tonin that normally occurs as animals age, and be 
consequently benefi cial in the treatment of sleep 
problems and alterations in the innate immune 
response.

Acknowledgements
This investigation was supported by a research 
grant from Consejería de Infraestructuras y 
Desarrollo Tecnológico (Junta de Extremadura, 
3PR05A053). S.D. Paredes was the benefi ciary of 
a grant from Consejería de Economía, Comercio 
e Innovación—Fondo Social Europeo (Junta de 
Extremadura, POS07012).

Disclosure
The authors report no confl icts of interest.

References
 1. Steinberg LA, O’Connell NC, Hatch TF, et al. Tryptophan intake infl u-

ences infants’ sleep latency. J Nutr. 1992;122:1781–91.
 2. Jansman AJM, Kemp GWP, van Cauwenberghe S. Effect of the level 

of branch chain amino acids (BCAA) and tryptophan in the diet of 
performance of piglets. In: Book of Abstracts of the 51st EAAP 
congress, The Hague, The Nethelands. 2000. p. 396.

 3. Gómez G, Llorca R. Aminoácidos. Biopsicología. 2000;3:548–76.
 4. Cooper JR, Bloom FE, Roth RH. The biochemical basis of neurophar-

macology 6th ed. New York: Oxford University Press: 1991.



33

Tryptophan, sleep-wake cycle, and immune function

International Journal of  Tryptophan Research 2009:2 

 5. Reiter RJ, Richardson BA, Johnson LY, et al. Pineal melatonin rhythm: 
reduction in aging Syrian hamsters. Science. 1980;210:1372–3.

 6. Reiter RJ, Craft CM, Johnson JE Jr, et al. Age-associated reduction in 
nocturnal melatonin levels in female rats. Endocrinology. 
1981;109:1295–7.

 7. Paredes SD, Terrón MP, Cubero J, et al. Comparative study of the 
activity/rest rhythms in young and old ringdove (Streptopelia risoria): 
correlation with serum levels of melatonin and serotonin. Chronobiol 
Int. 2006;23:779–93.

 8. Ruzsas C, Mess B. Melatonin and aging. A brief survey. Neuro 
Endocrinol Lett. 2000;21:17–23.

 9. Pietraszek MH, Urano T, Serizawa S, et al. Circadian rhythm of 
serotonin: infl uence of age. Thromb Res. 1990;60:253–7.

10. Garau C, Aparicio S, Rial RV, et al. Age-related changes in circadian 
rhythm of serotonin synthesis in ring doves: effects of increased 
tryptophan ingestion. Exp Gerontol. 2006a;41:40–8.

11. Zhdanova IV. Melatonin as a hypnotic: pro. Sleep Med Rev. 2005;9:51–65.
12. Wurtman RJ. Age-related decreases in melatonin secretion—clinical 

consequences. J Clin Endocrinol Metab. 2000;85:2135–6.
13. Karasek M, Reiter RJ. Melatonin and aging. Neuro Endocrinol Lett. 

2002;23 Suppl:14–16.
14. Paredes SD, Barriga C, Rodríguez AB. Melatonin and tryptophan as 

therapeutic agents against the impairment of the sleep-wake cycle and 
immunosenescence due to aging in Streptopelia risoria. Neuro 
Endocrinol Lett. 2007a;28:757–60.

15. Sánchez S, Paredes SD, Martín MI, et al. Effect of tryptophan 
administration on circulating levels of melatonin and phagocytic 
activity. J Appl Biomed. 2004;2:169–177.

16. Paredes SD, Terrón MP, Cubero J, et al. Tryptophan increases nocturnal 
rest and affects melatonin and serotonin serum levels in old ringdove. 
Physiol Behav. 2007b;90:576–82.

17. Paredes SD, Terrón MP, Marchena AM, et al. Tryptophan modulates 
cell viability, phagocytosis and oxidative metabolism in old ringdoves. 
Basic Clin Pharmacol Toxicol. 2007c;101:56–62.

18. Mateos SS, Sánchez CL, Paredes SD, et al. Circadian levels of seroto-
nina in plasma and brain after oral administration of tryptophan in rats. 
Basic Clin Pharmacol Toxicol. 2009;104:52–59.

19. Wyatt RJ, Engelman K, Kupfer DJ, et al. Effects of L-tryptophan 
(a natural sedative) on human sleep. Lancet. 1970;2:842–846.

20. Spinweber CL. L-tryptophan administered to chronic sleep-onset 
insomniacs: late-appearing reduction of sleep latency. Psychopharma-
cology (Berl). 1986;90:151–5.

21. Demisch K, Bauer J, Georgi K. Treatment of severe chronic insomnia 
with L-tryptophan and varying sleeping times. Pharmacopsychiatry. 
1987;20:245–8.

