
Data and text mining

qsubsec: a lightweight template system for

defining sun grid engine workflows

Alastair P. Droop*

MRC Medical Bioinformatics Centre, University of Leeds, Clarendon Way, Leeds LS2 9NL, UK

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on 10 September 2015; revised on 2 November 2015; accepted on 23 November 2015

Abstract

Summary: The Sun Grid Engine (SGE) high-performance computing batch queueing system is

commonly used in bioinformatics analysis. Creating re-usable scripts for the SGE is a common

challenge. The qsubsec template language and interpreter described here allow researchers to eas-

ily create generic template definitions that encapsulate a particular computational job, effectively

separating the process logic from the specific run details. At submission time, the generic template

is filled in with specific values. This system provides an intermediate level between simple script-

ing and complete workflow management tools.

Availability and implementation: Qsubsec is open-source and is available at https://github.com/

alastair-droop/qsubsec.

Contact: a.p.droop@leeds.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-performance computing (HPC) is fast becoming an essential part

of all but the smallest bioinformatics analyses. Increasingly, shared

HPC resources are available for research use. Although a great asset

to bioinformatics, these systems are usually shared across multiple dis-

ciplines and are utilized by multiple simultaneous users. Such multi-

user, multi-application systems require scheduling software to ensure

fair use of the resources between multiple users and to make sure that

the resources are optimally utilized. These schedulers demand re-

searchers submit their analyses in a specific format with suitable meta-

data on memory and time limits. The Sun Grid Engine (SGE: https://

arc.liv.ac.uk/trac/SGE) is a popular version of such a system.

To make full use of the available HPC, researchers must adapt

their analysis scripts to work with the associated scheduling systems.

Frequently, this involves breaking down large or time consuming

analyses into smaller steps to make better use of resource limitations

imposed by the HPC, or to parallelise independent tasks. Ordered

collections of individual computational steps constitute a protocol

or workflow.

Workflow management software, for example Taverna

Workbench (Wolstencroft et al., 2013), Pegasus (Deelman et al., 2015)

and Galaxy (Giardine et al., 2005), aims to simplify the creation,

management and execution of workflows. These systems attempt to be

complete data management and integration tools. As such, they allow

users to search online data repositories, download relevant data and

provide sets of common analysis tools (Deelman et al., 2009). These

systems ultimately attempt to simplify common bioinformatics ana-

lyses but there can be several major hurdles: installation and mainten-

ance are not trivial, workflow definitions often require knowledge of

languages such as CWL (https://github.com/common-workflow-lan

guage/common-workflow-language) or SCUFL (Oinn et al., 2004),

and the user is conceptually removed from the running code.

Furthermore, the multi-application nature of HPC often precludes in-

stallation of complex domain-specific software suites; in these cases, a

full workflow management suite might well not be available.

In many cases, these complex management suites are unnecessary,

and a simpler framework for defining a workflow element is required.

I here describe qsubsec, a Python-based mini-language that separates

the core logic of a computational task from the specific data for a sin-

gle instance without the overhead of a workflow management system.

This enables users to easily write SGE job scripts in a generic form

that is processed at submission time into a specific computational

task. This greatly simplifies the process of defining and maintaining

computational pipelines on general-purpose HPC systems.

VC The Author 2015. Published by Oxford University Press. 1267
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 32(8), 2016, 1267–1268

doi: 10.1093/bioinformatics/btv698

Advance Access Publication Date: 3 December 2015

Applications Note

https://github.com/alastair-droop/qsubsec
https://github.com/alastair-droop/qsubsec
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv698/-/DC1
Deleted Text: Note to CE: Please check highlighted text.
Deleted Text: i
Deleted Text: s
Deleted Text: s
https://arc.liv.ac.uk/trac/SGE
https://arc.liv.ac.uk/trac/SGE
https://github.com/common-workflow-language/common-workflow-language
https://github.com/common-workflow-language/common-workflow-language
Deleted Text: [TQ1]
http://www.oxfordjournals.org/


2 Implementation

The qsubsec template mini-language and interpreter allow the com-

putational logic of a job, along with the metadata required by the

SGE queueing system, to be defined in a simple, generalised form.

Specific data (for example sample names or identifiers) are provided

to the interpreter at submission time. The template and specific data

are then used to create and submit a job to the SGE queue. This

system allows simple scripts written for use in the terminal to be

trivially converted to qsubsec template files.