22. Cubero J, Narciso D, Aparicio S, et al. Improved circadian sleep-wake 
cycle in infants fed a day/night dissociated formula milk. Neuro 
Endocrinol Lett. 2006a;27:373–80.

23. Cubero J, Narciso D, Terrón P, et al. Chrononutrition applied to formula 
milks to consolidate infants’ sleep/wake cycle. Neuro Endocrinol Lett. 
2007;28:360–6.

24. Brodie BB, Pletscher A, Shore PA. Evidence that serotonin has a role 
in brain function. Science. 1955;122:968.

25. Jouvet M, Vimont P, Delorme F. [Elective suppression of paradoxal 
sleep in the cat by monoamine oxidase inhibitors]. C R Seances Soc 
Biol Fil. 1965;159:1595–9.

26. Dahlstroem A, Fuxe K. Evidence for the existence of monoamine-
containing neurons in the central nervous system I. Demonstration of 
monoamines in the cell bodies of brain stem neurons. Acta Physiol 
Scand Suppl. 1964;232:1–55.

27. Jouvet M. Biogenic amines and the states of sleep. Science. 
1969;163:32–41.

28. Koe BK, Weissman A. p-Chlorophenylalanine: a specifi c depletor of 
brain serotonin. J Pharmacol Exp Ther. 1966;154:499–516.

29. Koella WP. Serotonin and sleep. Exp Med Surg. 1969;27:157–68.
30. Jouvet M. Sleep and serotonin: an unfi nished story. Neuropsychophar-

macology. 1999;21:24S–7S.

31. Huether G, Poeggeler B, Adler L, et al. Effects of indirectly acting 5-HT 
receptor agonists on circulating melatonin levels in rats. Eur 
J Pharmacol. 1993;283:249–54.

32. Brismar K, Mogensen L, Wetterberg L. Depressed melatonin secretion 
in patients with nightmares due to beta-adrenoceptor blocking drugs. 
Acta Med Scand. 1987;221:155–8.

33. Brismar K, Hylander B, Eliasson K, et al. Melatonin secretion related 
to side-effects of beta-blockers from the central nervous system. Acta 
Med Scand. 1988;223:525–30.

34. Van Den Heuvel CJ, Reid KJ, Dawson D. Effect of atenolol on nocturnal 
sleep and temperature in young men: reversal by pharmacological doses 
of melatonin. Physiol Behav. 1997;61:795–802.

35. Hartter S, Wang X, Weigmann H, et al. Differential effects of 
fl uvoxamine and other antidepressants on the biotransformation of 
melatonin. J Clin Psychopharmacol. 2001;21:167–74.

36. Lavie P. Ultrashort sleep-waking schedule. III. ‘Gates’ and 
‘forbidden zones’ for sleep. Electroencephalogr Clin Neurophysiol. 
1986;63:414–25.

37. Buysse DJ, Nofzinger EA, Germain A, et al. Regional brain glucose 
metabolism during morning and evening wakefulness in humans: 
preliminary fi ndings. Sleep. 2004;27:1245–54.

38. Long MA, Jutras MJ, Connors BW, et al. Electrical synapses coordinate 
activity in the suprachiasmatic nucleus. Nat Neurosci. 2005;8:61–6.

39. Dijk DJ, Cajochen C. Melatonin and the circadian regulation of sleep 
initiation, consolidation, structure, and the sleep EEG. J Biol Rhythms. 
1997;12:627–35.

40. Tzischinsky O, Shlitner A, Lavie P. The association between the 
nocturnal sleep gate and nocturnal onset of urinary 6-sulfatoxymelatonin. 
J Biol Rhythms. 1993;8:199–209.

41. Shochat T, Luboshitzky R, Lavie P. Nocturnal melatonin onset is phase 
locked to the primary sleep gate. Am J Physiol. 1997;273:R364–70.

42. Lavie P. Melatonin: role in gating nocturnal rise in sleep propensity. 
J Biol Rhythms. 1997;12:657–65.

43. Liu C, Weaver DR, Jin X, et al. Molecular dissection of two distinct 
actions of melatonin on the suprachiasmatic circadian clock. Neuron. 
1997;19:91–102.

44. Hunt AE, Al-Ghoul WM, Gillette MU, et al. Activation of MT(2) 
melatonin receptors in rat suprachiasmatic nucleus phase advances the 
circadian clock. Am J Physiol Cell Physiol. 2001;280:C110–8.

45. Golombek DA, Pevet P, Cardinali DP. Melatonin effects on behavior: 
possible mediation by the central GABAergic system. Neurosci 
Biobehav Rev. 1996;20:403–12.

46. Tenn CC, Niles LP. The antidopaminergic action of S-20098 is mediated 
by benzodiazepine/GABA(A) receptors in the striatum. Brain Res. 
1997;756:293–6.

47. Waldhauser F, Saletu B, Trinchard-Lugan I. Sleep laboratory investiga-
tions on hypnotic properties of melatonin. Psychopharmacology (Berl). 
1990;100:222–6.

48. Grad BR, Rozencwaig R. The role of melatonin and serotonin in aging: 
update. Psychoneuroendocrinology. 1993;14:283–95.

49. Nave R, Peled R, Lavie P. Melatonin improves evening napping. Eur 
J Pharmacol. 1995;275:213–6.

50. Hughes RJ, Badia P. Sleep-promoting and hypothermic effects of 
daytime melatonin administration in humans. Sleep. 1997;20:
124–31.

51. Satomura T, Sakamoto T, Shirakawa S, et al. Hypnotic action of 
melatonin during daytime administration and its comparison with 
triazolam. Psychiatry Clin Neurosci. 2001;55:303–4.

52. Dollins AB, Zhdanova IV, Wurtman RJ, et al. Effect of inducing 
nocturnal serum melatonin concentrations in daytime on sleep, mood, 
body temperature, and performance. Proc Natl Acad Sci U S A. 
1994;91:1824–8.

53. Savaskan E, Ayoub MA, Ravid R, et al. Reduced hippocampal MT2 
melatonin receptor expression in Alzheimer’s disease. J Pineal Res. 
2005;38:10–16.

54. Paredes SD, Korkmaz A, Manchester LC, et al. Phytomelatonin: 
A review. J Exp Bot. 2009a;Doi: 10.1093/jxb/ern284.



34

Paredes et al

International Journal of  Tryptophan Research 2009:2 

55. Yatham LN, Liddle PF, Shiah IS, et al. Effects of rapid tryptophan 
depletion on brain 5-HT(2) receptors: a PET study. Br J Psychiatry. 
2001;178:448–53.

56. Maes M, Bosmans E, De Jongh R, et al. Increased serum IL-6 and 
IL-1 receptor antagonist concentrations in major depression and 
treatment resistant depression. Cytokine. 1997;9:853–8.

57. Song C, Lin A, Bonaccorso S, et al. The infl ammatory response system 
and the availability of plasma tryptophan in patients with primary sleep 
disorders and major depression. J Affect Disord. 1998;49:211–9.

58. Maes M, Lin A, Bosmans E, et al. Serotonin-immune interactions in 
detoxifi ed chronic alcoholic patients without apparent liver disease: 
activation of the infl ammatory response system and lower plasma total 
tryptophan. Psychiatry Res. 1998;78:151–61.

59. Uthgenannt D, Schoolmann D, Pietrowsky R, et al. Effects of sleep 
on the production of cytokines in humans. Psychosom Med. 
1995;57:97–104.

60. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Elevation of plasma 
cytokines in disorders of excessive daytime sleepiness: role of sleep 
disturbance and obesity. J Clin Endocrinol Metab. 1997;82:1313–6.

61. Dinges DF, Douglas SD, Zaugg L, et al. Leukocytosis and natural killer 
cell function parallel neurobehavioral fatigue induced by 64 hours of 
sleep deprivation. J Clin Invest. 1994;93:1930–9.

62. Esteban S, Nicolaus C, Garmundi A, et al. Effect of orally administered 
L-tryptophan on serotonin, melatonin, and the innate immune response 
in the rat. Mol Cell Biochem. 2004;267:39–46.

63. Barriga C, Martín MI, Tabla R, et al. Circadian rhythm of melatonin, 
corticosterone and phagocytosis: effect of stress. J Pineal Res. 
2001;30:180–7.

64. Barriga C, Martín MI, Ortega E, et al. Physiological concentrations of 
melatonin and corticosterone in stress and their relationship with 
phagocytic activity. J Neuroendocrinol. 2002a;14:691–5.

65. Rodríguez AB, Terrón MP, Duran J, et al. Physiological concentrations 
of melatonin and corticosterone affect phagocytosis and oxidative 
metabolism of ring dove heterophils. J Pineal Res. 2001;31:31–38.

66. Paredes SD, Sánchez S, Parvez H, et al. Altered circadian rhythms of 
corticosterone, melatonin, and phagocytic activity in response to stress 
in rats. Neuro Endocrinol Lett. 2007d;28:489–95.

67. Martins E Jr, Ferreira AC, Skorupa AL, et al. Tryptophan consumption 
and indoleamines production by peritoneal cavity macrophages. 
J Leukocyte Biol. 2004;75:1116–1121.