By separating computational logic and specific data, template files

can be reused in different analyses saving a large amount of code repe-

tition. Generalization is implemented using tokens; a token (specified

as an uppercase identifier surrounded by curly braces) is used wher-

ever a run-specific data value is required. Tokens can be used in all

parts of the template, including the scheduler resource definitions and

job names. At submission time, the script is parsed and the values of

all tokens present in the template file provided by the user.

The qsubsec tool temporarily appends the specific qsubsec lan-

guage functions (such as section, limits and command) to the Python

3 built-in function list and parses the supplied template using this

superset. This allows the template scripts to utilize the full power of

Python during job pre-processing. For example, data can easily be

read from web servers or from SQL databases before the parsed job

is submitted to SGE. A full description of the qsubsec built-in func-

tions is provided in the Supplementary Material.

2.1 Example usage
Alignment to a reference genome using bwa (Li and Durbin, 2009)

is a common task. Figure 1 shows a simple bwa alignment task

(alignment and conversion of the output SAM file to BAM format)

implemented as a qsubsec template file. The reference used, the rele-

vant data directories and the sample ID are all expressed as tokens.

More complicated examples are provided in the project repository.

The section command defines the job section, and provides a job

name. The limits command specifies the limits that SGE will allocate

to the job. Each command function defines executable code that will

be run. In this example, the third command submits a subsequent

template to the queue. By default, script error and output files are

captured in files with names based upon the section ID. As the pro-

cessor is a Python 3 script, there are very few dependencies to install

on the HPC system used. This allows extremely simple deployment

on mixed use machines, as there is a very low installation and main-

tenance overhead.

Although developed and tested on SGE, multiple scheduling sys-

tems (such as the Open Grid Engine) use a very similar syntax. The

scripts generated by qsubsec are likely to be compatible with these

other systems.

2.2 Iterated tokens
If a series of related jobs are to be submitted with different param-

eters, multiple values for each token can be provided. The interpreter

builds a job script for each unique combination of token values.

2.3 Logging
All jobs submitted to SGE have both standard output and error pipes.

The qsubsec system catches these and writes them to files named

based upon the job ID. By default, qsubsec appends time-stamped

progress messages to the output file (corresponding to stdout), allow-

ing job progress to be monitored. Many SGE implementations will

provide a short warning time before terminating a job that has over-

run its allocated resources. Imminent job terminating is also recorded

to the output file. Each command can optionally be tested for success-

ful completion, and the whole job halted on failure. Figure 1 shows

example output from the alignment section.

3 Summary

Here I describe qsubsec, a mini-language and interpreter to describe

grid jobs on the SGE queueing system. The interpreter is very easy to

use and requires minimal installation on HPC systems. Existing

computational tasks can be easily converted into generic qsubsec

templates. The qsubsec system provides a simple system that allows

researchers to write generic job templates and thus to run their ana-

lyses on high-performance computing systems using SGE. The re-

porting system ensures analysis workflows, including software

versions, are adequately captured.

Acknowledgement

I would like to thank the Epidemiology and Biostatistics group in the Leeds

Institute of Cancer and Pathology for their invaluable assistance when de-

veloping this software.

Funding

This work has been supported by the Leeds MRC Medical Bioinformatics

Centre (MR/LO1629X), and the Cancer Research UK Leeds Centre (infra-

structure award C37059/A18080).

Conflict of Interest: none declared.

References

Deelman, E. et al. (2009) Workflows and e-Science: an overview of workflow

system features and capabilities. Futur. Gen. Comp. Syst., 25, 528–540.

Deelman, E. et al. (2015) Pegasus, a workflow management system for science

automation. Futur. Gen. Comp. Syst., 46, 17–35.

Giardine, B. et al. (2005) Galaxy: a platform for interactive large-scale genome

analysis. Genome Res., 15, 1451–1455.

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with

Burrows–Wheeler Transform. Bioinformatics, 25, 1754–1760.

Oinn, T. et al. (2004) Taverna: a tool for the composition and enactment of

bioinformatics workflows. Bioinformatics, 20, 3045–3054.

Wolstencroft, K. et al. (2013) The Taverna workflow suite: designing and exe-

cuting workflows of Web Services on the desktop, web or in the cloud.

Nucleic Acids Res., 41, W557–W561.

Fig. 1 Example template file syntax and submission. A bwa alignment of a

pair of samples followed by SAM to BAM conversion is shown. The template

file does not contain specific file names. Upon submission, the script is filled

in with user-supplied token values. More complex examples are provided in

the online project repository

1268 A.P.Droop

Deleted Text: i
Deleted Text: s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv698/-/DC1
Deleted Text: e
Deleted Text: i
Deleted Text: l
Deleted Text: s