68. Mossner R, Lesch KP. Role of serotonin in the immune system and in 
neuroimmune interactions. Brain Behav Immun. 1998;12:249–71.

69. Hofstetter HH, Mossner R, Lesch KP, et al. Absence of reuptake of 
serotonin infl uences susceptibility to clinical autoimmune disease and 
neuroantigen-specifi c interferon-gamma production in mouse EAE. 
Clin Exp Immunol. 2005;142:39–44.

70. Schuff-Werner P, Splettstosser W, Schmidt F, et al. Serotonin acts as a 
radical scavenger and is oxidized to a dimer during the respiratory burst 
of human mononuclear and polymorphonuclear phagocytes. Eur J Clin 
Invest. 1995;25:477–84.

71. Schuff-Werner P, Splettstoesser W. Antioxidative properties of serotonin 
and the bactericidal function of polymorphonuclear phagocytes. 
Adv Exp Med Biol. 1999;467:321–5.

72. Betten A, Dahlgren C, Hermodsson S, et al. Serotonin protects NK 
cells against oxidatively induced functional inhibition and apoptosis. 
J Leukoc Biol. 2001;70:65–72.

73. Nannmark U, Sennerby L, Bjursten LM, et al. Inhibition of leukocyte 
phagocytosis by serotonin and its possible role in tumor cell destruction. 
Cancer Lett. 1992;62:83–6.

74. Salman-Tabcheh S, Guerin MC, Torreilles J. Potential role of the 
peroxidase-dependent metabolism of serotonin in lowering the 
polymorphonuclear leukocyte bactericidal function. Free Radic Res. 
1996;24:61–8.

75. Sánchez S, Sánchez C, Paredes SD, et al. Circadian variations of 
serotonin in plasma and different brain regions of rats. Mol Cell 
Biochem. 2008;317:105–111.

76. Carrillo-Vico A, Guerrero JM, Lardone PJ, et al. A review of the 
multiple actions of melatonin on the immune system. Endocrine. 
2005;27:189–200.

77. Carrillo-Vico A, Reiter RJ, Lardone PJ, et al. The modulatory role of 
melatonin on immune responsiveness. Curr Opin Investig Drugs. 
2006;7:423–31.

78. Berger J. A two-clock model of circadian timing in the immune system 
of mammals. Pathol Biol (Paris). 2008;56:286–91.

79. Brainard GC, Watson-Whitmeyer M, Knobler RL, et al. Neuroendocrine 
regulation of immune parameters. Photoperiod control of the spleen in 
Syrian hamsters. Ann N Y Acad Sci. 1988;540:704–6.

80. Maestroni GJ, Hertens E, Galli P, et al. Melatonin-induced T-helper 
cell hematopoietic cytokines resembling both interleukin-4 and 
dynorphin. J Pineal Res. 1996;21:131–9.

81. Scalabrino G, Ferioli ME, Nebuloni R, et al. Effects of pinealectomy 
on the circadian rhythms of the activities of polyamine biosynthetic 
decarboxylases and tyrosine adminotransferase in different organs of 
the rat. Endocrinology. 1979a;104:377–84.

82. Scalabrino G, Ferioli ME, Basagri M, et al. Endocrine regulation of 
thymic biosynthetic polyamine decarboxylases in adult rat. Am 
J Physiol. 1979b;237:E6–10.

83. Fraschini F, Ferioli ME, Nebuloni R, et al. Pineal gland and polyamines. 
J Neural Transm. 1980;48:209–21.

84. Jankovic BD, Knezevic Z, Kojic L, et al. Pineal gland and immune 
system. Immune functions in the chick embryo pinealectomized at 
96 hours of incubation. Ann N Y Acad Sci. 1994;719:398–409.

85. del Gobbo V, Libri V, Villani N, et al. Pinealectomy inhibits interleukin-2 
production and natural killer activity in mice. Int J Immunopharmacol. 
1989;11:567–73.

86. Libri V, Del Gobbo V, Villani N, et al. Infl uence of pineal gland lesion 
on interleukin-2 production and natural killer activity in C57BL/6 mice. 
Pharmacol Res. 1990;22 Suppl 3:52.

87. Rodríguez AB, Lea RW. Effect of pinealectomy upon the nonspecifi c 
immune response of the ring-dove (Streptopelia risoria). J Pineal Res. 
1994;16:159–66.

88. Yellon SM. Daily melatonin treatments regulate the circadian 
melatonin rhythm in the adult Djungarian hamster. J Biol Rhythms. 
1996;11:4–13.

89. Haldar C, Singh R, Guchhait P. Relationship between the annual 
rhythms in melatonin and immune system status in the tropical palm 
squirrel, Funambulus pennanti. Chronobiol Int. 2001;18:61–69.

90. Moore CB, Siopes TD, Steele CT, et al. Pineal melatonin secretion, but 
not ocular melatonin secretion, is suffi cient to maintain normal immune 
responses in Japanese quail (Coturnix coturnix japonica). Gen Comp 
Endocrinol. 2002;126:352–8.

91. Pioli C, Caroleo MC, Nistico G, et al. Melatonin increases antigen 
presentation and amplifi es specifi c and non specifi c signals for T-cell 
proliferation. Int J Immunopharmacol. 1993;15:463–8.

92. Molinero P, Soutto M, Benot S, et al. Melatonin is responsible for the 
nocturnal increase observed in serum and thymus of thymosin alpha1 
and thymulin concentrations: observations in rats and humans. 
J Neuroimmunol. 2000;103:180–8.

93. Raghavendra V, Singh V, Kulkarni SK, et al. Melatonin enhances Th2 
cell mediated immune responses: lack of sensitivity to reversal by 
naltrexone or benzodiazepine receptor antagonists. Mol Cell Biochem. 
2001;221:57–62.

94. Liu F, Ng TB, Fung MC. Pineal indoles stimulate the gene expression of 
immunomodulating cytokines. J Neural Transm. 2001;108:397–405.

95. Reiter RJ, Tan DX, Osuna C, et al. Actions of melatonin in the reduction 
of oxidative stress: A review. J Biomed Sci. 2000;7:444–58.

96. d’Emmanuele di Villa Bianca R, Marzocco S, Di Paola R, et al. 
Melatonin prevents lipopolysaccharide-induced hyporeactivity in rat. 
J Pineal Res. 2004;36:146–54.

97. Maestroni GJ, Conti A, Pierpaoli W. Role of the pineal gland in 
immunity. III. Melatonin antagonizes the immunosuppressive effect of acute 
stress via an opiatergic mechanism. Immunology. 1988;63:465–9.



35

Tryptophan, sleep-wake cycle, and immune function

International Journal of  Tryptophan Research 2009:2 

 98.  Ben-Nathan D, Maestroni GJ, Lustig S, et al. Protective effects of 
melatonin in mice infected with encephalitis viruses. Arch Virol. 
1995;140:223–30.

 99.  Bonilla E, Valero-Fuenmayor N, Pons H, et al. Melatonin protects 
mice infected with Venezuelan equine encephalomyelitis virus. Cell 
Mol Life Sci. 1997;53:430–34.

 100.  Bonilla E, Rodon C, Valero N, et al. Melatonin prolongs survival of 
immunodepressed mice infected with the Venezuelan equine enceph-
alomyelitis virus. Trans R Soc Trop Med Hyg. 2001;95:207–10.

 101.  Bonilla E, Valero N, Chacín-Bonilla L, et al. Melatonin increases 
interleukin-1beta and decreases tumor necrosis factor alpha in the 
brain of mice infected with the Venezuelan equine encephalomyelitis 
virus. Neurochem Res. 2003;28:681–6.

 102.  Timiras, P. Physiological basis of aging and geriatrics. 2nd ed. Boca 
Raton: CRC Press; 1994.

 103.  Reeves S, Bench C, Howard R. Ageing and the nigrostriatal 
dopaminergic system. Int J Geriatr Psychiatry. 2002;17:359–70.

 104.  Mrak RE, Griffi n ST, Graham DI. Aging-associated changes in human 
brain. J Neuropathol Exp Neurol. 1997;56:1269–75.

 105.  Mattson MP. Cellular and neurochemical aspects of aging human 
brain. In Hazzard WR, Blass JP, Ettinger WH, Halter JB, Ouslander 
JG, eds. Principles of geriatric medicine and gerontology. 5th ed. 
New York: McGraw-Hill. 1999;p 1193–1208.

 106.  Meltzer CC, Smith G, Price JC, et al. Reduced binding of 
[18F]altanserin to serotonin type 2A receptors in aging: persistence of 
effect after partial volume correction. Brain Res. 1998;813:167–71.

 107.  Maines LW, Keck BJ, Smith JE, et al. Corticosterone regulation of 
serotonin transporter and 5-HT1A receptor expression in the aging 
brain. Synapse. 1999;32:58–66.

 108. Ursin R. Serotonin and sleep. Sleep Med Rev. 2002;6:55–69.
 109.  Glass JD, DiNardo LA, Ehlen JC. Dorsal raphe nuclear stimulation 

of SCN serotonin and circadian phase-resetting. Brain Res. 
2000;859:224–32.

 110.  Arendt J. Melatonin and the mammalian pineal gland. London: 
Chapman and Hall; 1995.

 111.  Karasek M. Melatonin in humans—where we are 40 years after its 
discovery. Neuro Endocrinol Lett. 1999;20:179–88.

 112.  Karasek M, Reiter RJ, Cardinali DP, et al. Future of melatonin as a 
thera peutic agent. Neuro Endocrinol Lett. 2002;23(Suppl 1):118–121.

 113.  Myers BL, Badia P. Changes in circadian rhythms and sleep quality 
with aging: mechanisms and interventions. Neurosci Biobehav Rev. 
1995;19:553–71.

 114.  Rodríguez AB, Barriga C, Paredes SD, et al. Age, melatonin and the 
immune system. In Pandalai SG, ed. Recent Research Developments 
in Molecular and Cellular Biochemistry. Vol. 2, Part II. Trivandrum: 
Research Sign Post. 2005;p. 255–87.

 115.  Bergiannaki JD, Soldatos CR, Paparrigopoulos TJ, et al. Low and 
high melatonin excretors among healthy individuals. J Pineal Res. 
1995;18:159–64.

 116. Arendt J. Melatonin. Clin Endocrinol (Oxf). 1988;29:205–29.
 117.  Pandi-Perumal SR, Seils LK, Kayumov L, et al. Senescence, sleep, 

and circadian rhythms. Ageing Res Rev. 2002;1:559–604.
 118.  Foley DJ, Monjan AA, Brown SL, et al. Sleep complaints among 

elderly persons: an epidemiologic study of three communities. Sleep. 
1995;18:425–32.

 119.  Pandi-Perumal SR, Zisapel N, Srinivasan V, et al. Melatonin and 
sleep in aging population. Exp Gerontol. 2005;40:911–25.

 120.  Blanco M, Kriber N, Cardinali DP. [A survey of sleeping diffi culties 
in an urban Latin American population]. Rev Neurol. 2004;39: 
115–19.

 121.  Blanco M, Kriguer N, Lloret SP, et al. Attitudes towards treatment 
among patients suffering from sleep disorders. A Latin American 
survey. BMC Fam Pract. 2003;4:17.

 122.  Duffy JF, Czeisler CA. Age-related change in the relationship 
between circadian period, circadian phase, and diurnal preference 
in humans. Neurosci Lett. 2002;318:117–20.

 123.  Daan S, Beersma DG, Borbely AA. Timing of human sleep: recovery 
process gated by a circadian pacemaker. Am J Physiol. 1984;246:
R161–83.

 124.  Swaab DF, Dubelaar EJ, Hofman MA, et al. Brain aging and Alzheimer’s 
disease; use it or lose it. Prog Brain Res. 2002;138:343–73.

 125.  Ginaldi L, De Martinis M, D’Ostilio A, et al. The immune system 
in the elderly: I. Specific humoral immunity. Immunol Res. 
1999a;20:101–8.

 126.  Rea IM, Stewart M, Campbell P, et al. Changes in lymphocyte subsets, 
interleukin 2, and soluble interleukin 2 receptor in old and very old 
age. Gerontology. 1996;42:69–78.

 127.  Pawelec G. Immunosenescence: impact in the young as well as the 
old? Mech Ageing Dev. 1999;108:1–7.

 128.  McLeod JD. Apoptotic capability in ageing T cells. Mech Ageing 
Dev. 2000;121:151–9.

 129.  Richter M, Jodouin CA. The delay in the synthesis and secretion of 
immunoglobulins by the B cells of healthy ambulatory elderly is due 
to subtle defects in the null cells and the B cells. Aging Immunol 
Infect Dis. 1993;4:1–16.

 130.  Song H, Price PW, Cerny J. Age-related changes in antibody reper-
toire: contribution from T cells. Immunol Rev. 1997;160:55–62.

 131.  McArthur WP. Effect of aging on immunocompetent and infl amma-
tory cells. Periodontol. 2000. 1998;16:53–79.

 132.  Pierpaoli W, Lesnikov V. Theoretical considerations on the nature of 
the pineal ‘ageing clock.’ Gerontology. 1997;43:20–5.

 133.  Reiter RJ, Tan D, Kim SJ, et al. Augmentation of indices of oxidative 
damage in life-long melatonin-defi cient rats. Mech Ageing Dev. 
1999;110:157–73.

 134.  Reiter RJ. Melatonin: Lowering the high price of free radicals. News 
Physiol Sci. 2000a;15:246–250.

 135.  Reiter RJ. Melatonin and aging. In Mosley JE, Armbrecht HJ, Coe RM, 
Vellas B eds. The Science of Geriatrics. Vol I. New York: Springer. 
2000b;p. 232–333.

 136.  Tan DX, Manchester LC, Terron MP, et al. One molecule, many 
derivatives: a never-ending interaction of melatonin with reactive 
oxygen and reactive nitrogen species. J Pineal Res. 2007;42:28–42.

 137.  Tan DX, Reiter RJ, Manchester LC, et al. Chemical and physical 
properties and potential mechanisms: melatonin as a broad spectrum 
antioxidant and free radical scavenger. Curr Top Med Chem. 
2002;2:181–97.

 138.  Reiter RJ, Tan DX, Jou MJ, et al. Biogenic amines in the reduction 
of oxidative stress: Melatonin and its metabolites. Biogenic Amines. 
2008;22:1–15.

 139.  Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant 
enzymes: a signifi cant role for melatonin. J Pineal Res. 2004;36:1–9.

 140.  Tomas-Zapico C, Coto-Montes A. A proposed mechanism to explain 
the stimulatory effect of melatonin on antioxidative enzymes. J Pineal 
Res. 2005;39:99–104.

 141.  Pablos MI, Agapito MT, Guiterrez R, et al. Melatonin stimulates the 
activity of the detoxifying enzyme glutathione peroxidase in several 
tissues of chicks. J Pineal Res. 1995;19:111–5.

 142.  Barlow-Walden LR, Reiter RJ, Abe M, et al. Melatonin stimulates 
glutathione peroxidase activity. Neurochem Int. 1995;26:497–502.

 143.  Tan DX, Chen LD, Poeggeler B, et al. Melatonin: a potent, endog-
enous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.

 144.  Tan D, Reiter RJ, Chen LD, et al. Both physiological and pharmaco-
logical levels of melatonin reduce DNA adduct formation induced 
by the carcinogen safrole. Carcinogenesis. 1994;15:215–8.

 145.  Rao KS, Loeb LA. DNA damage and repair in brain: relationship to 
aging. Mutat Res. 1992;275:317–29.

 146.  Strong R, Mattamal MB, Andor AC. Free radicals, the aging brain, 
and age-related neurodegeerative disorders. In: Yu BP, ed. Free 
Radicals in Aging. Boca Raton: CRC Press; 1993.

 147.  Acuña-Castroviejo D, Coto-Montes A, Gaia Monti M, et al. Melatonin 
is protective against MPTP-induced striatal and hippocampal lesions. 
Life Sci. 1997;60:PL23–9.



36

Paredes et al

International Journal of  Tryptophan Research 2009:2 

 148.  Mayo JC, Sainz RM, Tan DX, et al. Melatonin and Parkinson’s disease. 
Endocrine. 2005;27:169–78.

 149.  van Rensburg SJ, Daniels WM, van Zyl JM, et al. A comparative study 
of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, 
dehydroepiandrosterone sulphate and melatonin on in vitro lipid 
peroxidation. Metab Brain Dis. 2000;15:257–65.

 150.  Ferrari CK. Functional foods, herbs and nutraceuticals: towards 
biochemical mechanisms of healthy aging. Biogerontology. 
2004;5:275–89.

 151.  Bondy SC, Sharman EH. Melatonin and the aging brain. Neurochem 
Int. 2007;50:571–80.

 152.  Rodríguez AB, Marchena JM, Nogales G, et al. Correlation between 
the circadian rhythm of melatonin, phagocytosis, and superoxide anion 
levels in ring dove heterophils. J Pineal Res. 1999a;26:35–42.

 153.  Terron M del P, Paredes SD, Barriga C, et al. Oral administration of 
melatonin to old ring doves (Streptopelia risoria) increases plasma 
levels of melatonin and heterophil phagocytic activity. J Gerontol A 
Bio Sci Med Sci. 2005a;60:44–50.

 154.  Paredes SD, Terrón MP, Marchena AM, et al. Effect of exogenous 
melatonin on viability, ingestion capacity, and free-radical scavenging 
in heterophils from young and old ringdoves (Streptopelia risoria). 
Mol Cell Biochem. 2007e;304:305–14.

 155.  Terrón MP, Cubero J, Barriga C, et al. Phagocytosis of Candida albicans 
and superoxide anion Levels in ring dove (Streptopelia risoria) 
heterophils: effect of melatonin. J Neuroendocrinol. 2003;15:1111–5.

 156.  Rodríguez AB, Ortega E, Lea RW, et al. Melatonin and the phagocytic 
process of heterophils from the ring dove (Streptopelia risoria). Mol 
Cell Biochem. 1997;168:185–90.

 157.  Rodríguez AB, Nogales G, Ortega E, et al. Melatonin controls 
superoxide anion level: modulation of superoxide dismutase activity 
in ring dove heterophils. J Pineal Res. 1998;24:9–14.

 158.  Rodríguez AB, Nogales G, Marchena JM, et al. Suppression of both 
basal and antigen-induced lipid peroxidation in ring dove heterophils 
by melatonin. Biochem Pharmacol. 1999b;58:1301–6.

 159.  Barriga C, Marchena JM, Lea RW, et al. Effect of stress and 
dexamethasone treatment on circadian rhythms of melatonin and 
corticosterone in ring dove (Streptopelia risoria). Mol Cell Biochem. 
2002b;232:27–31.

 160.  Paredes SD, Sánchez S, Rial RV, et al. Changes in behaviour and in 
the circadian rhythms of melatonin and corticosterone in rats subjected 
to a forced-swimming test. J Appl Biomed. 2005;3:47–56.

 161.  Paredes SD, Terrón MP, Valero V, et al. Orally administered melato-
nin improves nocturnal rest in young and old ringdoves (Streptopelia 
risoria). Basic Clin Pharmacol Toxicol. 2007f;100:258–68.

 162.  Paredes SD, Marchena AM, Bejarano I, et al. Melatonin and trypto-
phan affect the activity-rest rhythm, core and peripheral temperatures, 
and interleukin levels in the ringdove: Changes with age. J Gerontol 
A Biol Sci Med Sci. 2009b;Doi: 10.1093/gerona/gln054.

 163.  Campbell SS, Murphy PJ. Relationships between sleep and body 
temperature in middle-aged and older subjects. J Am Geriatr Soc. 
1998;46:458–62.

 164.  Barriga-Ibars C, Rodríguez-Moratinos AB, Esteban S, et al. [Inter-
relations between sleep and the immune status]. Rev Neurol. 
2005;40:548–56.

 165.  Terrón MP, Paredes SD, Barriga C, et al. Comparative study of the 
heterophil phagocytic function in young and old ring doves 
(Streptopelia risoria) and its relationship with melatonin levels. 
J Comp Physiol [B]. 2004;174:421–7.

 166.  Terrón MP, Cubero J, Marchena JM, et al. Melatonin and aging: in 
vitro effect of young and mature ring dove physiological concentra-
tions of melatonin on the phagocytic function of heterophils from old 
ring dove. Exp Gerontol. 2002;37:421–6.

 167.  Terrón MP, Paredes SD, Barriga C, et al. Melatonin, lipid peroxidation, 
and age in heterophils from the ring dove (Streptopelia risoria). Free 
Radic Res. 2005b;39:613–9.

 168.  Ouichou A, Pevet P. Implication of tryptophan in the stimulatory effect 
of delta-sleep-inducing peptide on indole secretion from perifused rat 
pineal glands. Biol Signals. 1992;1:78–87.

 169.  Cubero J, Narciso D, Valero V, et al. The oral administration of tryp-
tophan improves nocturnal rest in young animals: Correlation with 
melatonin. Biogenic Amines. 2006b;20:53–62.

 170.  Garau C, Aparicio S, Rial RV, et al. Age related changes in the activity-
rest circadian rhythms and c-fos expression of ring doves with aging. 
Effects of tryptophan intake. Exp Gerontol. 2006b;41:430–38.

 171.  Cirelli C, Tononi G. On the functional signifi cance of c-fos induction 
during the sleep-waking cycle. Sleep. 2000;23:453–69.

 172.  Cubero J, Narciso D, Valero V, et al. Oral administration of 
L-tryptophan in the morning affects phagocytosis and oxidative 
metabolism in heterophils of Streptopelia roseogrisea. Biogenic 
Amines. 2005;19:209–21.

 173.  Maestroni GJ. The immunotherapeutic potential of melatonin. Expert 
Opin Investig Drugs. 2001;10:467–76.

 174.  Guerrero JM, Reiter RJ. Melatonin-immune system relationships. 
Curr Top Med Chem. 2002;2:167–79.

 175.  Dubbels R, Reiter RJ, Klenke E, et al. Melatonin in edible 
plants identifi ed by radioimmunoassay and by high performance liquid 
chromatography-mass spectrometry. J Pineal Res. 1995;18:28–31.

 176.  Hattori A, Migitaka H, Iigo M, et al. Identifi cation of melatonin in plants 
and its effects on plasma melatonin levels and binding to melatonin 
receptors in vertebrates. Biochem Mol Biol Int. 1995;35:627–34.

 177.  Badria FA. Melatonin, serotonin, and tryptamine in some egyptian 
food and medicinal plants. J Med Food. 2002;5:153–7.

 178.  Paredes SD. [Effect of the administration of melatonin and tryptophan 
on the activity-rest rhythms, phagocytic function and oxidative 
metabolism in Streptopelia risoria. Modifi cations with age]. Cáceres: 
Servicio de Publicaciones de la Universidad de Extremadura; 2007.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


